Abstract

We demonstrate M-ary frequency-shift keying (FSK) optical modulation and digital coherent detection, aiming at applications to space communications, where high receiver sensitivity is the most crucial consideration. The proposed FSK transmitter and receiver are based on the coherent orthogonal frequency-division multiplexing (OFDM) technique and feature simple configuration and low computational complexity. By offline bit-error rate measurements using a 256-FSK signal without the forward error-correction code, we obtain the receiver sensitivity as high as 3.5 photons per bit at the bit-error rate of 10−3. The experimental result is in good agreement with simulations.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kikuchi, “Coherent optical communications: Historical perspectives and future directions,” in High Spectral Density Optical Communication Technology, M. Nakazawa, K. Kikuchi, and T. Miyazaki, eds. (Springer, 2010), Chap. 2.
    [CrossRef]
  2. J. Proakis, Digital Communications, 4th ed. (McGraw-Hill, 2001), Chap. 5.
  3. D. O. Caplan, “Laser communication transmitter and receiver design,” J. Opt. Fiber. Commun. Rep. 4, 225–362 (2007).
    [CrossRef]
  4. X. Liu, T. H. Wood, R. W. Tkach, and S. Chandrasekhar, “Demonstration of record sensitivity in an optically pre-amplified receiver by combining PDM-QPSK and 16-PPM with pilot-assisted digital coherent detection,” in 2011 OSA Technical Digest of Optical Fiber Communication Conference (Optical Society of America, 2011), PDPB1.
  5. D. O. Caplan, J. J. Carney, and S. Constantine, “Parallel direct modulation Laser transmitters for high-speed high-sensitivity laser communications,” in Proceedings of Conference on Lasers and Electro-Optics (May2011), PDPB12.
  6. W. Shieh and X. Yi, “High spectral efficiency coherent optical OFDM,” in High Spectral Density Optical Communication Technologies, M. Nakazawa, K. Kikuchi, and T. Miyazaki, eds. (Springer, 2010), Chap. 7.
    [CrossRef]
  7. C. E. Shannon, “Communication in the presence of noise,” Proc. IRE, 10–21 7 (1949).
    [CrossRef]
  8. T. Okoshi and K. Kikuchi, Coherent Optical Communication Systems (KTK/Kluwer, 1988), Chap. 2.
  9. K. Kikuchi, “Phase-diversity homodyne detection of multilevel optical modulation with digital carrier phase estimation,” IEEE J. Sel. Top. Quantum Electron. 12, 563–570 (2006).
    [CrossRef]
  10. K. Onohara, T. Sugihara, Y. Konishi, Y. Miyata, T. Inoue, S. Kametani, K. Sugihara, K. Kubo, H. Yoshida, and T. Mizuochi, “Soft-decision-based forward error correction for 100 Gb/s transport systems,” IEEE J. Sel. Top. Quantum Electron. 16, 1258–1267 (2010).
    [CrossRef]
  11. M. L. Stevens, D. O. Caplan, B. S. Robinson, D. M. Boroson, and A. L. Kachelmyer, “Optical homodyne PSK demonstration of 1.5 photons per bit at 156 Mbps with rate-1/2 turbo coding,” Opt. Express 16, 10412–10420 (2008).
    [CrossRef] [PubMed]

2010 (1)

K. Onohara, T. Sugihara, Y. Konishi, Y. Miyata, T. Inoue, S. Kametani, K. Sugihara, K. Kubo, H. Yoshida, and T. Mizuochi, “Soft-decision-based forward error correction for 100 Gb/s transport systems,” IEEE J. Sel. Top. Quantum Electron. 16, 1258–1267 (2010).
[CrossRef]

2008 (1)

2007 (1)

D. O. Caplan, “Laser communication transmitter and receiver design,” J. Opt. Fiber. Commun. Rep. 4, 225–362 (2007).
[CrossRef]

2006 (1)

K. Kikuchi, “Phase-diversity homodyne detection of multilevel optical modulation with digital carrier phase estimation,” IEEE J. Sel. Top. Quantum Electron. 12, 563–570 (2006).
[CrossRef]

1949 (1)

C. E. Shannon, “Communication in the presence of noise,” Proc. IRE, 10–21 7 (1949).
[CrossRef]

Boroson, D. M.

Caplan, D. O.

M. L. Stevens, D. O. Caplan, B. S. Robinson, D. M. Boroson, and A. L. Kachelmyer, “Optical homodyne PSK demonstration of 1.5 photons per bit at 156 Mbps with rate-1/2 turbo coding,” Opt. Express 16, 10412–10420 (2008).
[CrossRef] [PubMed]

D. O. Caplan, “Laser communication transmitter and receiver design,” J. Opt. Fiber. Commun. Rep. 4, 225–362 (2007).
[CrossRef]

D. O. Caplan, J. J. Carney, and S. Constantine, “Parallel direct modulation Laser transmitters for high-speed high-sensitivity laser communications,” in Proceedings of Conference on Lasers and Electro-Optics (May2011), PDPB12.

Carney, J. J.

D. O. Caplan, J. J. Carney, and S. Constantine, “Parallel direct modulation Laser transmitters for high-speed high-sensitivity laser communications,” in Proceedings of Conference on Lasers and Electro-Optics (May2011), PDPB12.

Chandrasekhar, S.

X. Liu, T. H. Wood, R. W. Tkach, and S. Chandrasekhar, “Demonstration of record sensitivity in an optically pre-amplified receiver by combining PDM-QPSK and 16-PPM with pilot-assisted digital coherent detection,” in 2011 OSA Technical Digest of Optical Fiber Communication Conference (Optical Society of America, 2011), PDPB1.

Constantine, S.

D. O. Caplan, J. J. Carney, and S. Constantine, “Parallel direct modulation Laser transmitters for high-speed high-sensitivity laser communications,” in Proceedings of Conference on Lasers and Electro-Optics (May2011), PDPB12.

Inoue, T.

K. Onohara, T. Sugihara, Y. Konishi, Y. Miyata, T. Inoue, S. Kametani, K. Sugihara, K. Kubo, H. Yoshida, and T. Mizuochi, “Soft-decision-based forward error correction for 100 Gb/s transport systems,” IEEE J. Sel. Top. Quantum Electron. 16, 1258–1267 (2010).
[CrossRef]

Kachelmyer, A. L.

Kametani, S.

K. Onohara, T. Sugihara, Y. Konishi, Y. Miyata, T. Inoue, S. Kametani, K. Sugihara, K. Kubo, H. Yoshida, and T. Mizuochi, “Soft-decision-based forward error correction for 100 Gb/s transport systems,” IEEE J. Sel. Top. Quantum Electron. 16, 1258–1267 (2010).
[CrossRef]

Kikuchi, K.

K. Kikuchi, “Phase-diversity homodyne detection of multilevel optical modulation with digital carrier phase estimation,” IEEE J. Sel. Top. Quantum Electron. 12, 563–570 (2006).
[CrossRef]

T. Okoshi and K. Kikuchi, Coherent Optical Communication Systems (KTK/Kluwer, 1988), Chap. 2.

K. Kikuchi, “Coherent optical communications: Historical perspectives and future directions,” in High Spectral Density Optical Communication Technology, M. Nakazawa, K. Kikuchi, and T. Miyazaki, eds. (Springer, 2010), Chap. 2.
[CrossRef]

Konishi, Y.

K. Onohara, T. Sugihara, Y. Konishi, Y. Miyata, T. Inoue, S. Kametani, K. Sugihara, K. Kubo, H. Yoshida, and T. Mizuochi, “Soft-decision-based forward error correction for 100 Gb/s transport systems,” IEEE J. Sel. Top. Quantum Electron. 16, 1258–1267 (2010).
[CrossRef]

Kubo, K.

K. Onohara, T. Sugihara, Y. Konishi, Y. Miyata, T. Inoue, S. Kametani, K. Sugihara, K. Kubo, H. Yoshida, and T. Mizuochi, “Soft-decision-based forward error correction for 100 Gb/s transport systems,” IEEE J. Sel. Top. Quantum Electron. 16, 1258–1267 (2010).
[CrossRef]

Liu, X.

X. Liu, T. H. Wood, R. W. Tkach, and S. Chandrasekhar, “Demonstration of record sensitivity in an optically pre-amplified receiver by combining PDM-QPSK and 16-PPM with pilot-assisted digital coherent detection,” in 2011 OSA Technical Digest of Optical Fiber Communication Conference (Optical Society of America, 2011), PDPB1.

Miyata, Y.

K. Onohara, T. Sugihara, Y. Konishi, Y. Miyata, T. Inoue, S. Kametani, K. Sugihara, K. Kubo, H. Yoshida, and T. Mizuochi, “Soft-decision-based forward error correction for 100 Gb/s transport systems,” IEEE J. Sel. Top. Quantum Electron. 16, 1258–1267 (2010).
[CrossRef]

Mizuochi, T.

K. Onohara, T. Sugihara, Y. Konishi, Y. Miyata, T. Inoue, S. Kametani, K. Sugihara, K. Kubo, H. Yoshida, and T. Mizuochi, “Soft-decision-based forward error correction for 100 Gb/s transport systems,” IEEE J. Sel. Top. Quantum Electron. 16, 1258–1267 (2010).
[CrossRef]

Okoshi, T.

T. Okoshi and K. Kikuchi, Coherent Optical Communication Systems (KTK/Kluwer, 1988), Chap. 2.

Onohara, K.

K. Onohara, T. Sugihara, Y. Konishi, Y. Miyata, T. Inoue, S. Kametani, K. Sugihara, K. Kubo, H. Yoshida, and T. Mizuochi, “Soft-decision-based forward error correction for 100 Gb/s transport systems,” IEEE J. Sel. Top. Quantum Electron. 16, 1258–1267 (2010).
[CrossRef]

Proakis, J.

J. Proakis, Digital Communications, 4th ed. (McGraw-Hill, 2001), Chap. 5.

Robinson, B. S.

Shannon, C. E.

C. E. Shannon, “Communication in the presence of noise,” Proc. IRE, 10–21 7 (1949).
[CrossRef]

Shieh, W.

W. Shieh and X. Yi, “High spectral efficiency coherent optical OFDM,” in High Spectral Density Optical Communication Technologies, M. Nakazawa, K. Kikuchi, and T. Miyazaki, eds. (Springer, 2010), Chap. 7.
[CrossRef]

Stevens, M. L.

Sugihara, K.

K. Onohara, T. Sugihara, Y. Konishi, Y. Miyata, T. Inoue, S. Kametani, K. Sugihara, K. Kubo, H. Yoshida, and T. Mizuochi, “Soft-decision-based forward error correction for 100 Gb/s transport systems,” IEEE J. Sel. Top. Quantum Electron. 16, 1258–1267 (2010).
[CrossRef]

Sugihara, T.

K. Onohara, T. Sugihara, Y. Konishi, Y. Miyata, T. Inoue, S. Kametani, K. Sugihara, K. Kubo, H. Yoshida, and T. Mizuochi, “Soft-decision-based forward error correction for 100 Gb/s transport systems,” IEEE J. Sel. Top. Quantum Electron. 16, 1258–1267 (2010).
[CrossRef]

Tkach, R. W.

X. Liu, T. H. Wood, R. W. Tkach, and S. Chandrasekhar, “Demonstration of record sensitivity in an optically pre-amplified receiver by combining PDM-QPSK and 16-PPM with pilot-assisted digital coherent detection,” in 2011 OSA Technical Digest of Optical Fiber Communication Conference (Optical Society of America, 2011), PDPB1.

Wood, T. H.

X. Liu, T. H. Wood, R. W. Tkach, and S. Chandrasekhar, “Demonstration of record sensitivity in an optically pre-amplified receiver by combining PDM-QPSK and 16-PPM with pilot-assisted digital coherent detection,” in 2011 OSA Technical Digest of Optical Fiber Communication Conference (Optical Society of America, 2011), PDPB1.

Yi, X.

W. Shieh and X. Yi, “High spectral efficiency coherent optical OFDM,” in High Spectral Density Optical Communication Technologies, M. Nakazawa, K. Kikuchi, and T. Miyazaki, eds. (Springer, 2010), Chap. 7.
[CrossRef]

Yoshida, H.

K. Onohara, T. Sugihara, Y. Konishi, Y. Miyata, T. Inoue, S. Kametani, K. Sugihara, K. Kubo, H. Yoshida, and T. Mizuochi, “Soft-decision-based forward error correction for 100 Gb/s transport systems,” IEEE J. Sel. Top. Quantum Electron. 16, 1258–1267 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

K. Kikuchi, “Phase-diversity homodyne detection of multilevel optical modulation with digital carrier phase estimation,” IEEE J. Sel. Top. Quantum Electron. 12, 563–570 (2006).
[CrossRef]

K. Onohara, T. Sugihara, Y. Konishi, Y. Miyata, T. Inoue, S. Kametani, K. Sugihara, K. Kubo, H. Yoshida, and T. Mizuochi, “Soft-decision-based forward error correction for 100 Gb/s transport systems,” IEEE J. Sel. Top. Quantum Electron. 16, 1258–1267 (2010).
[CrossRef]

J. Opt. Fiber. Commun. Rep. (1)

D. O. Caplan, “Laser communication transmitter and receiver design,” J. Opt. Fiber. Commun. Rep. 4, 225–362 (2007).
[CrossRef]

Opt. Express (1)

Proc. IRE (1)

C. E. Shannon, “Communication in the presence of noise,” Proc. IRE, 10–21 7 (1949).
[CrossRef]

Other (6)

T. Okoshi and K. Kikuchi, Coherent Optical Communication Systems (KTK/Kluwer, 1988), Chap. 2.

K. Kikuchi, “Coherent optical communications: Historical perspectives and future directions,” in High Spectral Density Optical Communication Technology, M. Nakazawa, K. Kikuchi, and T. Miyazaki, eds. (Springer, 2010), Chap. 2.
[CrossRef]

J. Proakis, Digital Communications, 4th ed. (McGraw-Hill, 2001), Chap. 5.

X. Liu, T. H. Wood, R. W. Tkach, and S. Chandrasekhar, “Demonstration of record sensitivity in an optically pre-amplified receiver by combining PDM-QPSK and 16-PPM with pilot-assisted digital coherent detection,” in 2011 OSA Technical Digest of Optical Fiber Communication Conference (Optical Society of America, 2011), PDPB1.

D. O. Caplan, J. J. Carney, and S. Constantine, “Parallel direct modulation Laser transmitters for high-speed high-sensitivity laser communications,” in Proceedings of Conference on Lasers and Electro-Optics (May2011), PDPB12.

W. Shieh and X. Yi, “High spectral efficiency coherent optical OFDM,” in High Spectral Density Optical Communication Technologies, M. Nakazawa, K. Kikuchi, and T. Miyazaki, eds. (Springer, 2010), Chap. 7.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Minimum number of photons per bit n as a function of the spectral efficiency ɛ. The red arrow represents the bandwidth-limited region, whereas the blue one the power-limited region. The theoretical lower-limit of the photon number per bit is 0.7.

Fig. 2
Fig. 2

PPM symbol structure when M = 4. One symbol duration is divided into M time slots, and the signal bandwidth is increased by M times.

Fig. 3
Fig. 3

FSK symbol structure when M = 4. The total bandwidth consists of M frequency slots. The minimum bandwidth of each frequency slot is 1/T, and the total bandwidth is expanded over M/T.

Fig. 4
Fig. 4

Configurations of the proposed M-ary FSK transmitter (a) and receiver (b). The principle of operation is entirely based on the coherent OFDM technique.

Fig. 5
Fig. 5

Process of assigning OFDM subcarriers. Depending on the symbol, the subcarrier assignment unit selects one subcarrier out of M.

Fig. 6
Fig. 6

Process of determining the subcarrier in the subcarrier decision unit. The subcarrier having the maximum power is selected among M subcarriers.

Fig. 7
Fig. 7

Experimental setup for back-to-back BER measurements of the M-ary FSK signal.

Fig. 8
Fig. 8

BERs measured as a function of the photon number per bit. Numbers of subcarriers are 4, 16, 64, and 256.

Fig. 9
Fig. 9

Simulation results on BER characteristics. We assume that the spontaneous emission factor nsp of the pre-amplifier is 1.0 and that the phase noise of the transmitter and LO is negligible. Numbers of subcarriers are 4, 16, 64, 256, and 1024.

Fig. 10
Fig. 10

Photon numbers per bit required to obtain BER=10−3. Red curve: experiments, blue curve: simulations with ns = 1.0, and black curve: simulations with ns = 1.3.

Tables (1)

Tables Icon

Table 1 Relation among the number of subcarriers, the subcarrier spacing, the symbol rate, and the bit rate. The product of the number of subcarriers and the subcarrier spacing is fixed at 5 GHz.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

C = B log 2 ( 1 + S N ) ,
S N = P s h f B ,
n = P s h f C .
ɛ = C B ,
n = 2 ɛ 1 ɛ .

Metrics