I.-H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332(6035), 1297–1300 (2011).
[Crossref]
[PubMed]
Q. Liu, C. Beier, J. Evans, T. Lee, S. He, and I. I. Smalyukh, “Self-alignment of dye molecules in micelles and lamellae for three-dimensional imaging of lyotropic liquid crystals,” Langmuir 27(12), 7446–7452 (2011).
[Crossref]
[PubMed]
T. Lee, R. P. Trivedi, and I. I. Smalyukh, “Multimodal nonlinear optical polarizing microscopy of long-range molecular order in liquid crystals,” Opt. Lett. 35(20), 3447–3449 (2010).
[Crossref]
[PubMed]
R. P. Trivedi, T. Lee, K. A. Bertness, and I. I. Smalyukh, “Three dimensional optical manipulation and structural imaging of soft materials by use of laser tweezers and multimodal nonlinear microscopy,” Opt. Express 18(26), 27658–27669 (2010).
[Crossref]
[PubMed]
S. J. Parkin, R. Vogel, M. Persson, M. Funk, V. L. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation,” Opt. Express 17(24), 21944–21955 (2009).
[Crossref]
[PubMed]
R. Vogel, M. Persson, C. Feng, S. J. Parkin, T. A. Nieminen, B. Wood, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Synthesis and surface modification of birefringent vaterite microspheres,” Langmuir 25(19), 11672–11679 (2009).
[Crossref]
[PubMed]
S. Sircar and Q. Wang, “Dynamics and rheology of biaxial liquid crystal polymers in shear flows,” J. Rheol. (N.Y.N.Y.) 53(4), 819–858 (2009).
[Crossref]
S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[Crossref]
[PubMed]
V. L. Y. Loke, T. A. Nieminen, S. J. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “FDFD/T-matrix hybrid method,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 274–284 (2007).
[Crossref]
H. F. Gleeson, T. A. Wood, and M. Dickinson, “Laser manipulation in liquid crystals: an approach to microfluidics and micromachines,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 364(1847), 2789–2805 (2006).
[Crossref]
[PubMed]
J. Sato and V. Breedveld, “Transient rheology of solvent-responsive complex fluids by integrating microrheology and microfluidics,” J. Rheol. (N.Y.N.Y.) 50(1), 1–19 (2006).
[Crossref]
G. Liao, I. I. Smalyukh, J. R. Kelly, O. D. Lavrentovich, and A. Jákli, “Electrorotation of colloidal particles in liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(3), 031704 (2005).
[Crossref]
[PubMed]
J. C. Loudet, P. Hanusse, and P. Poulin, “Stokes drag on a sphere in a nematic liquid crystal,” Science 306(5701), 1525 (2004).
[Crossref]
[PubMed]
A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92(19), 198104 (2004).
[Crossref]
[PubMed]
T. Thiele, J.-F. Berret, S. Müller, and C. Schmidt, “Rheology and nuclear magnetic resonance measurements under shear of sodium dodecyl sulfate/decanol/water,” J. Rheol. (N.Y.N.Y.) 45(1), 29–48 (2001).
[Crossref]
I. I. Smalyukh, S. Shiyanovskii, and O. D. Lavrentovich, “Three-dimensional imaging of orientational order by fluorescence confocal polarizing microscopy,” Chem. Phys. Lett. 336(1-2), 88–96 (2001).
[Crossref]
T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical measurement of microscopic torques,” J. Mod. Opt. 48, 405–413 (2001).
F. C. MacKintosh and C. F. Schmidt, “Microrheology,” Curr. Opin. Colloid Interface Sci. 4(4), 300–307 (1999).
[Crossref]
M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[Crossref]
M. Kuzman, Y. W. Hui, and M. M. Labes, “Capillary viscometry of some lyotropic nematics,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 172, 211–215 (1989).
S. Dominguez Bella and J. M. Garcia-Ruiz, “Textures in induced morphology crystal aggregates of CaCO3: sheaf of wheat morphologies,” J. Cryst. Growth 79(1-3), 236–240 (1986).
[Crossref]
R. Bartolino, T. Chiaranza, M. Meuti, and R. Compagnoni, “Uniaxial and biaxial lyotropic nematic liquid crystals,” Phys. Rev. A 26(2), 1116–1119 (1982).
[Crossref]
K. F. Wissbrun, “Rheology of rod-like polymers in the liquid crystalline state,” J. Rheol. (N.Y.N.Y.) 25(6), 619–662 (1981).
[Crossref]
L. J. Yu and A. Saupe, “Liquid crystalline phases of the sodium decylsulfate/decanol/water system. Nematic-nematic and cholesteric-cholesteric phase transitions,” J. Am. Chem. Soc. 102(15), 4879–4883 (1980).
[Crossref]
I.-H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332(6035), 1297–1300 (2011).
[Crossref]
[PubMed]
R. Bartolino, T. Chiaranza, M. Meuti, and R. Compagnoni, “Uniaxial and biaxial lyotropic nematic liquid crystals,” Phys. Rev. A 26(2), 1116–1119 (1982).
[Crossref]
Q. Liu, C. Beier, J. Evans, T. Lee, S. He, and I. I. Smalyukh, “Self-alignment of dye molecules in micelles and lamellae for three-dimensional imaging of lyotropic liquid crystals,” Langmuir 27(12), 7446–7452 (2011).
[Crossref]
[PubMed]
T. Thiele, J.-F. Berret, S. Müller, and C. Schmidt, “Rheology and nuclear magnetic resonance measurements under shear of sodium dodecyl sulfate/decanol/water,” J. Rheol. (N.Y.N.Y.) 45(1), 29–48 (2001).
[Crossref]
I.-H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332(6035), 1297–1300 (2011).
[Crossref]
[PubMed]
A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92(19), 198104 (2004).
[Crossref]
[PubMed]
J. Sato and V. Breedveld, “Transient rheology of solvent-responsive complex fluids by integrating microrheology and microfluidics,” J. Rheol. (N.Y.N.Y.) 50(1), 1–19 (2006).
[Crossref]
R. Bartolino, T. Chiaranza, M. Meuti, and R. Compagnoni, “Uniaxial and biaxial lyotropic nematic liquid crystals,” Phys. Rev. A 26(2), 1116–1119 (1982).
[Crossref]
R. Bartolino, T. Chiaranza, M. Meuti, and R. Compagnoni, “Uniaxial and biaxial lyotropic nematic liquid crystals,” Phys. Rev. A 26(2), 1116–1119 (1982).
[Crossref]
S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[Crossref]
[PubMed]
I.-H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332(6035), 1297–1300 (2011).
[Crossref]
[PubMed]
H. F. Gleeson, T. A. Wood, and M. Dickinson, “Laser manipulation in liquid crystals: an approach to microfluidics and micromachines,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 364(1847), 2789–2805 (2006).
[Crossref]
[PubMed]
S. Dominguez Bella and J. M. Garcia-Ruiz, “Textures in induced morphology crystal aggregates of CaCO3: sheaf of wheat morphologies,” J. Cryst. Growth 79(1-3), 236–240 (1986).
[Crossref]
Q. Liu, C. Beier, J. Evans, T. Lee, S. He, and I. I. Smalyukh, “Self-alignment of dye molecules in micelles and lamellae for three-dimensional imaging of lyotropic liquid crystals,” Langmuir 27(12), 7446–7452 (2011).
[Crossref]
[PubMed]
R. Vogel, M. Persson, C. Feng, S. J. Parkin, T. A. Nieminen, B. Wood, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Synthesis and surface modification of birefringent vaterite microspheres,” Langmuir 25(19), 11672–11679 (2009).
[Crossref]
[PubMed]
M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[Crossref]
S. J. Parkin, R. Vogel, M. Persson, M. Funk, V. L. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation,” Opt. Express 17(24), 21944–21955 (2009).
[Crossref]
[PubMed]
S. Dominguez Bella and J. M. Garcia-Ruiz, “Textures in induced morphology crystal aggregates of CaCO3: sheaf of wheat morphologies,” J. Cryst. Growth 79(1-3), 236–240 (1986).
[Crossref]
H. F. Gleeson, T. A. Wood, and M. Dickinson, “Laser manipulation in liquid crystals: an approach to microfluidics and micromachines,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 364(1847), 2789–2805 (2006).
[Crossref]
[PubMed]
J. C. Loudet, P. Hanusse, and P. Poulin, “Stokes drag on a sphere in a nematic liquid crystal,” Science 306(5701), 1525 (2004).
[Crossref]
[PubMed]
Q. Liu, C. Beier, J. Evans, T. Lee, S. He, and I. I. Smalyukh, “Self-alignment of dye molecules in micelles and lamellae for three-dimensional imaging of lyotropic liquid crystals,” Langmuir 27(12), 7446–7452 (2011).
[Crossref]
[PubMed]
R. Vogel, M. Persson, C. Feng, S. J. Parkin, T. A. Nieminen, B. Wood, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Synthesis and surface modification of birefringent vaterite microspheres,” Langmuir 25(19), 11672–11679 (2009).
[Crossref]
[PubMed]
S. J. Parkin, R. Vogel, M. Persson, M. Funk, V. L. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation,” Opt. Express 17(24), 21944–21955 (2009).
[Crossref]
[PubMed]
V. L. Y. Loke, T. A. Nieminen, S. J. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “FDFD/T-matrix hybrid method,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 274–284 (2007).
[Crossref]
A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92(19), 198104 (2004).
[Crossref]
[PubMed]
T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical measurement of microscopic torques,” J. Mod. Opt. 48, 405–413 (2001).
M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[Crossref]
M. Kuzman, Y. W. Hui, and M. M. Labes, “Capillary viscometry of some lyotropic nematics,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 172, 211–215 (1989).
G. Liao, I. I. Smalyukh, J. R. Kelly, O. D. Lavrentovich, and A. Jákli, “Electrorotation of colloidal particles in liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(3), 031704 (2005).
[Crossref]
[PubMed]
S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[Crossref]
[PubMed]
G. Liao, I. I. Smalyukh, J. R. Kelly, O. D. Lavrentovich, and A. Jákli, “Electrorotation of colloidal particles in liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(3), 031704 (2005).
[Crossref]
[PubMed]
M. Kuzman, Y. W. Hui, and M. M. Labes, “Capillary viscometry of some lyotropic nematics,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 172, 211–215 (1989).
M. Kuzman, Y. W. Hui, and M. M. Labes, “Capillary viscometry of some lyotropic nematics,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 172, 211–215 (1989).
G. Liao, I. I. Smalyukh, J. R. Kelly, O. D. Lavrentovich, and A. Jákli, “Electrorotation of colloidal particles in liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(3), 031704 (2005).
[Crossref]
[PubMed]
I. I. Smalyukh, S. Shiyanovskii, and O. D. Lavrentovich, “Three-dimensional imaging of orientational order by fluorescence confocal polarizing microscopy,” Chem. Phys. Lett. 336(1-2), 88–96 (2001).
[Crossref]
Q. Liu, C. Beier, J. Evans, T. Lee, S. He, and I. I. Smalyukh, “Self-alignment of dye molecules in micelles and lamellae for three-dimensional imaging of lyotropic liquid crystals,” Langmuir 27(12), 7446–7452 (2011).
[Crossref]
[PubMed]
T. Lee, R. P. Trivedi, and I. I. Smalyukh, “Multimodal nonlinear optical polarizing microscopy of long-range molecular order in liquid crystals,” Opt. Lett. 35(20), 3447–3449 (2010).
[Crossref]
[PubMed]
R. P. Trivedi, T. Lee, K. A. Bertness, and I. I. Smalyukh, “Three dimensional optical manipulation and structural imaging of soft materials by use of laser tweezers and multimodal nonlinear microscopy,” Opt. Express 18(26), 27658–27669 (2010).
[Crossref]
[PubMed]
G. Liao, I. I. Smalyukh, J. R. Kelly, O. D. Lavrentovich, and A. Jákli, “Electrorotation of colloidal particles in liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(3), 031704 (2005).
[Crossref]
[PubMed]
I.-H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332(6035), 1297–1300 (2011).
[Crossref]
[PubMed]
Q. Liu, C. Beier, J. Evans, T. Lee, S. He, and I. I. Smalyukh, “Self-alignment of dye molecules in micelles and lamellae for three-dimensional imaging of lyotropic liquid crystals,” Langmuir 27(12), 7446–7452 (2011).
[Crossref]
[PubMed]
S. J. Parkin, R. Vogel, M. Persson, M. Funk, V. L. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation,” Opt. Express 17(24), 21944–21955 (2009).
[Crossref]
[PubMed]
V. L. Y. Loke, T. A. Nieminen, S. J. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “FDFD/T-matrix hybrid method,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 274–284 (2007).
[Crossref]
J. C. Loudet, P. Hanusse, and P. Poulin, “Stokes drag on a sphere in a nematic liquid crystal,” Science 306(5701), 1525 (2004).
[Crossref]
[PubMed]
F. C. MacKintosh and C. F. Schmidt, “Microrheology,” Curr. Opin. Colloid Interface Sci. 4(4), 300–307 (1999).
[Crossref]
R. Bartolino, T. Chiaranza, M. Meuti, and R. Compagnoni, “Uniaxial and biaxial lyotropic nematic liquid crystals,” Phys. Rev. A 26(2), 1116–1119 (1982).
[Crossref]
I.-H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332(6035), 1297–1300 (2011).
[Crossref]
[PubMed]
T. Thiele, J.-F. Berret, S. Müller, and C. Schmidt, “Rheology and nuclear magnetic resonance measurements under shear of sodium dodecyl sulfate/decanol/water,” J. Rheol. (N.Y.N.Y.) 45(1), 29–48 (2001).
[Crossref]
I.-H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332(6035), 1297–1300 (2011).
[Crossref]
[PubMed]
R. Vogel, M. Persson, C. Feng, S. J. Parkin, T. A. Nieminen, B. Wood, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Synthesis and surface modification of birefringent vaterite microspheres,” Langmuir 25(19), 11672–11679 (2009).
[Crossref]
[PubMed]
S. J. Parkin, R. Vogel, M. Persson, M. Funk, V. L. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation,” Opt. Express 17(24), 21944–21955 (2009).
[Crossref]
[PubMed]
V. L. Y. Loke, T. A. Nieminen, S. J. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “FDFD/T-matrix hybrid method,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 274–284 (2007).
[Crossref]
A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92(19), 198104 (2004).
[Crossref]
[PubMed]
T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical measurement of microscopic torques,” J. Mod. Opt. 48, 405–413 (2001).
M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[Crossref]
S. J. Parkin, R. Vogel, M. Persson, M. Funk, V. L. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation,” Opt. Express 17(24), 21944–21955 (2009).
[Crossref]
[PubMed]
R. Vogel, M. Persson, C. Feng, S. J. Parkin, T. A. Nieminen, B. Wood, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Synthesis and surface modification of birefringent vaterite microspheres,” Langmuir 25(19), 11672–11679 (2009).
[Crossref]
[PubMed]
V. L. Y. Loke, T. A. Nieminen, S. J. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “FDFD/T-matrix hybrid method,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 274–284 (2007).
[Crossref]
R. Vogel, M. Persson, C. Feng, S. J. Parkin, T. A. Nieminen, B. Wood, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Synthesis and surface modification of birefringent vaterite microspheres,” Langmuir 25(19), 11672–11679 (2009).
[Crossref]
[PubMed]
S. J. Parkin, R. Vogel, M. Persson, M. Funk, V. L. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation,” Opt. Express 17(24), 21944–21955 (2009).
[Crossref]
[PubMed]
J. C. Loudet, P. Hanusse, and P. Poulin, “Stokes drag on a sphere in a nematic liquid crystal,” Science 306(5701), 1525 (2004).
[Crossref]
[PubMed]
R. Vogel, M. Persson, C. Feng, S. J. Parkin, T. A. Nieminen, B. Wood, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Synthesis and surface modification of birefringent vaterite microspheres,” Langmuir 25(19), 11672–11679 (2009).
[Crossref]
[PubMed]
S. J. Parkin, R. Vogel, M. Persson, M. Funk, V. L. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation,” Opt. Express 17(24), 21944–21955 (2009).
[Crossref]
[PubMed]
V. L. Y. Loke, T. A. Nieminen, S. J. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “FDFD/T-matrix hybrid method,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 274–284 (2007).
[Crossref]
A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92(19), 198104 (2004).
[Crossref]
[PubMed]
T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical measurement of microscopic torques,” J. Mod. Opt. 48, 405–413 (2001).
M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[Crossref]
J. Sato and V. Breedveld, “Transient rheology of solvent-responsive complex fluids by integrating microrheology and microfluidics,” J. Rheol. (N.Y.N.Y.) 50(1), 1–19 (2006).
[Crossref]
L. J. Yu and A. Saupe, “Liquid crystalline phases of the sodium decylsulfate/decanol/water system. Nematic-nematic and cholesteric-cholesteric phase transitions,” J. Am. Chem. Soc. 102(15), 4879–4883 (1980).
[Crossref]
T. Thiele, J.-F. Berret, S. Müller, and C. Schmidt, “Rheology and nuclear magnetic resonance measurements under shear of sodium dodecyl sulfate/decanol/water,” J. Rheol. (N.Y.N.Y.) 45(1), 29–48 (2001).
[Crossref]
F. C. MacKintosh and C. F. Schmidt, “Microrheology,” Curr. Opin. Colloid Interface Sci. 4(4), 300–307 (1999).
[Crossref]
I. I. Smalyukh, S. Shiyanovskii, and O. D. Lavrentovich, “Three-dimensional imaging of orientational order by fluorescence confocal polarizing microscopy,” Chem. Phys. Lett. 336(1-2), 88–96 (2001).
[Crossref]
S. Sircar and Q. Wang, “Dynamics and rheology of biaxial liquid crystal polymers in shear flows,” J. Rheol. (N.Y.N.Y.) 53(4), 819–858 (2009).
[Crossref]
Q. Liu, C. Beier, J. Evans, T. Lee, S. He, and I. I. Smalyukh, “Self-alignment of dye molecules in micelles and lamellae for three-dimensional imaging of lyotropic liquid crystals,” Langmuir 27(12), 7446–7452 (2011).
[Crossref]
[PubMed]
T. Lee, R. P. Trivedi, and I. I. Smalyukh, “Multimodal nonlinear optical polarizing microscopy of long-range molecular order in liquid crystals,” Opt. Lett. 35(20), 3447–3449 (2010).
[Crossref]
[PubMed]
R. P. Trivedi, T. Lee, K. A. Bertness, and I. I. Smalyukh, “Three dimensional optical manipulation and structural imaging of soft materials by use of laser tweezers and multimodal nonlinear microscopy,” Opt. Express 18(26), 27658–27669 (2010).
[Crossref]
[PubMed]
G. Liao, I. I. Smalyukh, J. R. Kelly, O. D. Lavrentovich, and A. Jákli, “Electrorotation of colloidal particles in liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(3), 031704 (2005).
[Crossref]
[PubMed]
I. I. Smalyukh, S. Shiyanovskii, and O. D. Lavrentovich, “Three-dimensional imaging of orientational order by fluorescence confocal polarizing microscopy,” Chem. Phys. Lett. 336(1-2), 88–96 (2001).
[Crossref]
T. Thiele, J.-F. Berret, S. Müller, and C. Schmidt, “Rheology and nuclear magnetic resonance measurements under shear of sodium dodecyl sulfate/decanol/water,” J. Rheol. (N.Y.N.Y.) 45(1), 29–48 (2001).
[Crossref]
T. Lee, R. P. Trivedi, and I. I. Smalyukh, “Multimodal nonlinear optical polarizing microscopy of long-range molecular order in liquid crystals,” Opt. Lett. 35(20), 3447–3449 (2010).
[Crossref]
[PubMed]
R. P. Trivedi, T. Lee, K. A. Bertness, and I. I. Smalyukh, “Three dimensional optical manipulation and structural imaging of soft materials by use of laser tweezers and multimodal nonlinear microscopy,” Opt. Express 18(26), 27658–27669 (2010).
[Crossref]
[PubMed]
R. Vogel, M. Persson, C. Feng, S. J. Parkin, T. A. Nieminen, B. Wood, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Synthesis and surface modification of birefringent vaterite microspheres,” Langmuir 25(19), 11672–11679 (2009).
[Crossref]
[PubMed]
S. J. Parkin, R. Vogel, M. Persson, M. Funk, V. L. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation,” Opt. Express 17(24), 21944–21955 (2009).
[Crossref]
[PubMed]
S. Sircar and Q. Wang, “Dynamics and rheology of biaxial liquid crystal polymers in shear flows,” J. Rheol. (N.Y.N.Y.) 53(4), 819–858 (2009).
[Crossref]
K. F. Wissbrun, “Rheology of rod-like polymers in the liquid crystalline state,” J. Rheol. (N.Y.N.Y.) 25(6), 619–662 (1981).
[Crossref]
S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[Crossref]
[PubMed]
R. Vogel, M. Persson, C. Feng, S. J. Parkin, T. A. Nieminen, B. Wood, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Synthesis and surface modification of birefringent vaterite microspheres,” Langmuir 25(19), 11672–11679 (2009).
[Crossref]
[PubMed]
H. F. Gleeson, T. A. Wood, and M. Dickinson, “Laser manipulation in liquid crystals: an approach to microfluidics and micromachines,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 364(1847), 2789–2805 (2006).
[Crossref]
[PubMed]
L. J. Yu and A. Saupe, “Liquid crystalline phases of the sodium decylsulfate/decanol/water system. Nematic-nematic and cholesteric-cholesteric phase transitions,” J. Am. Chem. Soc. 102(15), 4879–4883 (1980).
[Crossref]
I. I. Smalyukh, S. Shiyanovskii, and O. D. Lavrentovich, “Three-dimensional imaging of orientational order by fluorescence confocal polarizing microscopy,” Chem. Phys. Lett. 336(1-2), 88–96 (2001).
[Crossref]
F. C. MacKintosh and C. F. Schmidt, “Microrheology,” Curr. Opin. Colloid Interface Sci. 4(4), 300–307 (1999).
[Crossref]
L. J. Yu and A. Saupe, “Liquid crystalline phases of the sodium decylsulfate/decanol/water system. Nematic-nematic and cholesteric-cholesteric phase transitions,” J. Am. Chem. Soc. 102(15), 4879–4883 (1980).
[Crossref]
S. Dominguez Bella and J. M. Garcia-Ruiz, “Textures in induced morphology crystal aggregates of CaCO3: sheaf of wheat morphologies,” J. Cryst. Growth 79(1-3), 236–240 (1986).
[Crossref]
T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical measurement of microscopic torques,” J. Mod. Opt. 48, 405–413 (2001).
V. L. Y. Loke, T. A. Nieminen, S. J. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “FDFD/T-matrix hybrid method,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 274–284 (2007).
[Crossref]
K. F. Wissbrun, “Rheology of rod-like polymers in the liquid crystalline state,” J. Rheol. (N.Y.N.Y.) 25(6), 619–662 (1981).
[Crossref]
S. Sircar and Q. Wang, “Dynamics and rheology of biaxial liquid crystal polymers in shear flows,” J. Rheol. (N.Y.N.Y.) 53(4), 819–858 (2009).
[Crossref]
T. Thiele, J.-F. Berret, S. Müller, and C. Schmidt, “Rheology and nuclear magnetic resonance measurements under shear of sodium dodecyl sulfate/decanol/water,” J. Rheol. (N.Y.N.Y.) 45(1), 29–48 (2001).
[Crossref]
J. Sato and V. Breedveld, “Transient rheology of solvent-responsive complex fluids by integrating microrheology and microfluidics,” J. Rheol. (N.Y.N.Y.) 50(1), 1–19 (2006).
[Crossref]
Q. Liu, C. Beier, J. Evans, T. Lee, S. He, and I. I. Smalyukh, “Self-alignment of dye molecules in micelles and lamellae for three-dimensional imaging of lyotropic liquid crystals,” Langmuir 27(12), 7446–7452 (2011).
[Crossref]
[PubMed]
R. Vogel, M. Persson, C. Feng, S. J. Parkin, T. A. Nieminen, B. Wood, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Synthesis and surface modification of birefringent vaterite microspheres,” Langmuir 25(19), 11672–11679 (2009).
[Crossref]
[PubMed]
M. Kuzman, Y. W. Hui, and M. M. Labes, “Capillary viscometry of some lyotropic nematics,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 172, 211–215 (1989).
S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[Crossref]
[PubMed]
M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[Crossref]
S. J. Parkin, R. Vogel, M. Persson, M. Funk, V. L. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation,” Opt. Express 17(24), 21944–21955 (2009).
[Crossref]
[PubMed]
R. P. Trivedi, T. Lee, K. A. Bertness, and I. I. Smalyukh, “Three dimensional optical manipulation and structural imaging of soft materials by use of laser tweezers and multimodal nonlinear microscopy,” Opt. Express 18(26), 27658–27669 (2010).
[Crossref]
[PubMed]
H. F. Gleeson, T. A. Wood, and M. Dickinson, “Laser manipulation in liquid crystals: an approach to microfluidics and micromachines,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 364(1847), 2789–2805 (2006).
[Crossref]
[PubMed]
R. Bartolino, T. Chiaranza, M. Meuti, and R. Compagnoni, “Uniaxial and biaxial lyotropic nematic liquid crystals,” Phys. Rev. A 26(2), 1116–1119 (1982).
[Crossref]
G. Liao, I. I. Smalyukh, J. R. Kelly, O. D. Lavrentovich, and A. Jákli, “Electrorotation of colloidal particles in liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(3), 031704 (2005).
[Crossref]
[PubMed]
A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92(19), 198104 (2004).
[Crossref]
[PubMed]
I.-H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332(6035), 1297–1300 (2011).
[Crossref]
[PubMed]
J. C. Loudet, P. Hanusse, and P. Poulin, “Stokes drag on a sphere in a nematic liquid crystal,” Science 306(5701), 1525 (2004).
[Crossref]
[PubMed]
A. M. Figueiredo Neto and S. R. A. Salinas, The Physics of Lyotropic Liquid Crystals (Oxford University Press, 2005).
P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, 2000).
D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, eds., Handbook of Liquid Crystals (Wiley-VCH, 1998), Vol. 2A.