Abstract

We propose and experimentally demonstrate a hardware-efficient, feed-forward, wide-range frequency offset estimator for DSP-based optical coherent receivers. Using a simple relationship of signal spectrum, this estimator is capable to estimate offsets in a range compliant with OIF requirements. Obtained results show that this estimator has a high tolerance to spectrum asymmetry caused by electrical and optical signal filtering, even when using return-to-zero pulse shaping.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804–817 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-2-804 .
    [CrossRef] [PubMed]
  2. S. J. Savory, “Digital Coherent Optical Receivers: Algorithms and Subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
    [CrossRef]
  3. A. Leven, N. K. Kaneda, U.-V. Koc, and Y.-K. Chen, “Frequency Estimation in Intradyne Reception,” IEEE Photon. Technol. Lett. 19(6), 366–368 (2007).
    [CrossRef]
  4. S. Hoffmann, S. Bhandare, T. Pfau, O. Adamczyk, C. Wördehoff, R. Peveling, M. Porrmann, and R. Noé, “Frequency and Phase Estimation for Coherent QPSK Transmission with Unlocked DFB Lasers,” IEEE Photon. Technol. Lett. 20(18), 1569–1571 (2008).
    [CrossRef]
  5. M. Morelli and U. Mengali, “Feedforward frequency estimation for PSK: A tutorial review,” Eur. Trans. Telecommun. 9(2), 103–116 (1998).
    [CrossRef]
  6. Optical Internetworking Forum, Integrable Tunable Laser Assembly MSA, (OIF-ITLA-MSA-01.2), (2008) http://www.oiforum.com/public/documents/OIF-ITLA-MSA-01.2.pdf
  7. L. Li, Z. Tao, S. Oda, T. Hoshida, and J. C. Rasmussen, “Wide-Range, Accurate and Simple Digital Frequency Offset Compensator for Optical Coherent Receivers, ” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OWT4. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2008-OWT4
  8. Z. Li, X. Chen, W. Zhou, H. Zhu, X. Zhou, and Z. Zhang, “Wide-Range and Fast-Convergence Frequency Offset Estimator by BER-Aiding for Optical Coherent Receivers, ” in Asia Communications and Photonics Conference and Exhibition, Technical Digest (CD) (Optical Society of America, 2009), paper ThT2. http://www.opticsinfobase.org/abstract.cfm?URI=ACP-2009-ThT2
  9. S. Zhang, L. Xu, J. Yu, M. F. Huang, P. Y. Kam, C. Yu, and T. Wang, “Dual-Stage Cascaded Frequency Offset Estimation for Digital Coherent Receivers,” IEEE Photon. Technol. Lett. 22(6), 401–403 (2010).
    [CrossRef]
  10. T. Nakagawa, K. Ishihara, T. Kobayashi, R. Kudo, M. Matsui, Y. Takatori, and M. Mizoguchi, “Wide-Range and Fast-Tracking Frequency Offset Estimator for Optical Coherent Receivers,” in European Conference and Exhibition on Optical Communication, Technical Digest (CD), paper We.7.A.2, (2010).
  11. S. Tibuleac and M. Filer, “Transmission Impairments in DWDM Networks With Reconfigurable Optical Add-Drop Multiplexers,” J. Lightwave Technol. 28(4), 557–598 (2010), http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-28-4-557 .
    [CrossRef]
  12. E. Ip and J. M. Kahn, “Power Spectra of Return-to-Zero Optical Signals,” J. Lightwave Technol. 24(3), 1610–1618 (2006), http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-24-3-1610 .
    [CrossRef]

2010 (3)

S. J. Savory, “Digital Coherent Optical Receivers: Algorithms and Subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
[CrossRef]

S. Zhang, L. Xu, J. Yu, M. F. Huang, P. Y. Kam, C. Yu, and T. Wang, “Dual-Stage Cascaded Frequency Offset Estimation for Digital Coherent Receivers,” IEEE Photon. Technol. Lett. 22(6), 401–403 (2010).
[CrossRef]

S. Tibuleac and M. Filer, “Transmission Impairments in DWDM Networks With Reconfigurable Optical Add-Drop Multiplexers,” J. Lightwave Technol. 28(4), 557–598 (2010), http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-28-4-557 .
[CrossRef]

2008 (2)

S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804–817 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-2-804 .
[CrossRef] [PubMed]

S. Hoffmann, S. Bhandare, T. Pfau, O. Adamczyk, C. Wördehoff, R. Peveling, M. Porrmann, and R. Noé, “Frequency and Phase Estimation for Coherent QPSK Transmission with Unlocked DFB Lasers,” IEEE Photon. Technol. Lett. 20(18), 1569–1571 (2008).
[CrossRef]

2007 (1)

A. Leven, N. K. Kaneda, U.-V. Koc, and Y.-K. Chen, “Frequency Estimation in Intradyne Reception,” IEEE Photon. Technol. Lett. 19(6), 366–368 (2007).
[CrossRef]

2006 (1)

1998 (1)

M. Morelli and U. Mengali, “Feedforward frequency estimation for PSK: A tutorial review,” Eur. Trans. Telecommun. 9(2), 103–116 (1998).
[CrossRef]

Adamczyk, O.

S. Hoffmann, S. Bhandare, T. Pfau, O. Adamczyk, C. Wördehoff, R. Peveling, M. Porrmann, and R. Noé, “Frequency and Phase Estimation for Coherent QPSK Transmission with Unlocked DFB Lasers,” IEEE Photon. Technol. Lett. 20(18), 1569–1571 (2008).
[CrossRef]

Bhandare, S.

S. Hoffmann, S. Bhandare, T. Pfau, O. Adamczyk, C. Wördehoff, R. Peveling, M. Porrmann, and R. Noé, “Frequency and Phase Estimation for Coherent QPSK Transmission with Unlocked DFB Lasers,” IEEE Photon. Technol. Lett. 20(18), 1569–1571 (2008).
[CrossRef]

Chen, Y.-K.

A. Leven, N. K. Kaneda, U.-V. Koc, and Y.-K. Chen, “Frequency Estimation in Intradyne Reception,” IEEE Photon. Technol. Lett. 19(6), 366–368 (2007).
[CrossRef]

Filer, M.

Hoffmann, S.

S. Hoffmann, S. Bhandare, T. Pfau, O. Adamczyk, C. Wördehoff, R. Peveling, M. Porrmann, and R. Noé, “Frequency and Phase Estimation for Coherent QPSK Transmission with Unlocked DFB Lasers,” IEEE Photon. Technol. Lett. 20(18), 1569–1571 (2008).
[CrossRef]

Huang, M. F.

S. Zhang, L. Xu, J. Yu, M. F. Huang, P. Y. Kam, C. Yu, and T. Wang, “Dual-Stage Cascaded Frequency Offset Estimation for Digital Coherent Receivers,” IEEE Photon. Technol. Lett. 22(6), 401–403 (2010).
[CrossRef]

Ip, E.

Kahn, J. M.

Kam, P. Y.

S. Zhang, L. Xu, J. Yu, M. F. Huang, P. Y. Kam, C. Yu, and T. Wang, “Dual-Stage Cascaded Frequency Offset Estimation for Digital Coherent Receivers,” IEEE Photon. Technol. Lett. 22(6), 401–403 (2010).
[CrossRef]

Kaneda, N. K.

A. Leven, N. K. Kaneda, U.-V. Koc, and Y.-K. Chen, “Frequency Estimation in Intradyne Reception,” IEEE Photon. Technol. Lett. 19(6), 366–368 (2007).
[CrossRef]

Koc, U.-V.

A. Leven, N. K. Kaneda, U.-V. Koc, and Y.-K. Chen, “Frequency Estimation in Intradyne Reception,” IEEE Photon. Technol. Lett. 19(6), 366–368 (2007).
[CrossRef]

Leven, A.

A. Leven, N. K. Kaneda, U.-V. Koc, and Y.-K. Chen, “Frequency Estimation in Intradyne Reception,” IEEE Photon. Technol. Lett. 19(6), 366–368 (2007).
[CrossRef]

Mengali, U.

M. Morelli and U. Mengali, “Feedforward frequency estimation for PSK: A tutorial review,” Eur. Trans. Telecommun. 9(2), 103–116 (1998).
[CrossRef]

Morelli, M.

M. Morelli and U. Mengali, “Feedforward frequency estimation for PSK: A tutorial review,” Eur. Trans. Telecommun. 9(2), 103–116 (1998).
[CrossRef]

Noé, R.

S. Hoffmann, S. Bhandare, T. Pfau, O. Adamczyk, C. Wördehoff, R. Peveling, M. Porrmann, and R. Noé, “Frequency and Phase Estimation for Coherent QPSK Transmission with Unlocked DFB Lasers,” IEEE Photon. Technol. Lett. 20(18), 1569–1571 (2008).
[CrossRef]

Peveling, R.

S. Hoffmann, S. Bhandare, T. Pfau, O. Adamczyk, C. Wördehoff, R. Peveling, M. Porrmann, and R. Noé, “Frequency and Phase Estimation for Coherent QPSK Transmission with Unlocked DFB Lasers,” IEEE Photon. Technol. Lett. 20(18), 1569–1571 (2008).
[CrossRef]

Pfau, T.

S. Hoffmann, S. Bhandare, T. Pfau, O. Adamczyk, C. Wördehoff, R. Peveling, M. Porrmann, and R. Noé, “Frequency and Phase Estimation for Coherent QPSK Transmission with Unlocked DFB Lasers,” IEEE Photon. Technol. Lett. 20(18), 1569–1571 (2008).
[CrossRef]

Porrmann, M.

S. Hoffmann, S. Bhandare, T. Pfau, O. Adamczyk, C. Wördehoff, R. Peveling, M. Porrmann, and R. Noé, “Frequency and Phase Estimation for Coherent QPSK Transmission with Unlocked DFB Lasers,” IEEE Photon. Technol. Lett. 20(18), 1569–1571 (2008).
[CrossRef]

Savory, S. J.

S. J. Savory, “Digital Coherent Optical Receivers: Algorithms and Subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
[CrossRef]

S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804–817 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-2-804 .
[CrossRef] [PubMed]

Tibuleac, S.

Wang, T.

S. Zhang, L. Xu, J. Yu, M. F. Huang, P. Y. Kam, C. Yu, and T. Wang, “Dual-Stage Cascaded Frequency Offset Estimation for Digital Coherent Receivers,” IEEE Photon. Technol. Lett. 22(6), 401–403 (2010).
[CrossRef]

Wördehoff, C.

S. Hoffmann, S. Bhandare, T. Pfau, O. Adamczyk, C. Wördehoff, R. Peveling, M. Porrmann, and R. Noé, “Frequency and Phase Estimation for Coherent QPSK Transmission with Unlocked DFB Lasers,” IEEE Photon. Technol. Lett. 20(18), 1569–1571 (2008).
[CrossRef]

Xu, L.

S. Zhang, L. Xu, J. Yu, M. F. Huang, P. Y. Kam, C. Yu, and T. Wang, “Dual-Stage Cascaded Frequency Offset Estimation for Digital Coherent Receivers,” IEEE Photon. Technol. Lett. 22(6), 401–403 (2010).
[CrossRef]

Yu, C.

S. Zhang, L. Xu, J. Yu, M. F. Huang, P. Y. Kam, C. Yu, and T. Wang, “Dual-Stage Cascaded Frequency Offset Estimation for Digital Coherent Receivers,” IEEE Photon. Technol. Lett. 22(6), 401–403 (2010).
[CrossRef]

Yu, J.

S. Zhang, L. Xu, J. Yu, M. F. Huang, P. Y. Kam, C. Yu, and T. Wang, “Dual-Stage Cascaded Frequency Offset Estimation for Digital Coherent Receivers,” IEEE Photon. Technol. Lett. 22(6), 401–403 (2010).
[CrossRef]

Zhang, S.

S. Zhang, L. Xu, J. Yu, M. F. Huang, P. Y. Kam, C. Yu, and T. Wang, “Dual-Stage Cascaded Frequency Offset Estimation for Digital Coherent Receivers,” IEEE Photon. Technol. Lett. 22(6), 401–403 (2010).
[CrossRef]

Eur. Trans. Telecommun. (1)

M. Morelli and U. Mengali, “Feedforward frequency estimation for PSK: A tutorial review,” Eur. Trans. Telecommun. 9(2), 103–116 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. J. Savory, “Digital Coherent Optical Receivers: Algorithms and Subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

A. Leven, N. K. Kaneda, U.-V. Koc, and Y.-K. Chen, “Frequency Estimation in Intradyne Reception,” IEEE Photon. Technol. Lett. 19(6), 366–368 (2007).
[CrossRef]

S. Hoffmann, S. Bhandare, T. Pfau, O. Adamczyk, C. Wördehoff, R. Peveling, M. Porrmann, and R. Noé, “Frequency and Phase Estimation for Coherent QPSK Transmission with Unlocked DFB Lasers,” IEEE Photon. Technol. Lett. 20(18), 1569–1571 (2008).
[CrossRef]

S. Zhang, L. Xu, J. Yu, M. F. Huang, P. Y. Kam, C. Yu, and T. Wang, “Dual-Stage Cascaded Frequency Offset Estimation for Digital Coherent Receivers,” IEEE Photon. Technol. Lett. 22(6), 401–403 (2010).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (1)

Other (4)

T. Nakagawa, K. Ishihara, T. Kobayashi, R. Kudo, M. Matsui, Y. Takatori, and M. Mizoguchi, “Wide-Range and Fast-Tracking Frequency Offset Estimator for Optical Coherent Receivers,” in European Conference and Exhibition on Optical Communication, Technical Digest (CD), paper We.7.A.2, (2010).

Optical Internetworking Forum, Integrable Tunable Laser Assembly MSA, (OIF-ITLA-MSA-01.2), (2008) http://www.oiforum.com/public/documents/OIF-ITLA-MSA-01.2.pdf

L. Li, Z. Tao, S. Oda, T. Hoshida, and J. C. Rasmussen, “Wide-Range, Accurate and Simple Digital Frequency Offset Compensator for Optical Coherent Receivers, ” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OWT4. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2008-OWT4

Z. Li, X. Chen, W. Zhou, H. Zhu, X. Zhou, and Z. Zhang, “Wide-Range and Fast-Convergence Frequency Offset Estimator by BER-Aiding for Optical Coherent Receivers, ” in Asia Communications and Photonics Conference and Exhibition, Technical Digest (CD) (Optical Society of America, 2009), paper ThT2. http://www.opticsinfobase.org/abstract.cfm?URI=ACP-2009-ThT2

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Received power spectrum with Δf > 0, showing two sides of spectrum.

Fig. 2
Fig. 2

Block diagram of proposed FOE.

Fig. 3
Fig. 3

NCO-based implementation of fine FOE.

Fig. 4
Fig. 4

FOE performance for 112 Gb/s PM-QPSK with different receiver LPFs.

Fig. 5
Fig. 5

FOE performance for 112 Gb/s PM-QPSK passing through different number of cascaded 50GHz optical filters. (a) Using NRZ pulse shape and (b) using RZ50% pulse shape.

Fig. 6
Fig. 6

Experimental Setup.

Fig. 7
Fig. 7

Experimental performance of proposed FOE for 112 Gb/s PM-QPSK using different LPF cutoff frequencies.

Fig. 8
Fig. 8

Experimental performance of proposed FOE for 112Gb/s PM-QPSK passing through loops with 50GHz grid ROADMs. (a) Coarse FOE. (b) Estimated BER.

Tables (1)

Tables Icon

Table 1 Electrical filtered spectra comparison

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δf=α log 10 ( P + P )=α( log 10 ( P + ) log 10 ( P ) )

Metrics