Abstract

A dual-drive LiNbO3 architecture modulator with chirp management is proposed and developed offering SFDR > 25 dB in a 1.4 V bias excursion compared to only 0.5 V bias excursion in a conventional Mach-Zehnder electro-optical modulator (MZ-EOM). The architecture effectively extends the linear regime and enables the optical transmission of wireless systems employing orthogonal division multiplexing (OFDM) modulation such as ultra-wide band (UWB) which require high linearity over a broad frequency range due to their high peak-to-average power ratio (PARP). Radio-over-fiber UWB transmission in a passive optical network is experimentally demonstrated employing this technique, exhibiting an enhancement of 2.2 dB in EVM after 57 km SSMF when the dual-drive developed modulator is employed.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Morant, T. Quinlan, R. Llorente, and S. Walker, “Full standard triple-play bi-directional and full-duplex CWDM transmission in passive optical networks,” in Proceedings of OFC/NFOEC 2011, OWB3, (2011).
  2. J. Pham and A. C. Carusone, “A time-interleaved 16-DAC architecture clocked at the Nyquist rate,” IEEE Trans. Circuits Syst. II 55(9), 858–862 (2008).
    [CrossRef]
  3. Y. H. You, I. T. Hwang, C. K. Song, and H. K. Song, “PAPR analysis for multi-band OFDM signals,” Electron. Lett. 41(5), 261–262 (2005).
    [CrossRef]
  4. T. Alves, M. Morant, A. Cartaxo, and R. Llorente, “Performance comparison of OFDM-UWB radio-signals distribution in long-reach PONs using Mach-Zehnder and linearized modulators,” IEEE J. Sel. Areas Comm. 29(6), 1311–1320 (2011).
    [CrossRef]
  5. S. K. Kim, J. Lee, and J. Jeong, “Transmission performance of 10-Gb/s optical duobinary transmission systems considering adjustable chirp of nonideal LiNbO3 Mach–Zehnder modulators due to applied voltage ratio and filter bandwidth,” J. Lightwave Technol. 19(4), 465–470 (2001).
    [CrossRef]
  6. ECMA-368: “High rate ultra wideband PHY and MAC Standard,” ECMA International Standard (Dec. 2007).

2011 (1)

T. Alves, M. Morant, A. Cartaxo, and R. Llorente, “Performance comparison of OFDM-UWB radio-signals distribution in long-reach PONs using Mach-Zehnder and linearized modulators,” IEEE J. Sel. Areas Comm. 29(6), 1311–1320 (2011).
[CrossRef]

2008 (1)

J. Pham and A. C. Carusone, “A time-interleaved 16-DAC architecture clocked at the Nyquist rate,” IEEE Trans. Circuits Syst. II 55(9), 858–862 (2008).
[CrossRef]

2005 (1)

Y. H. You, I. T. Hwang, C. K. Song, and H. K. Song, “PAPR analysis for multi-band OFDM signals,” Electron. Lett. 41(5), 261–262 (2005).
[CrossRef]

2001 (1)

Alves, T.

T. Alves, M. Morant, A. Cartaxo, and R. Llorente, “Performance comparison of OFDM-UWB radio-signals distribution in long-reach PONs using Mach-Zehnder and linearized modulators,” IEEE J. Sel. Areas Comm. 29(6), 1311–1320 (2011).
[CrossRef]

Cartaxo, A.

T. Alves, M. Morant, A. Cartaxo, and R. Llorente, “Performance comparison of OFDM-UWB radio-signals distribution in long-reach PONs using Mach-Zehnder and linearized modulators,” IEEE J. Sel. Areas Comm. 29(6), 1311–1320 (2011).
[CrossRef]

Carusone, A. C.

J. Pham and A. C. Carusone, “A time-interleaved 16-DAC architecture clocked at the Nyquist rate,” IEEE Trans. Circuits Syst. II 55(9), 858–862 (2008).
[CrossRef]

Hwang, I. T.

Y. H. You, I. T. Hwang, C. K. Song, and H. K. Song, “PAPR analysis for multi-band OFDM signals,” Electron. Lett. 41(5), 261–262 (2005).
[CrossRef]

Jeong, J.

Kim, S. K.

Lee, J.

Llorente, R.

T. Alves, M. Morant, A. Cartaxo, and R. Llorente, “Performance comparison of OFDM-UWB radio-signals distribution in long-reach PONs using Mach-Zehnder and linearized modulators,” IEEE J. Sel. Areas Comm. 29(6), 1311–1320 (2011).
[CrossRef]

Morant, M.

T. Alves, M. Morant, A. Cartaxo, and R. Llorente, “Performance comparison of OFDM-UWB radio-signals distribution in long-reach PONs using Mach-Zehnder and linearized modulators,” IEEE J. Sel. Areas Comm. 29(6), 1311–1320 (2011).
[CrossRef]

Pham, J.

J. Pham and A. C. Carusone, “A time-interleaved 16-DAC architecture clocked at the Nyquist rate,” IEEE Trans. Circuits Syst. II 55(9), 858–862 (2008).
[CrossRef]

Song, C. K.

Y. H. You, I. T. Hwang, C. K. Song, and H. K. Song, “PAPR analysis for multi-band OFDM signals,” Electron. Lett. 41(5), 261–262 (2005).
[CrossRef]

Song, H. K.

Y. H. You, I. T. Hwang, C. K. Song, and H. K. Song, “PAPR analysis for multi-band OFDM signals,” Electron. Lett. 41(5), 261–262 (2005).
[CrossRef]

You, Y. H.

Y. H. You, I. T. Hwang, C. K. Song, and H. K. Song, “PAPR analysis for multi-band OFDM signals,” Electron. Lett. 41(5), 261–262 (2005).
[CrossRef]

Electron. Lett. (1)

Y. H. You, I. T. Hwang, C. K. Song, and H. K. Song, “PAPR analysis for multi-band OFDM signals,” Electron. Lett. 41(5), 261–262 (2005).
[CrossRef]

IEEE J. Sel. Areas Comm. (1)

T. Alves, M. Morant, A. Cartaxo, and R. Llorente, “Performance comparison of OFDM-UWB radio-signals distribution in long-reach PONs using Mach-Zehnder and linearized modulators,” IEEE J. Sel. Areas Comm. 29(6), 1311–1320 (2011).
[CrossRef]

IEEE Trans. Circuits Syst. II (1)

J. Pham and A. C. Carusone, “A time-interleaved 16-DAC architecture clocked at the Nyquist rate,” IEEE Trans. Circuits Syst. II 55(9), 858–862 (2008).
[CrossRef]

J. Lightwave Technol. (1)

Other (2)

ECMA-368: “High rate ultra wideband PHY and MAC Standard,” ECMA International Standard (Dec. 2007).

M. Morant, T. Quinlan, R. Llorente, and S. Walker, “Full standard triple-play bi-directional and full-duplex CWDM transmission in passive optical networks,” in Proceedings of OFC/NFOEC 2011, OWB3, (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Scheme of the designed dual drive modulator chip in top view and cross section. (b) NRZ output eye diagrams for measured for 10 Gbps and 20 Gbps.

Fig. 2
Fig. 2

(a) Bandwidths (lower traces) and electric back-reflections at the inputs for both RF-lines measured with the packaged DD-MZ modulators; (b) IP3 measurements on DD-MZ RF + at 5GHz.

Fig. 3
Fig. 3

Experimental set up for frequency chirp control and measurement.

Fig. 4
Fig. 4

20 Gbps output temporally responses with three positions of the optical filter (top) and corresponding frequency excursion (bottom) for: (a-b) V + = Vπ, V- = 0, (c-d) V + = Vπ/2, V- = -Vπ/2, and (e-f) V + = 0, V- = Vπ.

Fig. 5
Fig. 5

(a) Experimental setup for two-tone distortion evaluation of the dual-drive modulator. (b) Output optical power and SFDR experimental results of the DD-MZ compared with a conventional single MZ.

Fig. 6
Fig. 6

Experimental setup for UWB-over-fiber transmission using: (a) the DD-MZ and (b) single MZ-EOM. (c) Measured EVM for both single and DD-MZ in back-to-back for different optical power arriving at the photodiode.

Fig. 7
Fig. 7

(a) Measured EVM of Dual-Drive MZ compared with Single MZ after different fiber transmission lengths (L). EVM improvement of the DD-MZ labeled for reference. (b) DCM OFDM-UWB constellations comparison.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ω( t )=ωβκ V( t ) t with κ= π 2 η 0 V π
V( t )= V O exp( t 2 τ 2 )
V( t ) t = 2t τ 2 V O exp( t 2 τ 2 )
ω( t )=ω+βκ 2t τ 2 V O exp( t 2 τ 2 )
f( t )= α 4 2t τ 2 exp( t 2 τ 2 )
f 0 = α 2 2 τ e 1 /2
f f 0 = P + P - 2 P 0 e 1 /2 ΔF 2

Metrics