Abstract

We present a W-band fiber-wireless transmission system based on a nonlinear frequency multiplier for high-speed wireless short range access applications. By implementing a baseband digital signal predistortion scheme, intensive nonlinear distortions induced in a sextuple frequency multiplier can be effectively pre-compensated. Without using costly W-band components, a transmission system with 26km fiber and 4m wireless transmission operating at 99.6GHz is experimentally validated. Adjacent-channel power ratio (ACPR) improvements for IQ-modulated vector signals are guaranteed and transmission performances for fiber and wireless channels are studied. This W-band predistortion technique is a promising candidate for applications in high capacity wireless-fiber access systems.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. “FCC online table of frequency allocations,” www.fcc.gov/oet/spectrum/table/fcctable.pdf .
  2. C. W. Chow, F. M. Kuo, and J. W. Shi, “100 GHz ultra-wideband (UWB) fiber-to-the-antenna (FTTA) system for in-building and in-home networks,” Opt. Express 18, 473–478 (2010).
    [CrossRef] [PubMed]
  3. J. Marti and J. Capmany, “Microwave photonics and radio-over-fiber research,” IEEE Microw. Mag. 10, 96–105 (2009).
    [CrossRef]
  4. R. W. Ridgway, D. W. Nippa, and S. Yen, “Data transmission using differential phase-shift keying on a 92 GHz Carrier,” IEEE Trans. Microwave Theory Tech. 58, 3117–3126 (2010).
    [CrossRef]
  5. A. Hirata, M. Harada, and T. Nagatsuma, “120-GHz wireless link using photonic techniques for generation, modulation, and emission of millimeter-wave signals,” J. Lightwave Technol. 21, 2145–2153 (2003).
    [CrossRef]
  6. R. Sambaraju, J. Herrera, J. Martí, D. Zibar, A. Caballero, J. B. Jensen, I. Tafur Monroy, U. Westergren, and A. Walber, “Up to 40 Gb/s wireless signal generation and demodulation in 75–110 GHz band using photonic technique,” in 2010 IEEE Topical Meeting on Microwave Photonics (MWP), 1–4, (2010).
    [CrossRef]
  7. Y. Park and J. S. Kenney, “Adaptive digital predistortion linerization of frequency multipliers,” IEEE Trans. Microwave Theory Tech. 51, 2516–2522 (2003).
    [CrossRef]
  8. L. C. Chang and Y. L. Lan, “Analysis of amplitude and phase predistortion and polynomial-based predistortion in OFDM systems,” in 2007 6th International Conference on Proceedings of Information, Communications & Signal Processing (ICICS), 1–5 (2007).
    [CrossRef] [PubMed]
  9. Y. Park, R. Melville, R. C. Frye, M. Chen, and J. S. Kenney, “Dual-band transmitters using digitally predistorted frequendy multipliers for reconfigurable radios,” IEEE Trans. Microwave Theory Tech. 53, 115–122 (2004).
    [CrossRef]
  10. H. Chang, J. Tsai, T. Huang, H. Wang, Y. Xia, and Y. Shu, “A W-band high-power predistorted direct-conversion digital modulator for transmitter applications,” IEEE Microw. Wirel. Compon. Lett. 15, 600–602 (2005).
    [CrossRef]

2010

C. W. Chow, F. M. Kuo, and J. W. Shi, “100 GHz ultra-wideband (UWB) fiber-to-the-antenna (FTTA) system for in-building and in-home networks,” Opt. Express 18, 473–478 (2010).
[CrossRef] [PubMed]

R. W. Ridgway, D. W. Nippa, and S. Yen, “Data transmission using differential phase-shift keying on a 92 GHz Carrier,” IEEE Trans. Microwave Theory Tech. 58, 3117–3126 (2010).
[CrossRef]

2009

J. Marti and J. Capmany, “Microwave photonics and radio-over-fiber research,” IEEE Microw. Mag. 10, 96–105 (2009).
[CrossRef]

2005

H. Chang, J. Tsai, T. Huang, H. Wang, Y. Xia, and Y. Shu, “A W-band high-power predistorted direct-conversion digital modulator for transmitter applications,” IEEE Microw. Wirel. Compon. Lett. 15, 600–602 (2005).
[CrossRef]

2004

Y. Park, R. Melville, R. C. Frye, M. Chen, and J. S. Kenney, “Dual-band transmitters using digitally predistorted frequendy multipliers for reconfigurable radios,” IEEE Trans. Microwave Theory Tech. 53, 115–122 (2004).
[CrossRef]

2003

A. Hirata, M. Harada, and T. Nagatsuma, “120-GHz wireless link using photonic techniques for generation, modulation, and emission of millimeter-wave signals,” J. Lightwave Technol. 21, 2145–2153 (2003).
[CrossRef]

Y. Park and J. S. Kenney, “Adaptive digital predistortion linerization of frequency multipliers,” IEEE Trans. Microwave Theory Tech. 51, 2516–2522 (2003).
[CrossRef]

Caballero, A.

R. Sambaraju, J. Herrera, J. Martí, D. Zibar, A. Caballero, J. B. Jensen, I. Tafur Monroy, U. Westergren, and A. Walber, “Up to 40 Gb/s wireless signal generation and demodulation in 75–110 GHz band using photonic technique,” in 2010 IEEE Topical Meeting on Microwave Photonics (MWP), 1–4, (2010).
[CrossRef]

Capmany, J.

J. Marti and J. Capmany, “Microwave photonics and radio-over-fiber research,” IEEE Microw. Mag. 10, 96–105 (2009).
[CrossRef]

Chang, H.

H. Chang, J. Tsai, T. Huang, H. Wang, Y. Xia, and Y. Shu, “A W-band high-power predistorted direct-conversion digital modulator for transmitter applications,” IEEE Microw. Wirel. Compon. Lett. 15, 600–602 (2005).
[CrossRef]

Chang, L. C.

L. C. Chang and Y. L. Lan, “Analysis of amplitude and phase predistortion and polynomial-based predistortion in OFDM systems,” in 2007 6th International Conference on Proceedings of Information, Communications & Signal Processing (ICICS), 1–5 (2007).
[CrossRef] [PubMed]

Chen, M.

Y. Park, R. Melville, R. C. Frye, M. Chen, and J. S. Kenney, “Dual-band transmitters using digitally predistorted frequendy multipliers for reconfigurable radios,” IEEE Trans. Microwave Theory Tech. 53, 115–122 (2004).
[CrossRef]

Chow, C. W.

Frye, R. C.

Y. Park, R. Melville, R. C. Frye, M. Chen, and J. S. Kenney, “Dual-band transmitters using digitally predistorted frequendy multipliers for reconfigurable radios,” IEEE Trans. Microwave Theory Tech. 53, 115–122 (2004).
[CrossRef]

Harada, M.

Herrera, J.

R. Sambaraju, J. Herrera, J. Martí, D. Zibar, A. Caballero, J. B. Jensen, I. Tafur Monroy, U. Westergren, and A. Walber, “Up to 40 Gb/s wireless signal generation and demodulation in 75–110 GHz band using photonic technique,” in 2010 IEEE Topical Meeting on Microwave Photonics (MWP), 1–4, (2010).
[CrossRef]

Hirata, A.

Huang, T.

H. Chang, J. Tsai, T. Huang, H. Wang, Y. Xia, and Y. Shu, “A W-band high-power predistorted direct-conversion digital modulator for transmitter applications,” IEEE Microw. Wirel. Compon. Lett. 15, 600–602 (2005).
[CrossRef]

Jensen, J. B.

R. Sambaraju, J. Herrera, J. Martí, D. Zibar, A. Caballero, J. B. Jensen, I. Tafur Monroy, U. Westergren, and A. Walber, “Up to 40 Gb/s wireless signal generation and demodulation in 75–110 GHz band using photonic technique,” in 2010 IEEE Topical Meeting on Microwave Photonics (MWP), 1–4, (2010).
[CrossRef]

Kenney, J. S.

Y. Park, R. Melville, R. C. Frye, M. Chen, and J. S. Kenney, “Dual-band transmitters using digitally predistorted frequendy multipliers for reconfigurable radios,” IEEE Trans. Microwave Theory Tech. 53, 115–122 (2004).
[CrossRef]

Y. Park and J. S. Kenney, “Adaptive digital predistortion linerization of frequency multipliers,” IEEE Trans. Microwave Theory Tech. 51, 2516–2522 (2003).
[CrossRef]

Kuo, F. M.

Lan, Y. L.

L. C. Chang and Y. L. Lan, “Analysis of amplitude and phase predistortion and polynomial-based predistortion in OFDM systems,” in 2007 6th International Conference on Proceedings of Information, Communications & Signal Processing (ICICS), 1–5 (2007).
[CrossRef] [PubMed]

Marti, J.

J. Marti and J. Capmany, “Microwave photonics and radio-over-fiber research,” IEEE Microw. Mag. 10, 96–105 (2009).
[CrossRef]

Martí, J.

R. Sambaraju, J. Herrera, J. Martí, D. Zibar, A. Caballero, J. B. Jensen, I. Tafur Monroy, U. Westergren, and A. Walber, “Up to 40 Gb/s wireless signal generation and demodulation in 75–110 GHz band using photonic technique,” in 2010 IEEE Topical Meeting on Microwave Photonics (MWP), 1–4, (2010).
[CrossRef]

Melville, R.

Y. Park, R. Melville, R. C. Frye, M. Chen, and J. S. Kenney, “Dual-band transmitters using digitally predistorted frequendy multipliers for reconfigurable radios,” IEEE Trans. Microwave Theory Tech. 53, 115–122 (2004).
[CrossRef]

Nagatsuma, T.

Nippa, D. W.

R. W. Ridgway, D. W. Nippa, and S. Yen, “Data transmission using differential phase-shift keying on a 92 GHz Carrier,” IEEE Trans. Microwave Theory Tech. 58, 3117–3126 (2010).
[CrossRef]

Park, Y.

Y. Park, R. Melville, R. C. Frye, M. Chen, and J. S. Kenney, “Dual-band transmitters using digitally predistorted frequendy multipliers for reconfigurable radios,” IEEE Trans. Microwave Theory Tech. 53, 115–122 (2004).
[CrossRef]

Y. Park and J. S. Kenney, “Adaptive digital predistortion linerization of frequency multipliers,” IEEE Trans. Microwave Theory Tech. 51, 2516–2522 (2003).
[CrossRef]

Ridgway, R. W.

R. W. Ridgway, D. W. Nippa, and S. Yen, “Data transmission using differential phase-shift keying on a 92 GHz Carrier,” IEEE Trans. Microwave Theory Tech. 58, 3117–3126 (2010).
[CrossRef]

Sambaraju, R.

R. Sambaraju, J. Herrera, J. Martí, D. Zibar, A. Caballero, J. B. Jensen, I. Tafur Monroy, U. Westergren, and A. Walber, “Up to 40 Gb/s wireless signal generation and demodulation in 75–110 GHz band using photonic technique,” in 2010 IEEE Topical Meeting on Microwave Photonics (MWP), 1–4, (2010).
[CrossRef]

Shi, J. W.

Shu, Y.

H. Chang, J. Tsai, T. Huang, H. Wang, Y. Xia, and Y. Shu, “A W-band high-power predistorted direct-conversion digital modulator for transmitter applications,” IEEE Microw. Wirel. Compon. Lett. 15, 600–602 (2005).
[CrossRef]

Tafur Monroy, I.

R. Sambaraju, J. Herrera, J. Martí, D. Zibar, A. Caballero, J. B. Jensen, I. Tafur Monroy, U. Westergren, and A. Walber, “Up to 40 Gb/s wireless signal generation and demodulation in 75–110 GHz band using photonic technique,” in 2010 IEEE Topical Meeting on Microwave Photonics (MWP), 1–4, (2010).
[CrossRef]

Tsai, J.

H. Chang, J. Tsai, T. Huang, H. Wang, Y. Xia, and Y. Shu, “A W-band high-power predistorted direct-conversion digital modulator for transmitter applications,” IEEE Microw. Wirel. Compon. Lett. 15, 600–602 (2005).
[CrossRef]

Walber, A.

R. Sambaraju, J. Herrera, J. Martí, D. Zibar, A. Caballero, J. B. Jensen, I. Tafur Monroy, U. Westergren, and A. Walber, “Up to 40 Gb/s wireless signal generation and demodulation in 75–110 GHz band using photonic technique,” in 2010 IEEE Topical Meeting on Microwave Photonics (MWP), 1–4, (2010).
[CrossRef]

Wang, H.

H. Chang, J. Tsai, T. Huang, H. Wang, Y. Xia, and Y. Shu, “A W-band high-power predistorted direct-conversion digital modulator for transmitter applications,” IEEE Microw. Wirel. Compon. Lett. 15, 600–602 (2005).
[CrossRef]

Westergren, U.

R. Sambaraju, J. Herrera, J. Martí, D. Zibar, A. Caballero, J. B. Jensen, I. Tafur Monroy, U. Westergren, and A. Walber, “Up to 40 Gb/s wireless signal generation and demodulation in 75–110 GHz band using photonic technique,” in 2010 IEEE Topical Meeting on Microwave Photonics (MWP), 1–4, (2010).
[CrossRef]

Xia, Y.

H. Chang, J. Tsai, T. Huang, H. Wang, Y. Xia, and Y. Shu, “A W-band high-power predistorted direct-conversion digital modulator for transmitter applications,” IEEE Microw. Wirel. Compon. Lett. 15, 600–602 (2005).
[CrossRef]

Yen, S.

R. W. Ridgway, D. W. Nippa, and S. Yen, “Data transmission using differential phase-shift keying on a 92 GHz Carrier,” IEEE Trans. Microwave Theory Tech. 58, 3117–3126 (2010).
[CrossRef]

Zibar, D.

R. Sambaraju, J. Herrera, J. Martí, D. Zibar, A. Caballero, J. B. Jensen, I. Tafur Monroy, U. Westergren, and A. Walber, “Up to 40 Gb/s wireless signal generation and demodulation in 75–110 GHz band using photonic technique,” in 2010 IEEE Topical Meeting on Microwave Photonics (MWP), 1–4, (2010).
[CrossRef]

IEEE Microw. Mag.

J. Marti and J. Capmany, “Microwave photonics and radio-over-fiber research,” IEEE Microw. Mag. 10, 96–105 (2009).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett.

H. Chang, J. Tsai, T. Huang, H. Wang, Y. Xia, and Y. Shu, “A W-band high-power predistorted direct-conversion digital modulator for transmitter applications,” IEEE Microw. Wirel. Compon. Lett. 15, 600–602 (2005).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

Y. Park, R. Melville, R. C. Frye, M. Chen, and J. S. Kenney, “Dual-band transmitters using digitally predistorted frequendy multipliers for reconfigurable radios,” IEEE Trans. Microwave Theory Tech. 53, 115–122 (2004).
[CrossRef]

R. W. Ridgway, D. W. Nippa, and S. Yen, “Data transmission using differential phase-shift keying on a 92 GHz Carrier,” IEEE Trans. Microwave Theory Tech. 58, 3117–3126 (2010).
[CrossRef]

Y. Park and J. S. Kenney, “Adaptive digital predistortion linerization of frequency multipliers,” IEEE Trans. Microwave Theory Tech. 51, 2516–2522 (2003).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Other

“FCC online table of frequency allocations,” www.fcc.gov/oet/spectrum/table/fcctable.pdf .

L. C. Chang and Y. L. Lan, “Analysis of amplitude and phase predistortion and polynomial-based predistortion in OFDM systems,” in 2007 6th International Conference on Proceedings of Information, Communications & Signal Processing (ICICS), 1–5 (2007).
[CrossRef] [PubMed]

R. Sambaraju, J. Herrera, J. Martí, D. Zibar, A. Caballero, J. B. Jensen, I. Tafur Monroy, U. Westergren, and A. Walber, “Up to 40 Gb/s wireless signal generation and demodulation in 75–110 GHz band using photonic technique,” in 2010 IEEE Topical Meeting on Microwave Photonics (MWP), 1–4, (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup of a digital predistorted W-band wireless access system. PC: polarization controller PA: power amplifier. LNA: Low noise amplifier.

Fig. 2
Fig. 2

Block diagram of the digital signal processing in the digital predistortion module.

Fig. 3
Fig. 3

RLS convergence curves for amplitude and phase predistortion loops.

Fig. 4
Fig. 4

Orthogonality re-optimization for the QPSK signal.

Fig. 5
Fig. 5

QPSK spectra with (red) and without (blue) predistortion. Inset: Predistorted (red) and received (blue) QPSK constellations.

Fig. 6
Fig. 6

16-QAM spectra with (red) and without (blue) predistortion. Inset: Predistorted (red) and received (blue) 16-QAM constellations.

Fig. 7
Fig. 7

Fiber transmission performances for the 99.6GHz fiber-wireless transmission system. BER vs optical power before the PD with fixed 1m wireless distance.FEC: forward error correction.

Fig. 8
Fig. 8

Wireless transmission performances for the 99.6GHz fiber-wireless transmission system. BER vs 99.6GHz wireless transmission distance with fixed 26km fiber transmission. Inset: demodulated constellation of QPSK and 16-QAM signals.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Y ( t ) = Re { A [ r ( t ) ] e j [ n ω 0 t + n φ ( t ) + P [ r ( t ) ] ] }

Metrics