Abstract

We report the impact of longitudinal signal power profile on the transmission performance of coherently-detected 112 Gb/s m-ary polarization multiplexed quadrature amplitude modulation system after compensation of deterministic nonlinear fibre impairments. Performance improvements up to 0.6 dB (Qeff) are reported for a non-uniform transmission link power profile. Further investigation reveals that the evolution of the transmission performance with power profile management is fully consistent with the parametric amplification of the amplified spontaneous emission by the signal through four-wave mixing. In particular, for a non-dispersion managed system, a single-step increment of 4 dB in the amplifier gain, with respect to a uniform gain profile, at ~2/3rd of the total reach considerably improves the transmission performance for all the formats studied. In contrary a negative-step profile, emulating a failure (gain decrease or loss increase), significantly degrades the bit-error rate.

© 2011 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Ellis, J. Zhao, and D. Cotter, “Approaching the non-linear Shannon limit,” J. Lightwave Technol. 28(4), 423–433 (2010).
    [CrossRef]
  2. A. R. Chraplyvy, “Limitations on lightwave communications imposed by optical-fiber nonlinearity,” J. Lightwave Technol. 8(10), 1548–1557 (1990).
    [CrossRef]
  3. D. Marcuse, A. R. Chraplyvy, and R. W. Tkach, “Effect of fiber nonlinearity on long-distance transmission,” J. Lightwave Technol. 9(1), 121–128 (1991).
    [CrossRef]
  4. X. Zhou, E. F. Mateo, and G. Li, “Fiber nonlinearity management – from carrier perspective,” Optical Fiber Communication Conference, OFC ‘11, NThB4, (2011).
  5. C. Weber, C.-A. Bunge, and K. Petermann, “Fiber nonlinearities in systems using electronic predistortion of dispersion at 10 and 40 Gbit/s,” J. Lightwave Technol. 27(16), 3654–3661 (2009).
    [CrossRef]
  6. D. Rafique, J. Zhao, and A. D. Ellis, “Digital back-propagation for spectrally efficient WDM 112 Gbit/s PM m-ary QAM transmission,” Opt. Express 19(6), 5219–5224 (2011).
    [CrossRef] [PubMed]
  7. E. Ip, “Nonlinear compensation using backpropagation for polarization-multiplexed transmission,” J. Lightwave Technol. 28(6), 939–951 (2010).
    [CrossRef]
  8. D. Rafique and A. D. Ellis, “Impact of signal-ASE four-wave mixing on the effectiveness of digital back-propagation in 112 Gb/s PM-QPSK systems,” Opt. Express 19(4), 3449–3454 (2011).
    [CrossRef] [PubMed]
  9. A. Mecozzi, “On the optimization of the gain distribution of transmission lines with unequal amplifier spacing,” IEEE Photon. Technol. Lett. 10(7), 1033–1035 (1998).
    [CrossRef]
  10. I. Nasieva, J. D. Ania-Castanon, and S. K. Turitsyn, “Nonlinearity management in fibre links with distributed amplification,” Electron. Lett. 39(11), 856–857 (2003).
    [CrossRef]
  11. A. P. T. Lau and J. M. Kahn, “Power profile optimization in phase-modulated systems in presence of nonlinear phase noise,” IEEE Photon. Technol. Lett. 18(23), 2514–2516 (2006).
    [CrossRef]
  12. P. J. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, “Spectrally efficient long-haul optical networking using 112-Gb/s polarization-multiplexed 16-QAM,” J. Lightwave Technol. 28(4), 547–556 (2010).
    [CrossRef]
  13. S. Makovejs, D. S. Millar, V. Mikhailov, G. Gavioli, R. I. Killey, S. J. Savory, and P. Bayvel, “Experimental investigation of PDM-QAM16 transmission at 112 Gbit/s over 2400 km,” Optical Fiber Communication Conference, OFC ‘10, OMJ6, (2010).
  14. T. Pfau, S. Hoffmann, and R. Noé, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” J. Lightwave Technol. 27(8), 989–999 (2009).
    [CrossRef]
  15. L. B. Du and A. J. Lowery, “Experimental demonstration of XPM compensation for CO-OFDM systems with periodic dispersion maps,” Optical Fiber Communication Conference, OFC’11, OWW2, (2011).
  16. D. Rafique, M. Mussolin, M. Forzati, J. Mårtensson, M. N. Chugtai, and A. D. Ellis, “Compensation of intra-channel nonlinear fibre impairments using simplified digital back-propagation algorithm,” Opt. Express 19(10), 9453–9460 (2011).
    [CrossRef] [PubMed]
  17. L. Li, Z. Tao, L. Dou, W. Yan, S. Oda, T. Tanimura, T. Hoshida, and J. C. Rasmussen, “Implementation efficient nonlinear equalizer based on correlated digital backpropagation,” Optical Fiber Communication Conference, OFC ‘11, 2011, OWW3.
  18. F. Yaman and G. Li, “Nonlinear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE Photon. J. 2(5), 816–832 (2010).
    [CrossRef]

2011

2010

2009

2006

A. P. T. Lau and J. M. Kahn, “Power profile optimization in phase-modulated systems in presence of nonlinear phase noise,” IEEE Photon. Technol. Lett. 18(23), 2514–2516 (2006).
[CrossRef]

2003

I. Nasieva, J. D. Ania-Castanon, and S. K. Turitsyn, “Nonlinearity management in fibre links with distributed amplification,” Electron. Lett. 39(11), 856–857 (2003).
[CrossRef]

1998

A. Mecozzi, “On the optimization of the gain distribution of transmission lines with unequal amplifier spacing,” IEEE Photon. Technol. Lett. 10(7), 1033–1035 (1998).
[CrossRef]

1991

D. Marcuse, A. R. Chraplyvy, and R. W. Tkach, “Effect of fiber nonlinearity on long-distance transmission,” J. Lightwave Technol. 9(1), 121–128 (1991).
[CrossRef]

1990

A. R. Chraplyvy, “Limitations on lightwave communications imposed by optical-fiber nonlinearity,” J. Lightwave Technol. 8(10), 1548–1557 (1990).
[CrossRef]

Ania-Castanon, J. D.

I. Nasieva, J. D. Ania-Castanon, and S. K. Turitsyn, “Nonlinearity management in fibre links with distributed amplification,” Electron. Lett. 39(11), 856–857 (2003).
[CrossRef]

Buhl, L. L.

Bunge, C.-A.

Chraplyvy, A. R.

D. Marcuse, A. R. Chraplyvy, and R. W. Tkach, “Effect of fiber nonlinearity on long-distance transmission,” J. Lightwave Technol. 9(1), 121–128 (1991).
[CrossRef]

A. R. Chraplyvy, “Limitations on lightwave communications imposed by optical-fiber nonlinearity,” J. Lightwave Technol. 8(10), 1548–1557 (1990).
[CrossRef]

Chugtai, M. N.

Cotter, D.

Doerr, C. R.

Ellis, A. D.

Forzati, M.

Gnauck, A. H.

Hoffmann, S.

Ip, E.

Kahn, J. M.

A. P. T. Lau and J. M. Kahn, “Power profile optimization in phase-modulated systems in presence of nonlinear phase noise,” IEEE Photon. Technol. Lett. 18(23), 2514–2516 (2006).
[CrossRef]

Lau, A. P. T.

A. P. T. Lau and J. M. Kahn, “Power profile optimization in phase-modulated systems in presence of nonlinear phase noise,” IEEE Photon. Technol. Lett. 18(23), 2514–2516 (2006).
[CrossRef]

Li, G.

F. Yaman and G. Li, “Nonlinear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE Photon. J. 2(5), 816–832 (2010).
[CrossRef]

Magarini, M.

Marcuse, D.

D. Marcuse, A. R. Chraplyvy, and R. W. Tkach, “Effect of fiber nonlinearity on long-distance transmission,” J. Lightwave Technol. 9(1), 121–128 (1991).
[CrossRef]

Mårtensson, J.

Mecozzi, A.

A. Mecozzi, “On the optimization of the gain distribution of transmission lines with unequal amplifier spacing,” IEEE Photon. Technol. Lett. 10(7), 1033–1035 (1998).
[CrossRef]

Mussolin, M.

Nasieva, I.

I. Nasieva, J. D. Ania-Castanon, and S. K. Turitsyn, “Nonlinearity management in fibre links with distributed amplification,” Electron. Lett. 39(11), 856–857 (2003).
[CrossRef]

Noé, R.

Petermann, K.

Pfau, T.

Rafique, D.

Tkach, R. W.

D. Marcuse, A. R. Chraplyvy, and R. W. Tkach, “Effect of fiber nonlinearity on long-distance transmission,” J. Lightwave Technol. 9(1), 121–128 (1991).
[CrossRef]

Turitsyn, S. K.

I. Nasieva, J. D. Ania-Castanon, and S. K. Turitsyn, “Nonlinearity management in fibre links with distributed amplification,” Electron. Lett. 39(11), 856–857 (2003).
[CrossRef]

Weber, C.

Winzer, P. J.

Yaman, F.

F. Yaman and G. Li, “Nonlinear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE Photon. J. 2(5), 816–832 (2010).
[CrossRef]

Zhao, J.

Electron. Lett.

I. Nasieva, J. D. Ania-Castanon, and S. K. Turitsyn, “Nonlinearity management in fibre links with distributed amplification,” Electron. Lett. 39(11), 856–857 (2003).
[CrossRef]

IEEE Photon. J.

F. Yaman and G. Li, “Nonlinear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE Photon. J. 2(5), 816–832 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

A. P. T. Lau and J. M. Kahn, “Power profile optimization in phase-modulated systems in presence of nonlinear phase noise,” IEEE Photon. Technol. Lett. 18(23), 2514–2516 (2006).
[CrossRef]

A. Mecozzi, “On the optimization of the gain distribution of transmission lines with unequal amplifier spacing,” IEEE Photon. Technol. Lett. 10(7), 1033–1035 (1998).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Other

X. Zhou, E. F. Mateo, and G. Li, “Fiber nonlinearity management – from carrier perspective,” Optical Fiber Communication Conference, OFC ‘11, NThB4, (2011).

S. Makovejs, D. S. Millar, V. Mikhailov, G. Gavioli, R. I. Killey, S. J. Savory, and P. Bayvel, “Experimental investigation of PDM-QAM16 transmission at 112 Gbit/s over 2400 km,” Optical Fiber Communication Conference, OFC ‘10, OMJ6, (2010).

L. B. Du and A. J. Lowery, “Experimental demonstration of XPM compensation for CO-OFDM systems with periodic dispersion maps,” Optical Fiber Communication Conference, OFC’11, OWW2, (2011).

L. Li, Z. Tao, L. Dou, W. Yan, S. Oda, T. Tanimura, T. Hoshida, and J. C. Rasmussen, “Implementation efficient nonlinear equalizer based on correlated digital backpropagation,” Optical Fiber Communication Conference, OFC ‘11, 2011, OWW3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics