Abstract

A novel optical dispersion tolerant millimetre-wave radio-over-fibre system using optical frequency tripling technique with enhanced and selectable sideband suppression is demonstrated. The implementation utilises cascaded optical modulators to achieve either an optical single sideband (OSSB) or double sideband-suppressed carrier (DSB-SC) signal with high sideband suppression. Our analysis and simulation results indicate that the achievable suppression ratio of this configuration is only limited by other system factors such as optical noise and drifting of the operational conditions. The OSSB transmission system performance is assessed experimentally by the transport of 4 WiMax channels modulating a 10 GHz optical upconverted RF carrier as well as for optical frequency doubling and tripling. The 10 GHz and tripled carrier at 30 GHz are dispersion tolerant resulting both in an average relative constellation error (RCE) of −28.7 dB after 40 km of fibre.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol. 24(12), 4628–4641 (2006).
    [CrossRef]
  2. D. Y. Kim, M. Pelusi, Z. Ahmed, D. Novak, H. F. Liu, and Y. Ogawa, “Ultrastable Millimeter-Wave Signal Generation Using Hybrid Modelocking of a Monolithic DBR Laser,” Electron. Lett. 31(9), 733–734 (1995).
    [CrossRef]
  3. J. J. Oreilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical-Generation of Very Narrow Linewidth Millimeter-Wave Signals,” Electron. Lett. 28, 2309–2311 (1992).
  4. G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microwave Theory Tech. 45(8), 1410–1415 (1997).
    [CrossRef]
  5. M. Weiß, M. Huchard, A. Stöhr, B. Charbonnier, S. Fedderwitz, and D. S. Jäger, “60-GHz Photonic Millimeter-Wave Link for Short- to Medium-Range Wireless Transmission Up to 12.5 Gb/s,” J. Lightwave Technol. 26(15), 2424–2429 (2008).
    [CrossRef]
  6. H. C. Chien, A. Chowdhury, Z. Jia, Y. T. Hsueh, and G. K. Chang, “60 GHz millimeter-wave gigabit wireless services over long-reach passive optical network using remote signal regeneration and upconversion,” Opt. Express 17(5), 3016–3024 (2009).
    [CrossRef] [PubMed]
  7. M. Mohamed, X. Zhang, B. Hraimel, and K. Wu, “Analysis of frequency quadrupling using a single Mach-Zehnder modulator for millimeter-wave generation and distribution over fiber systems,” Opt. Express 16(14), 10786–10802 (2008).
    [CrossRef] [PubMed]
  8. J. X. Ma, X. J. Xin, J. Yu, C. X. Yu, K. R. Wang, H. Y. Huang, and L. Rao, “Optical millimeter wave generated by octupling the frequency of the local oscillator,” J. Opt. Netw. 7(10), 837–845 (2008).
    [CrossRef]
  9. M. Mohamed, X. Zhang, B. Hraimel, and K. Wu, “Analysis of frequency quadrupling using a single Mach-Zehnder modulator for millimeter-wave generation and distribution over fiber systems,” Opt. Express 16(14), 10786–10802 (2008).
    [CrossRef] [PubMed]
  10. C. T. Lin, J. Chen, S. P. Dai, P. C. Peng, and S. Chi, “Impact of Nonlinear Transfer Function and Imperfect Splitting Ratio of MZM on Optical Up-Conversion Employing Double Sideband With Carrier Suppression Modulation,” J. Lightwave Technol. 26(15), 2449–2459 (2008).
    [CrossRef]
  11. P. Laurêncio, H. Vargues, I. Fortes, R. Avo, and M. C. R. Medeiros, “Dispersion Robustness of Millimeter Waves Generated by Up-Conversion Strategies,” Fiber Integr. Opt. 29(6), 441–452 (2010).
    [CrossRef]
  12. R. Avo, P. Laurencio, and M. C. R. Medeiros, “Comparative Study of Optical Up-Conversion Schemes,” Icton: 2011 13th International Conference on Transparent Optical Networks, 1–4 (2011).
  13. T. Kawanishi, T. Sakamoto, M. Tsuchiya, M. Izutsu, S. Mori, and K. Higuma, “70dB extinction-ratio LiNbO3 optical intensity modulator for two-tone lightwave generation,” Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, Vols 1–6, 443–445 (2006).
  14. Y. Ogiso, Y. Tsuchiya, S. Shinada, S. Nakajima, T. Kawanishi, and H. Nakajima, “High Extinction-Ratio Integrated Mach-Zehnder Modulator With Active Y-Branch for Optical SSB Signal Generation,” IEEE Photon. Tech Lett. 22(12), 941–943 (2010).
    [CrossRef]
  15. C. T. Lin, P. T. Shih, J. Chen, W. Jiang, S. P. Dai, P. C. Peng, Y. L. Ho, and S. Chi, “Optical Millimeter-Wave Up-Conversion Employing Frequency Quadrupling Without Optical Filtering,” IEEE Trans. Microwave Theory Tech. 57(8), 2084–2092 (2009).
    [CrossRef]
  16. G. de Valicourt, M. A. Violas, D. Wake, F. van Dijk, C. Ware, A. Enard, D. Maké, Z. Liu, M. Lamponi, G.-H. Duan, and R. Brenot, “Radio-Over-Fiber Access Network Architecture Based on New Optimized RSOA Devices With Large Modulation Bandwidth and High Linearity,” IEEE Trans. Microwave Theory Tech. 58(11), 3248–3258 (2010).
    [CrossRef]
  17. B. Davies and J. Conradi, “Hybrid modulator structures for subcarrier and harmonic subcarrier optical single sideband,” IEEE Photon. Tech Lett. 10(4), 600–602 (1998).
    [CrossRef]
  18. D. Pareit, V. Petrov, B. Lannoo, E. Tanghe, W. Joseph, I. Moerman, P. Demeester, and L. Martens, “A Throughput Analysis at the MAC Layer of Mobile WiMAX, ” IEEE Wireless Communications and Networking Conference, 1–6 (2010).
  19. R. T. Logan., “All-optical heterodyne RF signal generation using a mode-locked-laser frequency comb: theory and experiments,” IEEE MTT-S Int. Microw. Symp. Dig. 3, 11–16 (2000).
  20. S. Jansen, I. Morita, and H. Tanaka, “Carrier-to-signal power ratio in fiber-optic SSB-OFDM transmission systems”, IEICE General Conference, Nagoya, Japan, (Institute of Electronics, Information and Communication Engineers, paper B-10–24, (2007).
  21. J. James, P. Shen, A. Nkansah, X. Liang, and N. J. Gomes, “Nonlinearity and Noise Effects in Multi-Level Signal Millimeter-Wave Over Fiber Transmission Using Single and Dual Wavelength Modulation,” IEEE Trans. Microwave Theory Tech. 58(11), 3189–3198 (2010).
    [CrossRef]
  22. L. Xin, H. X. You, G. Ying, L. S. Feng, and Z. M. Shan, “Phase noise floor suppression of the output carrier from double sideband-carrier suppressed modulation system,” Sci. China 54, 1312–1320 (2011).
  23. J. Armstrong, “OFDM for Optical Communications,” J. Lightwave Technol. 27(3), 189–204 (2009).

2011

L. Xin, H. X. You, G. Ying, L. S. Feng, and Z. M. Shan, “Phase noise floor suppression of the output carrier from double sideband-carrier suppressed modulation system,” Sci. China 54, 1312–1320 (2011).

2010

J. James, P. Shen, A. Nkansah, X. Liang, and N. J. Gomes, “Nonlinearity and Noise Effects in Multi-Level Signal Millimeter-Wave Over Fiber Transmission Using Single and Dual Wavelength Modulation,” IEEE Trans. Microwave Theory Tech. 58(11), 3189–3198 (2010).
[CrossRef]

P. Laurêncio, H. Vargues, I. Fortes, R. Avo, and M. C. R. Medeiros, “Dispersion Robustness of Millimeter Waves Generated by Up-Conversion Strategies,” Fiber Integr. Opt. 29(6), 441–452 (2010).
[CrossRef]

Y. Ogiso, Y. Tsuchiya, S. Shinada, S. Nakajima, T. Kawanishi, and H. Nakajima, “High Extinction-Ratio Integrated Mach-Zehnder Modulator With Active Y-Branch for Optical SSB Signal Generation,” IEEE Photon. Tech Lett. 22(12), 941–943 (2010).
[CrossRef]

G. de Valicourt, M. A. Violas, D. Wake, F. van Dijk, C. Ware, A. Enard, D. Maké, Z. Liu, M. Lamponi, G.-H. Duan, and R. Brenot, “Radio-Over-Fiber Access Network Architecture Based on New Optimized RSOA Devices With Large Modulation Bandwidth and High Linearity,” IEEE Trans. Microwave Theory Tech. 58(11), 3248–3258 (2010).
[CrossRef]

2009

C. T. Lin, P. T. Shih, J. Chen, W. Jiang, S. P. Dai, P. C. Peng, Y. L. Ho, and S. Chi, “Optical Millimeter-Wave Up-Conversion Employing Frequency Quadrupling Without Optical Filtering,” IEEE Trans. Microwave Theory Tech. 57(8), 2084–2092 (2009).
[CrossRef]

J. Armstrong, “OFDM for Optical Communications,” J. Lightwave Technol. 27(3), 189–204 (2009).

H. C. Chien, A. Chowdhury, Z. Jia, Y. T. Hsueh, and G. K. Chang, “60 GHz millimeter-wave gigabit wireless services over long-reach passive optical network using remote signal regeneration and upconversion,” Opt. Express 17(5), 3016–3024 (2009).
[CrossRef] [PubMed]

2008

2006

2000

R. T. Logan., “All-optical heterodyne RF signal generation using a mode-locked-laser frequency comb: theory and experiments,” IEEE MTT-S Int. Microw. Symp. Dig. 3, 11–16 (2000).

1998

B. Davies and J. Conradi, “Hybrid modulator structures for subcarrier and harmonic subcarrier optical single sideband,” IEEE Photon. Tech Lett. 10(4), 600–602 (1998).
[CrossRef]

1997

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microwave Theory Tech. 45(8), 1410–1415 (1997).
[CrossRef]

1995

D. Y. Kim, M. Pelusi, Z. Ahmed, D. Novak, H. F. Liu, and Y. Ogawa, “Ultrastable Millimeter-Wave Signal Generation Using Hybrid Modelocking of a Monolithic DBR Laser,” Electron. Lett. 31(9), 733–734 (1995).
[CrossRef]

1992

J. J. Oreilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical-Generation of Very Narrow Linewidth Millimeter-Wave Signals,” Electron. Lett. 28, 2309–2311 (1992).

Ahmed, Z.

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microwave Theory Tech. 45(8), 1410–1415 (1997).
[CrossRef]

D. Y. Kim, M. Pelusi, Z. Ahmed, D. Novak, H. F. Liu, and Y. Ogawa, “Ultrastable Millimeter-Wave Signal Generation Using Hybrid Modelocking of a Monolithic DBR Laser,” Electron. Lett. 31(9), 733–734 (1995).
[CrossRef]

Armstrong, J.

Avo, R.

P. Laurêncio, H. Vargues, I. Fortes, R. Avo, and M. C. R. Medeiros, “Dispersion Robustness of Millimeter Waves Generated by Up-Conversion Strategies,” Fiber Integr. Opt. 29(6), 441–452 (2010).
[CrossRef]

Brenot, R.

G. de Valicourt, M. A. Violas, D. Wake, F. van Dijk, C. Ware, A. Enard, D. Maké, Z. Liu, M. Lamponi, G.-H. Duan, and R. Brenot, “Radio-Over-Fiber Access Network Architecture Based on New Optimized RSOA Devices With Large Modulation Bandwidth and High Linearity,” IEEE Trans. Microwave Theory Tech. 58(11), 3248–3258 (2010).
[CrossRef]

Chang, G. K.

Charbonnier, B.

Chen, J.

C. T. Lin, P. T. Shih, J. Chen, W. Jiang, S. P. Dai, P. C. Peng, Y. L. Ho, and S. Chi, “Optical Millimeter-Wave Up-Conversion Employing Frequency Quadrupling Without Optical Filtering,” IEEE Trans. Microwave Theory Tech. 57(8), 2084–2092 (2009).
[CrossRef]

C. T. Lin, J. Chen, S. P. Dai, P. C. Peng, and S. Chi, “Impact of Nonlinear Transfer Function and Imperfect Splitting Ratio of MZM on Optical Up-Conversion Employing Double Sideband With Carrier Suppression Modulation,” J. Lightwave Technol. 26(15), 2449–2459 (2008).
[CrossRef]

Chi, S.

C. T. Lin, P. T. Shih, J. Chen, W. Jiang, S. P. Dai, P. C. Peng, Y. L. Ho, and S. Chi, “Optical Millimeter-Wave Up-Conversion Employing Frequency Quadrupling Without Optical Filtering,” IEEE Trans. Microwave Theory Tech. 57(8), 2084–2092 (2009).
[CrossRef]

C. T. Lin, J. Chen, S. P. Dai, P. C. Peng, and S. Chi, “Impact of Nonlinear Transfer Function and Imperfect Splitting Ratio of MZM on Optical Up-Conversion Employing Double Sideband With Carrier Suppression Modulation,” J. Lightwave Technol. 26(15), 2449–2459 (2008).
[CrossRef]

Chien, H. C.

Chowdhury, A.

Conradi, J.

B. Davies and J. Conradi, “Hybrid modulator structures for subcarrier and harmonic subcarrier optical single sideband,” IEEE Photon. Tech Lett. 10(4), 600–602 (1998).
[CrossRef]

Dai, S. P.

C. T. Lin, P. T. Shih, J. Chen, W. Jiang, S. P. Dai, P. C. Peng, Y. L. Ho, and S. Chi, “Optical Millimeter-Wave Up-Conversion Employing Frequency Quadrupling Without Optical Filtering,” IEEE Trans. Microwave Theory Tech. 57(8), 2084–2092 (2009).
[CrossRef]

C. T. Lin, J. Chen, S. P. Dai, P. C. Peng, and S. Chi, “Impact of Nonlinear Transfer Function and Imperfect Splitting Ratio of MZM on Optical Up-Conversion Employing Double Sideband With Carrier Suppression Modulation,” J. Lightwave Technol. 26(15), 2449–2459 (2008).
[CrossRef]

Davies, B.

B. Davies and J. Conradi, “Hybrid modulator structures for subcarrier and harmonic subcarrier optical single sideband,” IEEE Photon. Tech Lett. 10(4), 600–602 (1998).
[CrossRef]

de Valicourt, G.

G. de Valicourt, M. A. Violas, D. Wake, F. van Dijk, C. Ware, A. Enard, D. Maké, Z. Liu, M. Lamponi, G.-H. Duan, and R. Brenot, “Radio-Over-Fiber Access Network Architecture Based on New Optimized RSOA Devices With Large Modulation Bandwidth and High Linearity,” IEEE Trans. Microwave Theory Tech. 58(11), 3248–3258 (2010).
[CrossRef]

Duan, G.-H.

G. de Valicourt, M. A. Violas, D. Wake, F. van Dijk, C. Ware, A. Enard, D. Maké, Z. Liu, M. Lamponi, G.-H. Duan, and R. Brenot, “Radio-Over-Fiber Access Network Architecture Based on New Optimized RSOA Devices With Large Modulation Bandwidth and High Linearity,” IEEE Trans. Microwave Theory Tech. 58(11), 3248–3258 (2010).
[CrossRef]

Enard, A.

G. de Valicourt, M. A. Violas, D. Wake, F. van Dijk, C. Ware, A. Enard, D. Maké, Z. Liu, M. Lamponi, G.-H. Duan, and R. Brenot, “Radio-Over-Fiber Access Network Architecture Based on New Optimized RSOA Devices With Large Modulation Bandwidth and High Linearity,” IEEE Trans. Microwave Theory Tech. 58(11), 3248–3258 (2010).
[CrossRef]

Fedderwitz, S.

Feng, L. S.

L. Xin, H. X. You, G. Ying, L. S. Feng, and Z. M. Shan, “Phase noise floor suppression of the output carrier from double sideband-carrier suppressed modulation system,” Sci. China 54, 1312–1320 (2011).

Fortes, I.

P. Laurêncio, H. Vargues, I. Fortes, R. Avo, and M. C. R. Medeiros, “Dispersion Robustness of Millimeter Waves Generated by Up-Conversion Strategies,” Fiber Integr. Opt. 29(6), 441–452 (2010).
[CrossRef]

Gomes, N. J.

J. James, P. Shen, A. Nkansah, X. Liang, and N. J. Gomes, “Nonlinearity and Noise Effects in Multi-Level Signal Millimeter-Wave Over Fiber Transmission Using Single and Dual Wavelength Modulation,” IEEE Trans. Microwave Theory Tech. 58(11), 3189–3198 (2010).
[CrossRef]

Heidemann, R.

J. J. Oreilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical-Generation of Very Narrow Linewidth Millimeter-Wave Signals,” Electron. Lett. 28, 2309–2311 (1992).

Ho, Y. L.

C. T. Lin, P. T. Shih, J. Chen, W. Jiang, S. P. Dai, P. C. Peng, Y. L. Ho, and S. Chi, “Optical Millimeter-Wave Up-Conversion Employing Frequency Quadrupling Without Optical Filtering,” IEEE Trans. Microwave Theory Tech. 57(8), 2084–2092 (2009).
[CrossRef]

Hofstetter, R.

J. J. Oreilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical-Generation of Very Narrow Linewidth Millimeter-Wave Signals,” Electron. Lett. 28, 2309–2311 (1992).

Hraimel, B.

Hsueh, Y. T.

Huang, H. Y.

Huchard, M.

Jäger, D. S.

James, J.

J. James, P. Shen, A. Nkansah, X. Liang, and N. J. Gomes, “Nonlinearity and Noise Effects in Multi-Level Signal Millimeter-Wave Over Fiber Transmission Using Single and Dual Wavelength Modulation,” IEEE Trans. Microwave Theory Tech. 58(11), 3189–3198 (2010).
[CrossRef]

Jia, Z.

Jiang, W.

C. T. Lin, P. T. Shih, J. Chen, W. Jiang, S. P. Dai, P. C. Peng, Y. L. Ho, and S. Chi, “Optical Millimeter-Wave Up-Conversion Employing Frequency Quadrupling Without Optical Filtering,” IEEE Trans. Microwave Theory Tech. 57(8), 2084–2092 (2009).
[CrossRef]

Kawanishi, T.

Y. Ogiso, Y. Tsuchiya, S. Shinada, S. Nakajima, T. Kawanishi, and H. Nakajima, “High Extinction-Ratio Integrated Mach-Zehnder Modulator With Active Y-Branch for Optical SSB Signal Generation,” IEEE Photon. Tech Lett. 22(12), 941–943 (2010).
[CrossRef]

Kim, D. Y.

D. Y. Kim, M. Pelusi, Z. Ahmed, D. Novak, H. F. Liu, and Y. Ogawa, “Ultrastable Millimeter-Wave Signal Generation Using Hybrid Modelocking of a Monolithic DBR Laser,” Electron. Lett. 31(9), 733–734 (1995).
[CrossRef]

Lamponi, M.

G. de Valicourt, M. A. Violas, D. Wake, F. van Dijk, C. Ware, A. Enard, D. Maké, Z. Liu, M. Lamponi, G.-H. Duan, and R. Brenot, “Radio-Over-Fiber Access Network Architecture Based on New Optimized RSOA Devices With Large Modulation Bandwidth and High Linearity,” IEEE Trans. Microwave Theory Tech. 58(11), 3248–3258 (2010).
[CrossRef]

Lane, P. M.

J. J. Oreilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical-Generation of Very Narrow Linewidth Millimeter-Wave Signals,” Electron. Lett. 28, 2309–2311 (1992).

Laurêncio, P.

P. Laurêncio, H. Vargues, I. Fortes, R. Avo, and M. C. R. Medeiros, “Dispersion Robustness of Millimeter Waves Generated by Up-Conversion Strategies,” Fiber Integr. Opt. 29(6), 441–452 (2010).
[CrossRef]

Liang, X.

J. James, P. Shen, A. Nkansah, X. Liang, and N. J. Gomes, “Nonlinearity and Noise Effects in Multi-Level Signal Millimeter-Wave Over Fiber Transmission Using Single and Dual Wavelength Modulation,” IEEE Trans. Microwave Theory Tech. 58(11), 3189–3198 (2010).
[CrossRef]

Lin, C. T.

C. T. Lin, P. T. Shih, J. Chen, W. Jiang, S. P. Dai, P. C. Peng, Y. L. Ho, and S. Chi, “Optical Millimeter-Wave Up-Conversion Employing Frequency Quadrupling Without Optical Filtering,” IEEE Trans. Microwave Theory Tech. 57(8), 2084–2092 (2009).
[CrossRef]

C. T. Lin, J. Chen, S. P. Dai, P. C. Peng, and S. Chi, “Impact of Nonlinear Transfer Function and Imperfect Splitting Ratio of MZM on Optical Up-Conversion Employing Double Sideband With Carrier Suppression Modulation,” J. Lightwave Technol. 26(15), 2449–2459 (2008).
[CrossRef]

Liu, H. F.

D. Y. Kim, M. Pelusi, Z. Ahmed, D. Novak, H. F. Liu, and Y. Ogawa, “Ultrastable Millimeter-Wave Signal Generation Using Hybrid Modelocking of a Monolithic DBR Laser,” Electron. Lett. 31(9), 733–734 (1995).
[CrossRef]

Liu, Z.

G. de Valicourt, M. A. Violas, D. Wake, F. van Dijk, C. Ware, A. Enard, D. Maké, Z. Liu, M. Lamponi, G.-H. Duan, and R. Brenot, “Radio-Over-Fiber Access Network Architecture Based on New Optimized RSOA Devices With Large Modulation Bandwidth and High Linearity,” IEEE Trans. Microwave Theory Tech. 58(11), 3248–3258 (2010).
[CrossRef]

Logan, R. T.

R. T. Logan., “All-optical heterodyne RF signal generation using a mode-locked-laser frequency comb: theory and experiments,” IEEE MTT-S Int. Microw. Symp. Dig. 3, 11–16 (2000).

Ma, J. X.

Maké, D.

G. de Valicourt, M. A. Violas, D. Wake, F. van Dijk, C. Ware, A. Enard, D. Maké, Z. Liu, M. Lamponi, G.-H. Duan, and R. Brenot, “Radio-Over-Fiber Access Network Architecture Based on New Optimized RSOA Devices With Large Modulation Bandwidth and High Linearity,” IEEE Trans. Microwave Theory Tech. 58(11), 3248–3258 (2010).
[CrossRef]

Medeiros, M. C. R.

P. Laurêncio, H. Vargues, I. Fortes, R. Avo, and M. C. R. Medeiros, “Dispersion Robustness of Millimeter Waves Generated by Up-Conversion Strategies,” Fiber Integr. Opt. 29(6), 441–452 (2010).
[CrossRef]

Mohamed, M.

Nakajima, H.

Y. Ogiso, Y. Tsuchiya, S. Shinada, S. Nakajima, T. Kawanishi, and H. Nakajima, “High Extinction-Ratio Integrated Mach-Zehnder Modulator With Active Y-Branch for Optical SSB Signal Generation,” IEEE Photon. Tech Lett. 22(12), 941–943 (2010).
[CrossRef]

Nakajima, S.

Y. Ogiso, Y. Tsuchiya, S. Shinada, S. Nakajima, T. Kawanishi, and H. Nakajima, “High Extinction-Ratio Integrated Mach-Zehnder Modulator With Active Y-Branch for Optical SSB Signal Generation,” IEEE Photon. Tech Lett. 22(12), 941–943 (2010).
[CrossRef]

Nkansah, A.

J. James, P. Shen, A. Nkansah, X. Liang, and N. J. Gomes, “Nonlinearity and Noise Effects in Multi-Level Signal Millimeter-Wave Over Fiber Transmission Using Single and Dual Wavelength Modulation,” IEEE Trans. Microwave Theory Tech. 58(11), 3189–3198 (2010).
[CrossRef]

Novak, D.

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microwave Theory Tech. 45(8), 1410–1415 (1997).
[CrossRef]

D. Y. Kim, M. Pelusi, Z. Ahmed, D. Novak, H. F. Liu, and Y. Ogawa, “Ultrastable Millimeter-Wave Signal Generation Using Hybrid Modelocking of a Monolithic DBR Laser,” Electron. Lett. 31(9), 733–734 (1995).
[CrossRef]

Ogawa, Y.

D. Y. Kim, M. Pelusi, Z. Ahmed, D. Novak, H. F. Liu, and Y. Ogawa, “Ultrastable Millimeter-Wave Signal Generation Using Hybrid Modelocking of a Monolithic DBR Laser,” Electron. Lett. 31(9), 733–734 (1995).
[CrossRef]

Ogiso, Y.

Y. Ogiso, Y. Tsuchiya, S. Shinada, S. Nakajima, T. Kawanishi, and H. Nakajima, “High Extinction-Ratio Integrated Mach-Zehnder Modulator With Active Y-Branch for Optical SSB Signal Generation,” IEEE Photon. Tech Lett. 22(12), 941–943 (2010).
[CrossRef]

Oreilly, J. J.

J. J. Oreilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical-Generation of Very Narrow Linewidth Millimeter-Wave Signals,” Electron. Lett. 28, 2309–2311 (1992).

Pelusi, M.

D. Y. Kim, M. Pelusi, Z. Ahmed, D. Novak, H. F. Liu, and Y. Ogawa, “Ultrastable Millimeter-Wave Signal Generation Using Hybrid Modelocking of a Monolithic DBR Laser,” Electron. Lett. 31(9), 733–734 (1995).
[CrossRef]

Peng, P. C.

C. T. Lin, P. T. Shih, J. Chen, W. Jiang, S. P. Dai, P. C. Peng, Y. L. Ho, and S. Chi, “Optical Millimeter-Wave Up-Conversion Employing Frequency Quadrupling Without Optical Filtering,” IEEE Trans. Microwave Theory Tech. 57(8), 2084–2092 (2009).
[CrossRef]

C. T. Lin, J. Chen, S. P. Dai, P. C. Peng, and S. Chi, “Impact of Nonlinear Transfer Function and Imperfect Splitting Ratio of MZM on Optical Up-Conversion Employing Double Sideband With Carrier Suppression Modulation,” J. Lightwave Technol. 26(15), 2449–2459 (2008).
[CrossRef]

Rao, L.

Seeds, A. J.

Shan, Z. M.

L. Xin, H. X. You, G. Ying, L. S. Feng, and Z. M. Shan, “Phase noise floor suppression of the output carrier from double sideband-carrier suppressed modulation system,” Sci. China 54, 1312–1320 (2011).

Shen, P.

J. James, P. Shen, A. Nkansah, X. Liang, and N. J. Gomes, “Nonlinearity and Noise Effects in Multi-Level Signal Millimeter-Wave Over Fiber Transmission Using Single and Dual Wavelength Modulation,” IEEE Trans. Microwave Theory Tech. 58(11), 3189–3198 (2010).
[CrossRef]

Shih, P. T.

C. T. Lin, P. T. Shih, J. Chen, W. Jiang, S. P. Dai, P. C. Peng, Y. L. Ho, and S. Chi, “Optical Millimeter-Wave Up-Conversion Employing Frequency Quadrupling Without Optical Filtering,” IEEE Trans. Microwave Theory Tech. 57(8), 2084–2092 (2009).
[CrossRef]

Shinada, S.

Y. Ogiso, Y. Tsuchiya, S. Shinada, S. Nakajima, T. Kawanishi, and H. Nakajima, “High Extinction-Ratio Integrated Mach-Zehnder Modulator With Active Y-Branch for Optical SSB Signal Generation,” IEEE Photon. Tech Lett. 22(12), 941–943 (2010).
[CrossRef]

Smith, G. H.

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microwave Theory Tech. 45(8), 1410–1415 (1997).
[CrossRef]

Stöhr, A.

Tsuchiya, Y.

Y. Ogiso, Y. Tsuchiya, S. Shinada, S. Nakajima, T. Kawanishi, and H. Nakajima, “High Extinction-Ratio Integrated Mach-Zehnder Modulator With Active Y-Branch for Optical SSB Signal Generation,” IEEE Photon. Tech Lett. 22(12), 941–943 (2010).
[CrossRef]

van Dijk, F.

G. de Valicourt, M. A. Violas, D. Wake, F. van Dijk, C. Ware, A. Enard, D. Maké, Z. Liu, M. Lamponi, G.-H. Duan, and R. Brenot, “Radio-Over-Fiber Access Network Architecture Based on New Optimized RSOA Devices With Large Modulation Bandwidth and High Linearity,” IEEE Trans. Microwave Theory Tech. 58(11), 3248–3258 (2010).
[CrossRef]

Vargues, H.

P. Laurêncio, H. Vargues, I. Fortes, R. Avo, and M. C. R. Medeiros, “Dispersion Robustness of Millimeter Waves Generated by Up-Conversion Strategies,” Fiber Integr. Opt. 29(6), 441–452 (2010).
[CrossRef]

Violas, M. A.

G. de Valicourt, M. A. Violas, D. Wake, F. van Dijk, C. Ware, A. Enard, D. Maké, Z. Liu, M. Lamponi, G.-H. Duan, and R. Brenot, “Radio-Over-Fiber Access Network Architecture Based on New Optimized RSOA Devices With Large Modulation Bandwidth and High Linearity,” IEEE Trans. Microwave Theory Tech. 58(11), 3248–3258 (2010).
[CrossRef]

Wake, D.

G. de Valicourt, M. A. Violas, D. Wake, F. van Dijk, C. Ware, A. Enard, D. Maké, Z. Liu, M. Lamponi, G.-H. Duan, and R. Brenot, “Radio-Over-Fiber Access Network Architecture Based on New Optimized RSOA Devices With Large Modulation Bandwidth and High Linearity,” IEEE Trans. Microwave Theory Tech. 58(11), 3248–3258 (2010).
[CrossRef]

Wang, K. R.

Ware, C.

G. de Valicourt, M. A. Violas, D. Wake, F. van Dijk, C. Ware, A. Enard, D. Maké, Z. Liu, M. Lamponi, G.-H. Duan, and R. Brenot, “Radio-Over-Fiber Access Network Architecture Based on New Optimized RSOA Devices With Large Modulation Bandwidth and High Linearity,” IEEE Trans. Microwave Theory Tech. 58(11), 3248–3258 (2010).
[CrossRef]

Weiß, M.

Williams, K. J.

Wu, K.

Xin, L.

L. Xin, H. X. You, G. Ying, L. S. Feng, and Z. M. Shan, “Phase noise floor suppression of the output carrier from double sideband-carrier suppressed modulation system,” Sci. China 54, 1312–1320 (2011).

Xin, X. J.

Ying, G.

L. Xin, H. X. You, G. Ying, L. S. Feng, and Z. M. Shan, “Phase noise floor suppression of the output carrier from double sideband-carrier suppressed modulation system,” Sci. China 54, 1312–1320 (2011).

You, H. X.

L. Xin, H. X. You, G. Ying, L. S. Feng, and Z. M. Shan, “Phase noise floor suppression of the output carrier from double sideband-carrier suppressed modulation system,” Sci. China 54, 1312–1320 (2011).

Yu, C. X.

Yu, J.

Zhang, X.

Electron. Lett.

D. Y. Kim, M. Pelusi, Z. Ahmed, D. Novak, H. F. Liu, and Y. Ogawa, “Ultrastable Millimeter-Wave Signal Generation Using Hybrid Modelocking of a Monolithic DBR Laser,” Electron. Lett. 31(9), 733–734 (1995).
[CrossRef]

J. J. Oreilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical-Generation of Very Narrow Linewidth Millimeter-Wave Signals,” Electron. Lett. 28, 2309–2311 (1992).

Fiber Integr. Opt.

P. Laurêncio, H. Vargues, I. Fortes, R. Avo, and M. C. R. Medeiros, “Dispersion Robustness of Millimeter Waves Generated by Up-Conversion Strategies,” Fiber Integr. Opt. 29(6), 441–452 (2010).
[CrossRef]

IEEE MTT-S Int. Microw. Symp. Dig.

R. T. Logan., “All-optical heterodyne RF signal generation using a mode-locked-laser frequency comb: theory and experiments,” IEEE MTT-S Int. Microw. Symp. Dig. 3, 11–16 (2000).

IEEE Photon. Tech Lett.

Y. Ogiso, Y. Tsuchiya, S. Shinada, S. Nakajima, T. Kawanishi, and H. Nakajima, “High Extinction-Ratio Integrated Mach-Zehnder Modulator With Active Y-Branch for Optical SSB Signal Generation,” IEEE Photon. Tech Lett. 22(12), 941–943 (2010).
[CrossRef]

B. Davies and J. Conradi, “Hybrid modulator structures for subcarrier and harmonic subcarrier optical single sideband,” IEEE Photon. Tech Lett. 10(4), 600–602 (1998).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

C. T. Lin, P. T. Shih, J. Chen, W. Jiang, S. P. Dai, P. C. Peng, Y. L. Ho, and S. Chi, “Optical Millimeter-Wave Up-Conversion Employing Frequency Quadrupling Without Optical Filtering,” IEEE Trans. Microwave Theory Tech. 57(8), 2084–2092 (2009).
[CrossRef]

G. de Valicourt, M. A. Violas, D. Wake, F. van Dijk, C. Ware, A. Enard, D. Maké, Z. Liu, M. Lamponi, G.-H. Duan, and R. Brenot, “Radio-Over-Fiber Access Network Architecture Based on New Optimized RSOA Devices With Large Modulation Bandwidth and High Linearity,” IEEE Trans. Microwave Theory Tech. 58(11), 3248–3258 (2010).
[CrossRef]

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microwave Theory Tech. 45(8), 1410–1415 (1997).
[CrossRef]

J. James, P. Shen, A. Nkansah, X. Liang, and N. J. Gomes, “Nonlinearity and Noise Effects in Multi-Level Signal Millimeter-Wave Over Fiber Transmission Using Single and Dual Wavelength Modulation,” IEEE Trans. Microwave Theory Tech. 58(11), 3189–3198 (2010).
[CrossRef]

J. Lightwave Technol.

J. Opt. Netw.

Opt. Express

Sci. China

L. Xin, H. X. You, G. Ying, L. S. Feng, and Z. M. Shan, “Phase noise floor suppression of the output carrier from double sideband-carrier suppressed modulation system,” Sci. China 54, 1312–1320 (2011).

Other

S. Jansen, I. Morita, and H. Tanaka, “Carrier-to-signal power ratio in fiber-optic SSB-OFDM transmission systems”, IEICE General Conference, Nagoya, Japan, (Institute of Electronics, Information and Communication Engineers, paper B-10–24, (2007).

R. Avo, P. Laurencio, and M. C. R. Medeiros, “Comparative Study of Optical Up-Conversion Schemes,” Icton: 2011 13th International Conference on Transparent Optical Networks, 1–4 (2011).

T. Kawanishi, T. Sakamoto, M. Tsuchiya, M. Izutsu, S. Mori, and K. Higuma, “70dB extinction-ratio LiNbO3 optical intensity modulator for two-tone lightwave generation,” Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, Vols 1–6, 443–445 (2006).

D. Pareit, V. Petrov, B. Lannoo, E. Tanghe, W. Joseph, I. Moerman, P. Demeester, and L. Martens, “A Throughput Analysis at the MAC Layer of Mobile WiMAX, ” IEEE Wireless Communications and Networking Conference, 1–6 (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic of the proposed ER compensation scheme.

Fig. 2
Fig. 2

Dependence of the optical carrier suppression ratio (OCSR) on the modulation index of the phase modulator, m2 and the phase shift β. (a) OCSR contour plot versus m2 and β for a DD-MZM with ER = 30 dB. (b) Optical power of the optical carrier, first harmonic and second harmonic after ER compensation for the DD-MZM with ER = 30 dB. (c) same as (a) for a DD-MZM with ER = 20 dB. (d) Same as (b) for a DD-MZM with ER = 20 dB.

Fig. 3
Fig. 3

Optical spectra, obtained by simulation using the VPI Transmission MakerTM, for m1 = 0.2, m2 = 0.08 and β = 21°. (a) At the output of the DD-MZM. (b) At the output of the PM.

Fig. 4
Fig. 4

Dependence of the OFSSR on the modulation index of the phase modulator, m2 and the phase shift β. (a) OFSSR contour plot versus m2 and β for a DD-MZM with ER = 30 dB. (b) Optical power of the optical carrier, first harmonics and second harmonics after ER compensation for the DD-MZM with ER = 30 dB. (c) same as (a) for a DD-MZM with ER = 20 dB. (d) Same as (b) for a DD-MZM with ER = 20 dB.

Fig. 5
Fig. 5

OSSB optical spectra, obtained by simulation using the VPI Transmission MakerTM, for m1 = 0.2, m2 = 0.2 and β = 14.24°. (a) At the output of the DD-MZM. (b) At the output of the PM.

Fig. 6
Fig. 6

Cascaded DD-MZM and PM (tuneable to DSB-SC and OSSB configuration)

Fig. 7
Fig. 7

OSSB with modulation data signal leakage

Fig. 8
Fig. 8

DSB-SC with modulation data signal leakage

Fig. 9
Fig. 9

RF power variation with fibre length for OSSB configuration

Fig. 10
Fig. 10

RCE variation of down-converted WiMax signal.

Fig. 11
Fig. 11

Measured phase noise of source and upconverted signal.

Fig. 12
Fig. 12

Demodulated 64 QAM WiMax signal constellation diagrams obtained after phase and amplitude corrections at the receiver. (a) Electrical back-back. (b) RF = 30 GHz & IF = 440 MHz. (c) RF = 30 GHz & IF = 460 MHz. (d) RF = 30 GHz & IF = 480 MHz. (e) RF = 30 GHz & IF = 500 MHz.

Tables (1)

Tables Icon

TABLE 1 Source and Upconverted RF Phase Noise

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

V A1 ( t )=Asin( 2π f RF t ) V DC1 V A2 ( t )=Asin( 2π f RF t )+ V DC2
E MZ ( t )= E i ( t ){ η[ e j π V A1 ( t ) V Aπ + e j π V A2 ( t ) V Aπ ]+ξ e j π V A2 ( t ) V Aπ }
E o ( t )= E i ( t ){ η[ e j π V A1 ( t ) V Aπ + e j π V A2 ( t ) V Aπ ]+ξ e j π V A2 ( t ) V Aπ } e j π V B ( t ) V Bπ
E o ( t )= E i ( t ) n= j n e jn ω RF t { η J n ( π M 1 )cos[ n( θ 1 θ 2 ) 2 ϕ 1 + ϕ 2 2 ] e j[ n( θ 1 + θ 2 ) 2 ϕ 1 ϕ 2 2 ] X + [ η( J n ( π M 2 ) J n ( π M 1 ) )+ξ ] e j( n θ 2 + ϕ 2 ) Y }

Metrics