Abstract

Disk-shaped metal nanoparticles on high-index substrates can support resonant surface plasmon polariton (SPP) modes at the interface between the particle and the substrate. We demonstrate that this new conceptual model of nanoparticle scattering allows clear predictive abilities, beyond the dipole model. As would be expected from the nature of the mode, the SPP resonance is very sensitive to the area in contact with the substrate, and insensitive to particle height. We can employ this new understanding to minimise mode out-coupling and Ohmic losses in the particles. Taking into account optical losses due to parasitic absorption and outcoupling of scattered light, we estimate that an optimal array of nanoparticles on a 2 μm Si substrate can provide up to 71% of the enhancement in absorption achievable with an ideal Lambertian rear-reflector. This result compares to an estimate of 67% for conventional pyramid-type light trapping schemes.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  2. F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Plasmonic light-trapping for Si solar cells using self-assembled, Ag nanoparticles,” Prog. Photovolt. Res. Appl. 18(7), 500–504 (2010).
    [CrossRef]
  3. Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96(26), 261109 (2010).
    [CrossRef]
  4. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
    [CrossRef]
  5. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
    [CrossRef]
  6. K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhancement light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
    [CrossRef]
  7. D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, and E. T. Yu, “Nanoparticle-induced light scattering for improved performance of quantum-well solar cells,” Appl. Phys. Lett. 93(9), 91103–91107 (2008).
    [CrossRef]
  8. Y. A. Akimov, W. S. Koh, and K. Ostrikov, “Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes,” Opt. Express 17(12), 10195–10205 (2009).
    [CrossRef] [PubMed]
  9. B. J. Soller and D. G. Hall, “Scattering enhancement from an array of interacting dipoles near a planar waveguide,” J. Opt. Soc. Am. B 19(10), 2437–2448 (2002).
    [CrossRef]
  10. K. R. Catchpole and S. Pillai, “Absorption enhancement due to scattering by dipoles into silicon waveguides,” J. Appl. Phys. 100(4), 44504 (2006).
    [CrossRef]
  11. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
    [CrossRef] [PubMed]
  12. J. C. Mertz, “Radiative absorption, fluorescence, and scattering of a classical dipole near a lossless interface: a unified description,” J. Opt. Soc. Am. B 17(11), 1906 (2000).
    [CrossRef]
  13. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
    [CrossRef]
  14. F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 33113 (2010).
    [CrossRef]
  15. C. Hägglund, M. Zäch, P. Goran, and K. Bengt, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 53110 (2008).
    [CrossRef]
  16. S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer layer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011).
    [CrossRef]
  17. F. J. Beck, E. Verhagen, S. Mokkapati, A. Polman, and K. R. Catchpole, “Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates,” Opt. Express 19(S2), A146–A156 (2011).
    [CrossRef] [PubMed]
  18. T. L. Temple, H. S. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localised surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93(11), 1978–1985 (2009).
    [CrossRef]
  19. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  20. M. J. Keevers and M. A. Green, “Absorption edge of silicon from solar cell spectral response measurements,” Appl. Phys. Lett. 66(2), 174–176 (1995).
    [CrossRef]
  21. S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
    [CrossRef]
  22. P. Spinelli, C. van Lare, E. Verhagen, and A. Polman, “Controlling Fano lineshapes in plasmon-mediated light coupling into a substrate,” Opt. Express 19(S3Suppl 3), A303–A311 (2011).
    [CrossRef] [PubMed]
  23. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003).
    [CrossRef] [PubMed]
  24. I. Diukman and M. Orenstein, “How front side plasmonic nanostructures enhance solar cell efficiency,” Sol. Energy Mater. Sol. Cells 95(9), 2628–2631 (2011).
    [CrossRef]
  25. F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009).
    [CrossRef]
  26. A. Centeno, J. Breeze, B. Ahmed, H. Reehal, and N. Alford, “Scattering of light into silicon by spherical and hemispherical silver nanoparticles,” Opt. Lett. 35(1), 76–78 (2010).
    [CrossRef] [PubMed]
  27. C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F. J. Haug, T. Söderström, C. Ballif, and F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18(S3), A335–A341 (2010).
    [CrossRef] [PubMed]
  28. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles. (Wiley, New York: 1983).
  29. A. Goetzberger, “Optical confinement in thin Si solar cells by diffuse back reflections,” in 15th Photovoltaic Specialists Conference, (1981).
  30. M. A. Green, “Lambertian light trapping in textured solar cells and light emitting diodes: analytical solutions,” Prog. Photovolt. Res. Appl. 10(4), 235–241 (2002).
    [CrossRef]
  31. S. Mokkapati, F. J. Beck, R. de Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D Appl. Phys. 44(18), 185101 (2011).
    [CrossRef]
  32. P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1998).
  33. T. Trupke, E. Daub, and P. Würfel, “Absorptivity of silicon solar cells obtained from luminescence,” Sol. Energy Mater. Sol. Cells 53(1-2), 103–114 (1998).
    [CrossRef]
  34. P. Wurfel, Physik der Solarzellen. Spektrum (Akademischer Verlag GmbH, Heidelberg, Berlin, Oxford, 1995).

2011 (5)

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer layer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011).
[CrossRef]

I. Diukman and M. Orenstein, “How front side plasmonic nanostructures enhance solar cell efficiency,” Sol. Energy Mater. Sol. Cells 95(9), 2628–2631 (2011).
[CrossRef]

S. Mokkapati, F. J. Beck, R. de Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D Appl. Phys. 44(18), 185101 (2011).
[CrossRef]

F. J. Beck, E. Verhagen, S. Mokkapati, A. Polman, and K. R. Catchpole, “Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates,” Opt. Express 19(S2), A146–A156 (2011).
[CrossRef] [PubMed]

P. Spinelli, C. van Lare, E. Verhagen, and A. Polman, “Controlling Fano lineshapes in plasmon-mediated light coupling into a substrate,” Opt. Express 19(S3Suppl 3), A303–A311 (2011).
[CrossRef] [PubMed]

2010 (6)

A. Centeno, J. Breeze, B. Ahmed, H. Reehal, and N. Alford, “Scattering of light into silicon by spherical and hemispherical silver nanoparticles,” Opt. Lett. 35(1), 76–78 (2010).
[CrossRef] [PubMed]

C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F. J. Haug, T. Söderström, C. Ballif, and F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18(S3), A335–A341 (2010).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Plasmonic light-trapping for Si solar cells using self-assembled, Ag nanoparticles,” Prog. Photovolt. Res. Appl. 18(7), 500–504 (2010).
[CrossRef]

Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96(26), 261109 (2010).
[CrossRef]

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 33113 (2010).
[CrossRef]

2009 (3)

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009).
[CrossRef]

T. L. Temple, H. S. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localised surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93(11), 1978–1985 (2009).
[CrossRef]

Y. A. Akimov, W. S. Koh, and K. Ostrikov, “Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes,” Opt. Express 17(12), 10195–10205 (2009).
[CrossRef] [PubMed]

2008 (5)

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[CrossRef] [PubMed]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[CrossRef]

C. Hägglund, M. Zäch, P. Goran, and K. Bengt, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 53110 (2008).
[CrossRef]

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhancement light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[CrossRef]

D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, and E. T. Yu, “Nanoparticle-induced light scattering for improved performance of quantum-well solar cells,” Appl. Phys. Lett. 93(9), 91103–91107 (2008).
[CrossRef]

2007 (2)

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[CrossRef]

2006 (2)

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

K. R. Catchpole and S. Pillai, “Absorption enhancement due to scattering by dipoles into silicon waveguides,” J. Appl. Phys. 100(4), 44504 (2006).
[CrossRef]

2003 (1)

2002 (2)

B. J. Soller and D. G. Hall, “Scattering enhancement from an array of interacting dipoles near a planar waveguide,” J. Opt. Soc. Am. B 19(10), 2437–2448 (2002).
[CrossRef]

M. A. Green, “Lambertian light trapping in textured solar cells and light emitting diodes: analytical solutions,” Prog. Photovolt. Res. Appl. 10(4), 235–241 (2002).
[CrossRef]

2000 (1)

1998 (1)

T. Trupke, E. Daub, and P. Würfel, “Absorptivity of silicon solar cells obtained from luminescence,” Sol. Energy Mater. Sol. Cells 53(1-2), 103–114 (1998).
[CrossRef]

1995 (1)

M. J. Keevers and M. A. Green, “Absorption edge of silicon from solar cell spectral response measurements,” Appl. Phys. Lett. 66(2), 174–176 (1995).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Ahmed, B.

Akimov, Y. A.

Alford, N.

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhancement light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[CrossRef]

Bagnall, D. M.

T. L. Temple, H. S. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localised surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93(11), 1978–1985 (2009).
[CrossRef]

Ballif, C.

Beck, F.

Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96(26), 261109 (2010).
[CrossRef]

Beck, F. J.

F. J. Beck, E. Verhagen, S. Mokkapati, A. Polman, and K. R. Catchpole, “Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates,” Opt. Express 19(S2), A146–A156 (2011).
[CrossRef] [PubMed]

S. Mokkapati, F. J. Beck, R. de Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D Appl. Phys. 44(18), 185101 (2011).
[CrossRef]

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer layer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011).
[CrossRef]

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 33113 (2010).
[CrossRef]

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Plasmonic light-trapping for Si solar cells using self-assembled, Ag nanoparticles,” Prog. Photovolt. Res. Appl. 18(7), 500–504 (2010).
[CrossRef]

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009).
[CrossRef]

Beckers, T.

Bengt, K.

C. Hägglund, M. Zäch, P. Goran, and K. Bengt, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 53110 (2008).
[CrossRef]

Bittkau, K.

Breeze, J.

Campbell, P.

Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96(26), 261109 (2010).
[CrossRef]

Carius, R.

Catchpole, K. R.

F. J. Beck, E. Verhagen, S. Mokkapati, A. Polman, and K. R. Catchpole, “Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates,” Opt. Express 19(S2), A146–A156 (2011).
[CrossRef] [PubMed]

S. Mokkapati, F. J. Beck, R. de Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D Appl. Phys. 44(18), 185101 (2011).
[CrossRef]

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer layer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011).
[CrossRef]

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 33113 (2010).
[CrossRef]

Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96(26), 261109 (2010).
[CrossRef]

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Plasmonic light-trapping for Si solar cells using self-assembled, Ag nanoparticles,” Prog. Photovolt. Res. Appl. 18(7), 500–504 (2010).
[CrossRef]

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009).
[CrossRef]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[CrossRef] [PubMed]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

K. R. Catchpole and S. Pillai, “Absorption enhancement due to scattering by dipoles into silicon waveguides,” J. Appl. Phys. 100(4), 44504 (2006).
[CrossRef]

Centeno, A.

Chen, W. V.

D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, and E. T. Yu, “Nanoparticle-induced light scattering for improved performance of quantum-well solar cells,” Appl. Phys. Lett. 93(9), 91103–91107 (2008).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Daub, E.

T. Trupke, E. Daub, and P. Würfel, “Absorptivity of silicon solar cells obtained from luminescence,” Sol. Energy Mater. Sol. Cells 53(1-2), 103–114 (1998).
[CrossRef]

de Waele, R.

S. Mokkapati, F. J. Beck, R. de Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D Appl. Phys. 44(18), 185101 (2011).
[CrossRef]

Derkacs, D.

D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, and E. T. Yu, “Nanoparticle-induced light scattering for improved performance of quantum-well solar cells,” Appl. Phys. Lett. 93(9), 91103–91107 (2008).
[CrossRef]

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Diukman, I.

I. Diukman and M. Orenstein, “How front side plasmonic nanostructures enhance solar cell efficiency,” Sol. Energy Mater. Sol. Cells 95(9), 2628–2631 (2011).
[CrossRef]

Fahr, S.

Fan, S.

Goran, P.

C. Hägglund, M. Zäch, P. Goran, and K. Bengt, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 53110 (2008).
[CrossRef]

Green, M. A.

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer layer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011).
[CrossRef]

Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96(26), 261109 (2010).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

M. A. Green, “Lambertian light trapping in textured solar cells and light emitting diodes: analytical solutions,” Prog. Photovolt. Res. Appl. 10(4), 235–241 (2002).
[CrossRef]

M. J. Keevers and M. A. Green, “Absorption edge of silicon from solar cell spectral response measurements,” Appl. Phys. Lett. 66(2), 174–176 (1995).
[CrossRef]

Hägglund, C.

C. Hägglund, M. Zäch, P. Goran, and K. Bengt, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 53110 (2008).
[CrossRef]

Hall, D. G.

Haug, F. J.

Joannopoulos, J. D.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Keevers, M. J.

M. J. Keevers and M. A. Green, “Absorption edge of silicon from solar cell spectral response measurements,” Appl. Phys. Lett. 66(2), 174–176 (1995).
[CrossRef]

Koh, W. S.

Kunz, O.

Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96(26), 261109 (2010).
[CrossRef]

Lederer, F.

Lim, S. H.

D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, and E. T. Yu, “Nanoparticle-induced light scattering for improved performance of quantum-well solar cells,” Appl. Phys. Lett. 93(9), 91103–91107 (2008).
[CrossRef]

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Mahanama, H. S.

T. L. Temple, H. S. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localised surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93(11), 1978–1985 (2009).
[CrossRef]

Mar, W.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Matheu, P.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Matheu, P. M.

D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, and E. T. Yu, “Nanoparticle-induced light scattering for improved performance of quantum-well solar cells,” Appl. Phys. Lett. 93(9), 91103–91107 (2008).
[CrossRef]

Mertz, J. C.

Mokkapati, S.

S. Mokkapati, F. J. Beck, R. de Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D Appl. Phys. 44(18), 185101 (2011).
[CrossRef]

F. J. Beck, E. Verhagen, S. Mokkapati, A. Polman, and K. R. Catchpole, “Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates,” Opt. Express 19(S2), A146–A156 (2011).
[CrossRef] [PubMed]

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 33113 (2010).
[CrossRef]

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Plasmonic light-trapping for Si solar cells using self-assembled, Ag nanoparticles,” Prog. Photovolt. Res. Appl. 18(7), 500–504 (2010).
[CrossRef]

Nakayama, K.

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhancement light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[CrossRef]

Orenstein, M.

I. Diukman and M. Orenstein, “How front side plasmonic nanostructures enhance solar cell efficiency,” Sol. Energy Mater. Sol. Cells 95(9), 2628–2631 (2011).
[CrossRef]

Ostrikov, K.

Ouyang, Z.

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer layer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011).
[CrossRef]

Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96(26), 261109 (2010).
[CrossRef]

Pillai, S.

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer layer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011).
[CrossRef]

Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96(26), 261109 (2010).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

K. R. Catchpole and S. Pillai, “Absorption enhancement due to scattering by dipoles into silicon waveguides,” J. Appl. Phys. 100(4), 44504 (2006).
[CrossRef]

Polman, A.

F. J. Beck, E. Verhagen, S. Mokkapati, A. Polman, and K. R. Catchpole, “Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates,” Opt. Express 19(S2), A146–A156 (2011).
[CrossRef] [PubMed]

S. Mokkapati, F. J. Beck, R. de Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D Appl. Phys. 44(18), 185101 (2011).
[CrossRef]

P. Spinelli, C. van Lare, E. Verhagen, and A. Polman, “Controlling Fano lineshapes in plasmon-mediated light coupling into a substrate,” Opt. Express 19(S3Suppl 3), A303–A311 (2011).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 33113 (2010).
[CrossRef]

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009).
[CrossRef]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[CrossRef]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[CrossRef] [PubMed]

Reehal, H.

Reehal, H. S.

T. L. Temple, H. S. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localised surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93(11), 1978–1985 (2009).
[CrossRef]

Rockstuhl, C.

Söderström, T.

Soller, B. J.

Spinelli, P.

Suh, W.

Tanabe, K.

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhancement light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[CrossRef]

Temple, T. L.

T. L. Temple, H. S. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localised surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93(11), 1978–1985 (2009).
[CrossRef]

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

T. Trupke, E. Daub, and P. Würfel, “Absorptivity of silicon solar cells obtained from luminescence,” Sol. Energy Mater. Sol. Cells 53(1-2), 103–114 (1998).
[CrossRef]

van Lare, C.

Varlamov, S.

Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96(26), 261109 (2010).
[CrossRef]

Verhagen, E.

Würfel, P.

T. Trupke, E. Daub, and P. Würfel, “Absorptivity of silicon solar cells obtained from luminescence,” Sol. Energy Mater. Sol. Cells 53(1-2), 103–114 (1998).
[CrossRef]

Yu, E. T.

D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, and E. T. Yu, “Nanoparticle-induced light scattering for improved performance of quantum-well solar cells,” Appl. Phys. Lett. 93(9), 91103–91107 (2008).
[CrossRef]

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Yu, P. K. L.

D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, and E. T. Yu, “Nanoparticle-induced light scattering for improved performance of quantum-well solar cells,” Appl. Phys. Lett. 93(9), 91103–91107 (2008).
[CrossRef]

Zäch, M.

C. Hägglund, M. Zäch, P. Goran, and K. Bengt, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 53110 (2008).
[CrossRef]

Appl. Phys. Lett. (8)

Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96(26), 261109 (2010).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhancement light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[CrossRef]

D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, and E. T. Yu, “Nanoparticle-induced light scattering for improved performance of quantum-well solar cells,” Appl. Phys. Lett. 93(9), 91103–91107 (2008).
[CrossRef]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[CrossRef]

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 33113 (2010).
[CrossRef]

C. Hägglund, M. Zäch, P. Goran, and K. Bengt, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 53110 (2008).
[CrossRef]

M. J. Keevers and M. A. Green, “Absorption edge of silicon from solar cell spectral response measurements,” Appl. Phys. Lett. 66(2), 174–176 (1995).
[CrossRef]

J. Appl. Phys. (5)

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[CrossRef]

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009).
[CrossRef]

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer layer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011).
[CrossRef]

K. R. Catchpole and S. Pillai, “Absorption enhancement due to scattering by dipoles into silicon waveguides,” J. Appl. Phys. 100(4), 44504 (2006).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

J. Phys. D Appl. Phys. (1)

S. Mokkapati, F. J. Beck, R. de Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D Appl. Phys. 44(18), 185101 (2011).
[CrossRef]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Prog. Photovolt. Res. Appl. (2)

M. A. Green, “Lambertian light trapping in textured solar cells and light emitting diodes: analytical solutions,” Prog. Photovolt. Res. Appl. 10(4), 235–241 (2002).
[CrossRef]

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Plasmonic light-trapping for Si solar cells using self-assembled, Ag nanoparticles,” Prog. Photovolt. Res. Appl. 18(7), 500–504 (2010).
[CrossRef]

Sol. Energy Mater. Sol. Cells (3)

T. L. Temple, H. S. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localised surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93(11), 1978–1985 (2009).
[CrossRef]

I. Diukman and M. Orenstein, “How front side plasmonic nanostructures enhance solar cell efficiency,” Sol. Energy Mater. Sol. Cells 95(9), 2628–2631 (2011).
[CrossRef]

T. Trupke, E. Daub, and P. Würfel, “Absorptivity of silicon solar cells obtained from luminescence,” Sol. Energy Mater. Sol. Cells 53(1-2), 103–114 (1998).
[CrossRef]

Other (4)

P. Wurfel, Physik der Solarzellen. Spektrum (Akademischer Verlag GmbH, Heidelberg, Berlin, Oxford, 1995).

P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1998).

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles. (Wiley, New York: 1983).

A. Goetzberger, “Optical confinement in thin Si solar cells by diffuse back reflections,” in 15th Photovoltaic Specialists Conference, (1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Calculated normalised scattering cross-section (Qscat) for Ag nanoparticles directly on a Si substrate, with light normally incident from the air. Data is shown for (a) Ag disks of height h = 50 nm and diameter d = 100 nm with rounded top edges, and bottom edges that are either rounded (particle A), straight (particle B), or splayed (particle C) with a radius of curvature, r = 10 nm, as shown in the schematic inset, and (b) for Ag disks with straight bottom edges and diameters of either d = 100 nm (particle B), d-2r = 80 nm (particle D) or d+2r = 120 nm (particle E).

Fig. 2
Fig. 2

(a) Calculated normalised scattering cross-section (Qscat), and (b) fraction of scattered light scattered into the Si substrate (Fsubs) for d = 100 nm, Ag, disk-shaped nanoparticles, directly on a Si substrate, with light incident from air. Data is shown for varying particle height, where h = 25-150 nm.

Fig. 3
Fig. 3

Average scattering and coupling efficiency calculated over the light trapping spectral region for a 2 μm thick, Si substrate (500 nm to 1200 nm) for rear located particles. For (a) d = 100 nm, h = 50 nm and varying spacer layer thickness from 0 to 20 nm, (b) t = 0 nm, h = 50 nm and varying diameter from 60 to 160 nm, and (c) t = 0 nm, d = 100 nm and varying height from 25 to 150 nm.

Fig. 4
Fig. 4

Calculated angular distribution of light scattered into the substrate (Iscat) at the R2 resonance, λR2 = 990 nm. Data is shown for a d = 100 nm, h = 50 nm, disk-shaped nanoparticle (Disk, red), a horizontally orientated dipole (Dipole, blue) and an ideal Lambertian scatterer (Lambertian, black), on the rear of a Si substrate. The loss cone for a Si/Air interface is also shown (dashed line, grey), defined by the critical angle (θc).

Fig. 5
Fig. 5

Calculated absorption in a 2 μm Si substrate, normalised to the incident light intensity. Data is shown for a substrate with planar front and rear surfaces (Planar, dashed line), for a substrate with an ideal Lambertian reflector (Lambertian, solid line), and for rear-located, disk-shaped, Ag nanoparticles, with d = 100 nm and h = 50 nm. The nanoparticles are modelled with no losses (R = 1, brown line), with some fraction of the scattered light coupled out of the cell (R = Fsubs, green line) and with out-coupling and absorption in the particles (R = Fsubs*ηscat, red line).

Tables (1)

Tables Icon

Table 1 Enhancement in absorption in a 2 μm Si substrate over the AM1.5g solar spectrum relative to planar case (Λabs) for different light trapping schemes for given values of reflection from the rear surface (R).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A= 1R(λ) 1R(λ) PLEα(λ)W +1 ,

Metrics