Abstract

We investigate the photon flux and far-field spatial profiles for near-threshold harmonics produced with a 66 MHz femtosecond enhancement cavity-based EUV source operating in the tight-focus regime. The effects of multiple quantum pathways in the far-field spatial profile and harmonic yield show a strong dependence on gas jet dynamics, particularly nozzle diameter and position. This simple system, consisting of only a 700 mW Ti:Sapphire oscillator and an enhancement cavity produces harmonics up to 20 eV with an estimated 30–100 μW of power (intracavity) and > 1μW (measured) of power spectrally-resolved and out-coupled from the cavity. While this power is already suitable for applications, a quantum mechanical model of the system indicates substantial improvements should be possible with technical upgrades.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Lindner, W. Stremme, M. G. Schätzel, F. Grasbon, G. G. Paulus, H. Walther, R. Hartmann, and L. Strüder, “High-order harmonic generation at a repetition rate of 100 kHz,” Phys. Rev. A 68, 013814 (2003).
    [CrossRef]
  2. J. Boullet, Y. Zaouter, J. Limpert, S. Petit, Y. Mairesse, B. Fabre, J. Higuet, E. Mével, E. Constant, and E. Cormier, “High-order harmonic generation at a megahertz-level repetition rate directly driven by an ytterbium-doped-fiber chirped-pulse amplification system,” Opt. Lett. 34, 1489–1491 (2009).
    [CrossRef] [PubMed]
  3. A. Vernaleken, J. Weitenberg, T. Sartorius, P. Russbueldt, W. Schneider, S. L. Stebbings, M. F. Kling, P. Hommelhoff, H.-D. Hoffmann, R. Poprawe, F. Krausz, T. W. Hänsch, and T. Udem, “Single-pass high-harmonic generation at 20.8 MHz repetition rate,” Opt. Lett. 36, 3428–3430 (2011).
    [CrossRef] [PubMed]
  4. C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hansch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
    [CrossRef] [PubMed]
  5. A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klunder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, “Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains,” Rev. Sci. Instrum. 80, 123703 (2009).
    [CrossRef]
  6. D. Z. Kandula, C. Gohle, T. J. Pinkert, W. Ubachs, and K. S. E. Eikema, “Extreme ultraviolet frequency comb metrology,” Phys. Rev. Lett. 105, 063001 (2010).
    [CrossRef] [PubMed]
  7. A. Cingoz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” arXiv:1109.1871 (2011).
  8. R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via High-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett. 94, 193201 (2005).
    [CrossRef] [PubMed]
  9. I. Hartl, T. R. Schibli, A. Marcinkevicius, D. C. Yost, D. D. Hudson, M. E. Fermann, and J. Ye, “Cavity-enhanced similariton Yb-fiber laser frequency comb: 3x1014 W/cm2 peak intensity at 136 MHz,” Opt. Lett. 32, 2870–2872 (2007).
    [CrossRef] [PubMed]
  10. B. Bernhardt, A. Ozawa, I. Pupeza, A. Vernaleken, Y. Kobayashi, R. Holzwarth, E. Fill, F. Krausz, T. W. Hänsch, and T. Udem, “Green enhancement cavity for frequency comb generation in the extreme ultraviolet,” in Quantum Electronics and Laser Science Conference, (Optical Society of America, 2011), p. QTuF3.
  11. D. R. Carlson, J. Lee, J. Mongelli, E. M. Wright, and R. J. Jones, “Intracavity ionization and pulse formation in femtosecond enhancement cavities,” Opt. Lett. 36, 2991–2993 (2011).
    [CrossRef] [PubMed]
  12. T. K. Allison, A. Cingöz, D. C. Yost, and J. Ye, “Cavity Extreme Nonlinear Optics,” ArXiv e-prints (2011).
  13. J. A. Hostetter, J. L. Tate, K. J. Schafer, and M. B. Gaarde, “Semiclassical approaches to below-threshold harmonics,” Phys. Rev. A 82, 023401 (2010).
    [CrossRef]
  14. T. C. Briles, D. C. Yost, A. Cingöz, J. Ye, and T. R. Schibli, “Simple piezoelectric-actuated mirror with 180 kHz servo bandwidth,” Opt. Express 18, 9739–9746 (2010).
    [CrossRef] [PubMed]
  15. D. C. Yost, T. R. Schibli, and J. Ye, “Efficient output coupling of intracavity high-harmonic generation,” Opt. Lett. 33, 1099–1101 (2008).
    [CrossRef] [PubMed]
  16. P. Salières, A. L’Huillier, P. Antoine, and M. Lewenstein, “Study of the spatial and temporal coherence of high-order harmonics,” in Advances In Atomic, Molecular, and Optical Physics (1999), Vol.  41, pp. 83–142.
    [CrossRef]
  17. J. H. Eberly, Q. Su, and J. Javanainen, “High-order harmonic production in multiphoton ionization,” J. Opt. Soc. Am. B 6, 1289–1298 (1989).
    [CrossRef]
  18. S. Rae, X. Chen, and K. Burnett, “Saturation of harmonic generation in one- and three-dimensional atoms,” Phys. Rev. A 50, 1946–1949 (1994).
    [CrossRef] [PubMed]
  19. M. B. Gaarde, F. Salin, E. Constant, P. Balcou, K. J. Schafer, K. C. Kulander, and A. L’Huillier, “Spatiotemporal separation of high harmonic radiation into two quantum path components,” Phys. Rev. A 59, 1367–1373 (1999).
    [CrossRef]
  20. A. Anders, “Recombination of a Xenon Plasma Jet,” Contrib. Plasma Phys. 27, 373–398 (1987).
  21. G. L. Yudin and M. Y. Ivanov, “Nonadiabatic tunnel ionization: Looking inside a laser cycle,” Phys. Rev. A 64, 013409 (2001).
    [CrossRef]
  22. http://openfoamwiki.net/index.php/TestLucaG .
  23. M. Chen, M. R. Gerrity, S. Backus, T. Popmintchev, X. Zhou, P. Arpin, X. Zhang, H. C. Kapteyn, and M. M. Murnane, “Spatially coherent, phase matched, high-order harmonic EUV beams at 50 kHz,” Opt. Express 17, 17376–17383 (2009).
    [CrossRef] [PubMed]
  24. P. Balcou, P. Salières, A. L’Huillier, and M. Lewenstein, “Generalized phase-matching conditions for high harmonics: The role of field-gradient forces,” Phys. Rev. A 55, 3204–3210 (1997).
    [CrossRef]
  25. http://www.pcgrate.com .
  26. D. C. Yost, T. R. Schibli, J. Ye, J. L. Tate, J. Hostetter, M. B. Gaarde, and K. J. Schafer, “Vacuum-ultraviolet frequency combs from below-threshold harmonics,” Nat. Phys. 5, 815–820 (2009).
    [CrossRef]

2011 (2)

2010 (3)

T. C. Briles, D. C. Yost, A. Cingöz, J. Ye, and T. R. Schibli, “Simple piezoelectric-actuated mirror with 180 kHz servo bandwidth,” Opt. Express 18, 9739–9746 (2010).
[CrossRef] [PubMed]

D. Z. Kandula, C. Gohle, T. J. Pinkert, W. Ubachs, and K. S. E. Eikema, “Extreme ultraviolet frequency comb metrology,” Phys. Rev. Lett. 105, 063001 (2010).
[CrossRef] [PubMed]

J. A. Hostetter, J. L. Tate, K. J. Schafer, and M. B. Gaarde, “Semiclassical approaches to below-threshold harmonics,” Phys. Rev. A 82, 023401 (2010).
[CrossRef]

2009 (4)

A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klunder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, “Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains,” Rev. Sci. Instrum. 80, 123703 (2009).
[CrossRef]

D. C. Yost, T. R. Schibli, J. Ye, J. L. Tate, J. Hostetter, M. B. Gaarde, and K. J. Schafer, “Vacuum-ultraviolet frequency combs from below-threshold harmonics,” Nat. Phys. 5, 815–820 (2009).
[CrossRef]

J. Boullet, Y. Zaouter, J. Limpert, S. Petit, Y. Mairesse, B. Fabre, J. Higuet, E. Mével, E. Constant, and E. Cormier, “High-order harmonic generation at a megahertz-level repetition rate directly driven by an ytterbium-doped-fiber chirped-pulse amplification system,” Opt. Lett. 34, 1489–1491 (2009).
[CrossRef] [PubMed]

M. Chen, M. R. Gerrity, S. Backus, T. Popmintchev, X. Zhou, P. Arpin, X. Zhang, H. C. Kapteyn, and M. M. Murnane, “Spatially coherent, phase matched, high-order harmonic EUV beams at 50 kHz,” Opt. Express 17, 17376–17383 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (1)

2005 (2)

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hansch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[CrossRef] [PubMed]

R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via High-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett. 94, 193201 (2005).
[CrossRef] [PubMed]

2003 (1)

F. Lindner, W. Stremme, M. G. Schätzel, F. Grasbon, G. G. Paulus, H. Walther, R. Hartmann, and L. Strüder, “High-order harmonic generation at a repetition rate of 100 kHz,” Phys. Rev. A 68, 013814 (2003).
[CrossRef]

2001 (1)

G. L. Yudin and M. Y. Ivanov, “Nonadiabatic tunnel ionization: Looking inside a laser cycle,” Phys. Rev. A 64, 013409 (2001).
[CrossRef]

1999 (2)

P. Salières, A. L’Huillier, P. Antoine, and M. Lewenstein, “Study of the spatial and temporal coherence of high-order harmonics,” in Advances In Atomic, Molecular, and Optical Physics (1999), Vol.  41, pp. 83–142.
[CrossRef]

M. B. Gaarde, F. Salin, E. Constant, P. Balcou, K. J. Schafer, K. C. Kulander, and A. L’Huillier, “Spatiotemporal separation of high harmonic radiation into two quantum path components,” Phys. Rev. A 59, 1367–1373 (1999).
[CrossRef]

1997 (1)

P. Balcou, P. Salières, A. L’Huillier, and M. Lewenstein, “Generalized phase-matching conditions for high harmonics: The role of field-gradient forces,” Phys. Rev. A 55, 3204–3210 (1997).
[CrossRef]

1994 (1)

S. Rae, X. Chen, and K. Burnett, “Saturation of harmonic generation in one- and three-dimensional atoms,” Phys. Rev. A 50, 1946–1949 (1994).
[CrossRef] [PubMed]

1989 (1)

1987 (1)

A. Anders, “Recombination of a Xenon Plasma Jet,” Contrib. Plasma Phys. 27, 373–398 (1987).

Allison, T. K.

T. K. Allison, A. Cingöz, D. C. Yost, and J. Ye, “Cavity Extreme Nonlinear Optics,” ArXiv e-prints (2011).

A. Cingoz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” arXiv:1109.1871 (2011).

Anders, A.

A. Anders, “Recombination of a Xenon Plasma Jet,” Contrib. Plasma Phys. 27, 373–398 (1987).

Andersen, J. N.

A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klunder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, “Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains,” Rev. Sci. Instrum. 80, 123703 (2009).
[CrossRef]

Antoine, P.

P. Salières, A. L’Huillier, P. Antoine, and M. Lewenstein, “Study of the spatial and temporal coherence of high-order harmonics,” in Advances In Atomic, Molecular, and Optical Physics (1999), Vol.  41, pp. 83–142.
[CrossRef]

Anttu, N.

A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klunder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, “Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains,” Rev. Sci. Instrum. 80, 123703 (2009).
[CrossRef]

Arpin, P.

Backus, S.

Balcou, P.

M. B. Gaarde, F. Salin, E. Constant, P. Balcou, K. J. Schafer, K. C. Kulander, and A. L’Huillier, “Spatiotemporal separation of high harmonic radiation into two quantum path components,” Phys. Rev. A 59, 1367–1373 (1999).
[CrossRef]

P. Balcou, P. Salières, A. L’Huillier, and M. Lewenstein, “Generalized phase-matching conditions for high harmonics: The role of field-gradient forces,” Phys. Rev. A 55, 3204–3210 (1997).
[CrossRef]

Bernhardt, B.

B. Bernhardt, A. Ozawa, I. Pupeza, A. Vernaleken, Y. Kobayashi, R. Holzwarth, E. Fill, F. Krausz, T. W. Hänsch, and T. Udem, “Green enhancement cavity for frequency comb generation in the extreme ultraviolet,” in Quantum Electronics and Laser Science Conference, (Optical Society of America, 2011), p. QTuF3.

Boullet, J.

Briles, T. C.

Burnett, K.

S. Rae, X. Chen, and K. Burnett, “Saturation of harmonic generation in one- and three-dimensional atoms,” Phys. Rev. A 50, 1946–1949 (1994).
[CrossRef] [PubMed]

Carlson, D. R.

Chen, M.

Chen, X.

S. Rae, X. Chen, and K. Burnett, “Saturation of harmonic generation in one- and three-dimensional atoms,” Phys. Rev. A 50, 1946–1949 (1994).
[CrossRef] [PubMed]

Cingoz, A.

A. Cingoz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” arXiv:1109.1871 (2011).

Cingöz, A.

Constant, E.

J. Boullet, Y. Zaouter, J. Limpert, S. Petit, Y. Mairesse, B. Fabre, J. Higuet, E. Mével, E. Constant, and E. Cormier, “High-order harmonic generation at a megahertz-level repetition rate directly driven by an ytterbium-doped-fiber chirped-pulse amplification system,” Opt. Lett. 34, 1489–1491 (2009).
[CrossRef] [PubMed]

M. B. Gaarde, F. Salin, E. Constant, P. Balcou, K. J. Schafer, K. C. Kulander, and A. L’Huillier, “Spatiotemporal separation of high harmonic radiation into two quantum path components,” Phys. Rev. A 59, 1367–1373 (1999).
[CrossRef]

Cormier, E.

Eberly, J. H.

Eikema, K. S. E.

D. Z. Kandula, C. Gohle, T. J. Pinkert, W. Ubachs, and K. S. E. Eikema, “Extreme ultraviolet frequency comb metrology,” Phys. Rev. Lett. 105, 063001 (2010).
[CrossRef] [PubMed]

Fabre, B.

Fermann, M. E.

I. Hartl, T. R. Schibli, A. Marcinkevicius, D. C. Yost, D. D. Hudson, M. E. Fermann, and J. Ye, “Cavity-enhanced similariton Yb-fiber laser frequency comb: 3x1014 W/cm2 peak intensity at 136 MHz,” Opt. Lett. 32, 2870–2872 (2007).
[CrossRef] [PubMed]

A. Cingoz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” arXiv:1109.1871 (2011).

Fill, E.

B. Bernhardt, A. Ozawa, I. Pupeza, A. Vernaleken, Y. Kobayashi, R. Holzwarth, E. Fill, F. Krausz, T. W. Hänsch, and T. Udem, “Green enhancement cavity for frequency comb generation in the extreme ultraviolet,” in Quantum Electronics and Laser Science Conference, (Optical Society of America, 2011), p. QTuF3.

Fordell, T.

A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klunder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, “Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains,” Rev. Sci. Instrum. 80, 123703 (2009).
[CrossRef]

Gaarde, M. B.

J. A. Hostetter, J. L. Tate, K. J. Schafer, and M. B. Gaarde, “Semiclassical approaches to below-threshold harmonics,” Phys. Rev. A 82, 023401 (2010).
[CrossRef]

D. C. Yost, T. R. Schibli, J. Ye, J. L. Tate, J. Hostetter, M. B. Gaarde, and K. J. Schafer, “Vacuum-ultraviolet frequency combs from below-threshold harmonics,” Nat. Phys. 5, 815–820 (2009).
[CrossRef]

M. B. Gaarde, F. Salin, E. Constant, P. Balcou, K. J. Schafer, K. C. Kulander, and A. L’Huillier, “Spatiotemporal separation of high harmonic radiation into two quantum path components,” Phys. Rev. A 59, 1367–1373 (1999).
[CrossRef]

Gerrity, M. R.

Gohle, C.

D. Z. Kandula, C. Gohle, T. J. Pinkert, W. Ubachs, and K. S. E. Eikema, “Extreme ultraviolet frequency comb metrology,” Phys. Rev. Lett. 105, 063001 (2010).
[CrossRef] [PubMed]

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hansch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[CrossRef] [PubMed]

Grasbon, F.

F. Lindner, W. Stremme, M. G. Schätzel, F. Grasbon, G. G. Paulus, H. Walther, R. Hartmann, and L. Strüder, “High-order harmonic generation at a repetition rate of 100 kHz,” Phys. Rev. A 68, 013814 (2003).
[CrossRef]

Hansch, T. W.

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hansch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[CrossRef] [PubMed]

Hänsch, T. W.

A. Vernaleken, J. Weitenberg, T. Sartorius, P. Russbueldt, W. Schneider, S. L. Stebbings, M. F. Kling, P. Hommelhoff, H.-D. Hoffmann, R. Poprawe, F. Krausz, T. W. Hänsch, and T. Udem, “Single-pass high-harmonic generation at 20.8 MHz repetition rate,” Opt. Lett. 36, 3428–3430 (2011).
[CrossRef] [PubMed]

B. Bernhardt, A. Ozawa, I. Pupeza, A. Vernaleken, Y. Kobayashi, R. Holzwarth, E. Fill, F. Krausz, T. W. Hänsch, and T. Udem, “Green enhancement cavity for frequency comb generation in the extreme ultraviolet,” in Quantum Electronics and Laser Science Conference, (Optical Society of America, 2011), p. QTuF3.

Hartl, I.

I. Hartl, T. R. Schibli, A. Marcinkevicius, D. C. Yost, D. D. Hudson, M. E. Fermann, and J. Ye, “Cavity-enhanced similariton Yb-fiber laser frequency comb: 3x1014 W/cm2 peak intensity at 136 MHz,” Opt. Lett. 32, 2870–2872 (2007).
[CrossRef] [PubMed]

A. Cingoz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” arXiv:1109.1871 (2011).

Hartmann, R.

F. Lindner, W. Stremme, M. G. Schätzel, F. Grasbon, G. G. Paulus, H. Walther, R. Hartmann, and L. Strüder, “High-order harmonic generation at a repetition rate of 100 kHz,” Phys. Rev. A 68, 013814 (2003).
[CrossRef]

Herrmann, M.

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hansch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[CrossRef] [PubMed]

Higuet, J.

Hilner, E.

A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klunder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, “Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains,” Rev. Sci. Instrum. 80, 123703 (2009).
[CrossRef]

Hoffmann, H.-D.

Holzwarth, R.

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hansch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[CrossRef] [PubMed]

B. Bernhardt, A. Ozawa, I. Pupeza, A. Vernaleken, Y. Kobayashi, R. Holzwarth, E. Fill, F. Krausz, T. W. Hänsch, and T. Udem, “Green enhancement cavity for frequency comb generation in the extreme ultraviolet,” in Quantum Electronics and Laser Science Conference, (Optical Society of America, 2011), p. QTuF3.

Hommelhoff, P.

Hostetter, J.

D. C. Yost, T. R. Schibli, J. Ye, J. L. Tate, J. Hostetter, M. B. Gaarde, and K. J. Schafer, “Vacuum-ultraviolet frequency combs from below-threshold harmonics,” Nat. Phys. 5, 815–820 (2009).
[CrossRef]

Hostetter, J. A.

J. A. Hostetter, J. L. Tate, K. J. Schafer, and M. B. Gaarde, “Semiclassical approaches to below-threshold harmonics,” Phys. Rev. A 82, 023401 (2010).
[CrossRef]

Hudson, D. D.

Ivanov, M. Y.

G. L. Yudin and M. Y. Ivanov, “Nonadiabatic tunnel ionization: Looking inside a laser cycle,” Phys. Rev. A 64, 013409 (2001).
[CrossRef]

Javanainen, J.

Jones, R. J.

D. R. Carlson, J. Lee, J. Mongelli, E. M. Wright, and R. J. Jones, “Intracavity ionization and pulse formation in femtosecond enhancement cavities,” Opt. Lett. 36, 2991–2993 (2011).
[CrossRef] [PubMed]

R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via High-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett. 94, 193201 (2005).
[CrossRef] [PubMed]

Kandula, D. Z.

D. Z. Kandula, C. Gohle, T. J. Pinkert, W. Ubachs, and K. S. E. Eikema, “Extreme ultraviolet frequency comb metrology,” Phys. Rev. Lett. 105, 063001 (2010).
[CrossRef] [PubMed]

Kapteyn, H. C.

Kling, M. F.

Klunder, K.

A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klunder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, “Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains,” Rev. Sci. Instrum. 80, 123703 (2009).
[CrossRef]

Kobayashi, Y.

B. Bernhardt, A. Ozawa, I. Pupeza, A. Vernaleken, Y. Kobayashi, R. Holzwarth, E. Fill, F. Krausz, T. W. Hänsch, and T. Udem, “Green enhancement cavity for frequency comb generation in the extreme ultraviolet,” in Quantum Electronics and Laser Science Conference, (Optical Society of America, 2011), p. QTuF3.

Krausz, F.

A. Vernaleken, J. Weitenberg, T. Sartorius, P. Russbueldt, W. Schneider, S. L. Stebbings, M. F. Kling, P. Hommelhoff, H.-D. Hoffmann, R. Poprawe, F. Krausz, T. W. Hänsch, and T. Udem, “Single-pass high-harmonic generation at 20.8 MHz repetition rate,” Opt. Lett. 36, 3428–3430 (2011).
[CrossRef] [PubMed]

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hansch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[CrossRef] [PubMed]

B. Bernhardt, A. Ozawa, I. Pupeza, A. Vernaleken, Y. Kobayashi, R. Holzwarth, E. Fill, F. Krausz, T. W. Hänsch, and T. Udem, “Green enhancement cavity for frequency comb generation in the extreme ultraviolet,” in Quantum Electronics and Laser Science Conference, (Optical Society of America, 2011), p. QTuF3.

Kulander, K. C.

M. B. Gaarde, F. Salin, E. Constant, P. Balcou, K. J. Schafer, K. C. Kulander, and A. L’Huillier, “Spatiotemporal separation of high harmonic radiation into two quantum path components,” Phys. Rev. A 59, 1367–1373 (1999).
[CrossRef]

L’Huillier, A.

A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klunder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, “Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains,” Rev. Sci. Instrum. 80, 123703 (2009).
[CrossRef]

P. Salières, A. L’Huillier, P. Antoine, and M. Lewenstein, “Study of the spatial and temporal coherence of high-order harmonics,” in Advances In Atomic, Molecular, and Optical Physics (1999), Vol.  41, pp. 83–142.
[CrossRef]

M. B. Gaarde, F. Salin, E. Constant, P. Balcou, K. J. Schafer, K. C. Kulander, and A. L’Huillier, “Spatiotemporal separation of high harmonic radiation into two quantum path components,” Phys. Rev. A 59, 1367–1373 (1999).
[CrossRef]

P. Balcou, P. Salières, A. L’Huillier, and M. Lewenstein, “Generalized phase-matching conditions for high harmonics: The role of field-gradient forces,” Phys. Rev. A 55, 3204–3210 (1997).
[CrossRef]

Lee, J.

Lewenstein, M.

P. Salières, A. L’Huillier, P. Antoine, and M. Lewenstein, “Study of the spatial and temporal coherence of high-order harmonics,” in Advances In Atomic, Molecular, and Optical Physics (1999), Vol.  41, pp. 83–142.
[CrossRef]

P. Balcou, P. Salières, A. L’Huillier, and M. Lewenstein, “Generalized phase-matching conditions for high harmonics: The role of field-gradient forces,” Phys. Rev. A 55, 3204–3210 (1997).
[CrossRef]

Limpert, J.

Lindner, F.

F. Lindner, W. Stremme, M. G. Schätzel, F. Grasbon, G. G. Paulus, H. Walther, R. Hartmann, and L. Strüder, “High-order harmonic generation at a repetition rate of 100 kHz,” Phys. Rev. A 68, 013814 (2003).
[CrossRef]

Lundgren, E.

A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klunder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, “Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains,” Rev. Sci. Instrum. 80, 123703 (2009).
[CrossRef]

Luo, G.

A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klunder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, “Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains,” Rev. Sci. Instrum. 80, 123703 (2009).
[CrossRef]

Mairesse, Y.

Marcinkevicius, A.

Mauritsson, J.

A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klunder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, “Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains,” Rev. Sci. Instrum. 80, 123703 (2009).
[CrossRef]

Mével, E.

Mikkelsen, A.

A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klunder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, “Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains,” Rev. Sci. Instrum. 80, 123703 (2009).
[CrossRef]

Moll, K. D.

R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via High-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett. 94, 193201 (2005).
[CrossRef] [PubMed]

Mongelli, J.

Murnane, M. M.

Ozawa, A.

B. Bernhardt, A. Ozawa, I. Pupeza, A. Vernaleken, Y. Kobayashi, R. Holzwarth, E. Fill, F. Krausz, T. W. Hänsch, and T. Udem, “Green enhancement cavity for frequency comb generation in the extreme ultraviolet,” in Quantum Electronics and Laser Science Conference, (Optical Society of America, 2011), p. QTuF3.

Paulus, G. G.

F. Lindner, W. Stremme, M. G. Schätzel, F. Grasbon, G. G. Paulus, H. Walther, R. Hartmann, and L. Strüder, “High-order harmonic generation at a repetition rate of 100 kHz,” Phys. Rev. A 68, 013814 (2003).
[CrossRef]

Petit, S.

Pinkert, T. J.

D. Z. Kandula, C. Gohle, T. J. Pinkert, W. Ubachs, and K. S. E. Eikema, “Extreme ultraviolet frequency comb metrology,” Phys. Rev. Lett. 105, 063001 (2010).
[CrossRef] [PubMed]

Popmintchev, T.

Poprawe, R.

Pupeza, I.

B. Bernhardt, A. Ozawa, I. Pupeza, A. Vernaleken, Y. Kobayashi, R. Holzwarth, E. Fill, F. Krausz, T. W. Hänsch, and T. Udem, “Green enhancement cavity for frequency comb generation in the extreme ultraviolet,” in Quantum Electronics and Laser Science Conference, (Optical Society of America, 2011), p. QTuF3.

Rae, S.

S. Rae, X. Chen, and K. Burnett, “Saturation of harmonic generation in one- and three-dimensional atoms,” Phys. Rev. A 50, 1946–1949 (1994).
[CrossRef] [PubMed]

Rauschenberger, J.

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hansch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[CrossRef] [PubMed]

Ruehl, A.

A. Cingoz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” arXiv:1109.1871 (2011).

Russbueldt, P.

Salières, P.

P. Salières, A. L’Huillier, P. Antoine, and M. Lewenstein, “Study of the spatial and temporal coherence of high-order harmonics,” in Advances In Atomic, Molecular, and Optical Physics (1999), Vol.  41, pp. 83–142.
[CrossRef]

P. Balcou, P. Salières, A. L’Huillier, and M. Lewenstein, “Generalized phase-matching conditions for high harmonics: The role of field-gradient forces,” Phys. Rev. A 55, 3204–3210 (1997).
[CrossRef]

Salin, F.

M. B. Gaarde, F. Salin, E. Constant, P. Balcou, K. J. Schafer, K. C. Kulander, and A. L’Huillier, “Spatiotemporal separation of high harmonic radiation into two quantum path components,” Phys. Rev. A 59, 1367–1373 (1999).
[CrossRef]

Sartorius, T.

Schafer, K. J.

J. A. Hostetter, J. L. Tate, K. J. Schafer, and M. B. Gaarde, “Semiclassical approaches to below-threshold harmonics,” Phys. Rev. A 82, 023401 (2010).
[CrossRef]

D. C. Yost, T. R. Schibli, J. Ye, J. L. Tate, J. Hostetter, M. B. Gaarde, and K. J. Schafer, “Vacuum-ultraviolet frequency combs from below-threshold harmonics,” Nat. Phys. 5, 815–820 (2009).
[CrossRef]

M. B. Gaarde, F. Salin, E. Constant, P. Balcou, K. J. Schafer, K. C. Kulander, and A. L’Huillier, “Spatiotemporal separation of high harmonic radiation into two quantum path components,” Phys. Rev. A 59, 1367–1373 (1999).
[CrossRef]

Schätzel, M. G.

F. Lindner, W. Stremme, M. G. Schätzel, F. Grasbon, G. G. Paulus, H. Walther, R. Hartmann, and L. Strüder, “High-order harmonic generation at a repetition rate of 100 kHz,” Phys. Rev. A 68, 013814 (2003).
[CrossRef]

Schibli, T. R.

Schneider, W.

Schuessler, H. A.

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hansch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[CrossRef] [PubMed]

Schwenke, J.

A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klunder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, “Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains,” Rev. Sci. Instrum. 80, 123703 (2009).
[CrossRef]

Stebbings, S. L.

Stremme, W.

F. Lindner, W. Stremme, M. G. Schätzel, F. Grasbon, G. G. Paulus, H. Walther, R. Hartmann, and L. Strüder, “High-order harmonic generation at a repetition rate of 100 kHz,” Phys. Rev. A 68, 013814 (2003).
[CrossRef]

Strüder, L.

F. Lindner, W. Stremme, M. G. Schätzel, F. Grasbon, G. G. Paulus, H. Walther, R. Hartmann, and L. Strüder, “High-order harmonic generation at a repetition rate of 100 kHz,” Phys. Rev. A 68, 013814 (2003).
[CrossRef]

Su, Q.

Tate, J. L.

J. A. Hostetter, J. L. Tate, K. J. Schafer, and M. B. Gaarde, “Semiclassical approaches to below-threshold harmonics,” Phys. Rev. A 82, 023401 (2010).
[CrossRef]

D. C. Yost, T. R. Schibli, J. Ye, J. L. Tate, J. Hostetter, M. B. Gaarde, and K. J. Schafer, “Vacuum-ultraviolet frequency combs from below-threshold harmonics,” Nat. Phys. 5, 815–820 (2009).
[CrossRef]

Thorpe, M. J.

R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via High-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett. 94, 193201 (2005).
[CrossRef] [PubMed]

Ubachs, W.

D. Z. Kandula, C. Gohle, T. J. Pinkert, W. Ubachs, and K. S. E. Eikema, “Extreme ultraviolet frequency comb metrology,” Phys. Rev. Lett. 105, 063001 (2010).
[CrossRef] [PubMed]

Udem, T.

A. Vernaleken, J. Weitenberg, T. Sartorius, P. Russbueldt, W. Schneider, S. L. Stebbings, M. F. Kling, P. Hommelhoff, H.-D. Hoffmann, R. Poprawe, F. Krausz, T. W. Hänsch, and T. Udem, “Single-pass high-harmonic generation at 20.8 MHz repetition rate,” Opt. Lett. 36, 3428–3430 (2011).
[CrossRef] [PubMed]

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hansch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[CrossRef] [PubMed]

B. Bernhardt, A. Ozawa, I. Pupeza, A. Vernaleken, Y. Kobayashi, R. Holzwarth, E. Fill, F. Krausz, T. W. Hänsch, and T. Udem, “Green enhancement cavity for frequency comb generation in the extreme ultraviolet,” in Quantum Electronics and Laser Science Conference, (Optical Society of America, 2011), p. QTuF3.

Vernaleken, A.

A. Vernaleken, J. Weitenberg, T. Sartorius, P. Russbueldt, W. Schneider, S. L. Stebbings, M. F. Kling, P. Hommelhoff, H.-D. Hoffmann, R. Poprawe, F. Krausz, T. W. Hänsch, and T. Udem, “Single-pass high-harmonic generation at 20.8 MHz repetition rate,” Opt. Lett. 36, 3428–3430 (2011).
[CrossRef] [PubMed]

B. Bernhardt, A. Ozawa, I. Pupeza, A. Vernaleken, Y. Kobayashi, R. Holzwarth, E. Fill, F. Krausz, T. W. Hänsch, and T. Udem, “Green enhancement cavity for frequency comb generation in the extreme ultraviolet,” in Quantum Electronics and Laser Science Conference, (Optical Society of America, 2011), p. QTuF3.

Walther, H.

F. Lindner, W. Stremme, M. G. Schätzel, F. Grasbon, G. G. Paulus, H. Walther, R. Hartmann, and L. Strüder, “High-order harmonic generation at a repetition rate of 100 kHz,” Phys. Rev. A 68, 013814 (2003).
[CrossRef]

Weitenberg, J.

Wright, E. M.

Xu, H. Q.

A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klunder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, “Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains,” Rev. Sci. Instrum. 80, 123703 (2009).
[CrossRef]

Ye, J.

T. C. Briles, D. C. Yost, A. Cingöz, J. Ye, and T. R. Schibli, “Simple piezoelectric-actuated mirror with 180 kHz servo bandwidth,” Opt. Express 18, 9739–9746 (2010).
[CrossRef] [PubMed]

D. C. Yost, T. R. Schibli, J. Ye, J. L. Tate, J. Hostetter, M. B. Gaarde, and K. J. Schafer, “Vacuum-ultraviolet frequency combs from below-threshold harmonics,” Nat. Phys. 5, 815–820 (2009).
[CrossRef]

D. C. Yost, T. R. Schibli, and J. Ye, “Efficient output coupling of intracavity high-harmonic generation,” Opt. Lett. 33, 1099–1101 (2008).
[CrossRef] [PubMed]

I. Hartl, T. R. Schibli, A. Marcinkevicius, D. C. Yost, D. D. Hudson, M. E. Fermann, and J. Ye, “Cavity-enhanced similariton Yb-fiber laser frequency comb: 3x1014 W/cm2 peak intensity at 136 MHz,” Opt. Lett. 32, 2870–2872 (2007).
[CrossRef] [PubMed]

R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via High-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett. 94, 193201 (2005).
[CrossRef] [PubMed]

T. K. Allison, A. Cingöz, D. C. Yost, and J. Ye, “Cavity Extreme Nonlinear Optics,” ArXiv e-prints (2011).

A. Cingoz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” arXiv:1109.1871 (2011).

Yost, D. C.

T. C. Briles, D. C. Yost, A. Cingöz, J. Ye, and T. R. Schibli, “Simple piezoelectric-actuated mirror with 180 kHz servo bandwidth,” Opt. Express 18, 9739–9746 (2010).
[CrossRef] [PubMed]

D. C. Yost, T. R. Schibli, J. Ye, J. L. Tate, J. Hostetter, M. B. Gaarde, and K. J. Schafer, “Vacuum-ultraviolet frequency combs from below-threshold harmonics,” Nat. Phys. 5, 815–820 (2009).
[CrossRef]

D. C. Yost, T. R. Schibli, and J. Ye, “Efficient output coupling of intracavity high-harmonic generation,” Opt. Lett. 33, 1099–1101 (2008).
[CrossRef] [PubMed]

I. Hartl, T. R. Schibli, A. Marcinkevicius, D. C. Yost, D. D. Hudson, M. E. Fermann, and J. Ye, “Cavity-enhanced similariton Yb-fiber laser frequency comb: 3x1014 W/cm2 peak intensity at 136 MHz,” Opt. Lett. 32, 2870–2872 (2007).
[CrossRef] [PubMed]

T. K. Allison, A. Cingöz, D. C. Yost, and J. Ye, “Cavity Extreme Nonlinear Optics,” ArXiv e-prints (2011).

A. Cingoz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” arXiv:1109.1871 (2011).

Yudin, G. L.

G. L. Yudin and M. Y. Ivanov, “Nonadiabatic tunnel ionization: Looking inside a laser cycle,” Phys. Rev. A 64, 013409 (2001).
[CrossRef]

Zakharov, A. A.

A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klunder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, “Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains,” Rev. Sci. Instrum. 80, 123703 (2009).
[CrossRef]

Zaouter, Y.

Zhang, X.

Zhou, X.

Advances In Atomic, Molecular, and Optical Physics (1)

P. Salières, A. L’Huillier, P. Antoine, and M. Lewenstein, “Study of the spatial and temporal coherence of high-order harmonics,” in Advances In Atomic, Molecular, and Optical Physics (1999), Vol.  41, pp. 83–142.
[CrossRef]

Contrib. Plasma Phys. (1)

A. Anders, “Recombination of a Xenon Plasma Jet,” Contrib. Plasma Phys. 27, 373–398 (1987).

J. Opt. Soc. Am. B (1)

Nat. Phys. (1)

D. C. Yost, T. R. Schibli, J. Ye, J. L. Tate, J. Hostetter, M. B. Gaarde, and K. J. Schafer, “Vacuum-ultraviolet frequency combs from below-threshold harmonics,” Nat. Phys. 5, 815–820 (2009).
[CrossRef]

Nature (1)

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hansch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (5)

Phys. Rev. A (6)

G. L. Yudin and M. Y. Ivanov, “Nonadiabatic tunnel ionization: Looking inside a laser cycle,” Phys. Rev. A 64, 013409 (2001).
[CrossRef]

S. Rae, X. Chen, and K. Burnett, “Saturation of harmonic generation in one- and three-dimensional atoms,” Phys. Rev. A 50, 1946–1949 (1994).
[CrossRef] [PubMed]

M. B. Gaarde, F. Salin, E. Constant, P. Balcou, K. J. Schafer, K. C. Kulander, and A. L’Huillier, “Spatiotemporal separation of high harmonic radiation into two quantum path components,” Phys. Rev. A 59, 1367–1373 (1999).
[CrossRef]

F. Lindner, W. Stremme, M. G. Schätzel, F. Grasbon, G. G. Paulus, H. Walther, R. Hartmann, and L. Strüder, “High-order harmonic generation at a repetition rate of 100 kHz,” Phys. Rev. A 68, 013814 (2003).
[CrossRef]

J. A. Hostetter, J. L. Tate, K. J. Schafer, and M. B. Gaarde, “Semiclassical approaches to below-threshold harmonics,” Phys. Rev. A 82, 023401 (2010).
[CrossRef]

P. Balcou, P. Salières, A. L’Huillier, and M. Lewenstein, “Generalized phase-matching conditions for high harmonics: The role of field-gradient forces,” Phys. Rev. A 55, 3204–3210 (1997).
[CrossRef]

Phys. Rev. Lett. (2)

R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via High-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett. 94, 193201 (2005).
[CrossRef] [PubMed]

D. Z. Kandula, C. Gohle, T. J. Pinkert, W. Ubachs, and K. S. E. Eikema, “Extreme ultraviolet frequency comb metrology,” Phys. Rev. Lett. 105, 063001 (2010).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klunder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, “Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains,” Rev. Sci. Instrum. 80, 123703 (2009).
[CrossRef]

Other (5)

A. Cingoz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” arXiv:1109.1871 (2011).

B. Bernhardt, A. Ozawa, I. Pupeza, A. Vernaleken, Y. Kobayashi, R. Holzwarth, E. Fill, F. Krausz, T. W. Hänsch, and T. Udem, “Green enhancement cavity for frequency comb generation in the extreme ultraviolet,” in Quantum Electronics and Laser Science Conference, (Optical Society of America, 2011), p. QTuF3.

T. K. Allison, A. Cingöz, D. C. Yost, and J. Ye, “Cavity Extreme Nonlinear Optics,” ArXiv e-prints (2011).

http://openfoamwiki.net/index.php/TestLucaG .

http://www.pcgrate.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(color online) Configuration of femtosecond enhancement cavity. A signal detected by PD1 and subsequently demodulated provides an error signal for a modified Pound-Drever-Hall scheme to lock the cavity’s free spectral range to the seed laser’s pulse repetition rate. The error signal derived from PD2 is used to lock the carrier envelope offset frequencies of the laser and cavity. EUV harmonics generated in the Xe jet are coupled out of the cavity via a grating (200-nm period) written in the grating mirror (GM). IC, input coupler; PZT, piezo-electric transducer; PD, photo-diode; Xe, Xenon gas jet.

Fig. 2
Fig. 2

(color online) Image series of 8-second exposures showing the evolution of spatial profiles of harmonics H7–H13 (top to bottom) for different gas nozzle positions near the focus (approximate location of focus indicated with red line). Each image represents approximately 150 μm translation of the nozzle in the direction of laser propagation (left to right). The profiles show a bright central component (saturated in these images) and a broad, diffuse beam, which have been attributed to multiple generation pathways for the harmonics. The different generation pathways have distinct spatial phase matching conditions within the fundamental laser field, and therefore yield different far-field spatial profiles.

Fig. 3
Fig. 3

(color online) Spatial dependence of gas density (ρ) for a set of nozzle diameters ranging from 50–500 μm. The upper left panel shows the 2-D density distribution of gas emerging from a 500 μm nozzle, and the approximate position of the laser field is indicated with the dashed white line.The opening of the gas nozzle is located at x = 0 and centered at z = 0 and the units of the color bar are density (1018cm−3) The lower left panel displays ρ along the optical axis (z coordinate) at a vertical distance (x coordinate) of 150 μm below the gas nozzle at a backing pressure of 100 Torr for a number of nozzle sizes. Increasing the backing pressure will proportionally increase the density as we are operating in the choked flow regime. The lower right panel displays the decrease in ρ in the vertical direction from end of nozzle tip (x coordinate) toward the optical axis, and the laser position is indicated with the vertical dotted line. The upper right panel defines the x,z coordinates.

Fig. 4
Fig. 4

(color online) Theoretical calculations of harmonics plotted with experimental data showing total power of harmonics H7–H13 as a function of gas nozzle position relative to the focus, at an intensity of 3×1013 W/cm2. The quoted pressure is in the gas delivery line. The theory includes short trajectory (solid line) and long trajectory (dot-dash line) calculations separately, and the experimental datapoints are shown with markers (▵ H7, ○ H9, □ H11, and ⃟ H13). As described in text, the position of the focus is identified empirically from the peak of the position dependence of the harmonics.

Fig. 5
Fig. 5

(color online) Harmonic power of H7–H13 at a position (a) 100 μm before the focus, and (b) 200 μm after the focus, as the intensity of the fundamental laser field is varied, for a 150 μm nozzle at 80 Torr. The connected points represent the experimental data, and the solid lines represent the theory.

Fig. 6
Fig. 6

(color online) Contour plot showing the calculated on-axis H11 power as a function of the gas nozzle position and the pressure of the Xe gas in the interaction region, for a 300 μm nozzle and a peak intensity I0 = 3.5 × 1013 W/cm2 for the short (left panel) and long (right panel) trajectories. The solid black line indicates the location where the wavevector mismatch (Δk) crosses zero.The unit of the color bar (the strength of the harmonic) is identical to the arbitrary units used in Figs. 4 and 5.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

z E q ( z ) = ρ ( z ) σ ( ω q ) 2 E q ( z ) + i μ 0 q 2 ω 1 2 2 k q ρ ( z ) | d ˜ ( ω q , z ) | e i Δ ϕ ( z ) .
i h ¯ t ψ ( x , t ) = p 2 2 m e ψ ( x , t ) + V ( x , t ) ψ ( x , t ) ,
V atom ( x ) = 1 4 π ɛ 0 e 2 [ x 2 + X 0 2 ] 1 / 2 ,
V field ( x , t ) = e x E ( t ) cos ( ω 1 t ) ,
ψ ( x , t + Δ t ) F T 1 { [ F T { ψ ( x , t ) e i h ¯ V ( x , t ) Δ t } ] e i h ¯ 2 m e k 2 Δ t } ,
d A ( t ) = ψ ( x , t ) | V ( x , t ) x | ψ ( x , t ) .
d ˜ ( ω ) = 1 T 2 T 1 1 ω 2 T 1 T 2 d A ( t ) e i ω t d t ,
q ϕ 1 ( z ) = q k 1 n ( z , ω 1 ) z q tan 1 ( z n ( z , ω 1 ) z R ) + Φ atomic ( z )
ϕ q ( z ) = k q n ( z , ω q ) z tan 1 ( z n ( z , ω q ) z R ) ,
n ( z , ω q ) = 1 + ρ ( z ) ρ 0 [ ( 1 η ) δ q ω p 2 2 ω q 2 η ]

Metrics