Abstract

A photonic crystal fiber (PCF) with a section of one of the holes next to the solid core filled with an index-matched liquid is studied. Liquid filling alters the core geometry, which locally comprises the original silica core, the liquid channel and the silica around it. It is demonstrated that when light reaches the filled section, it periodically and efficiently couples to the liquid, via the excitation of a number of modes of the composite core, with coupling lengths ranging from tens to hundreds of microns. The resulting modal-interference-modulated spectrum shows temperature sensitivity as high as 5.35 nm/°C. The proposed waveguide geometry presents itself as an interesting way to pump and/or to probe liquid media within the fiber, combining advantages usually found separately in liquid-filled hollow-core PCFs (high light-liquid overlap) and in solid-core PCFs (low insertion losses). Therefore, pumping and luminescence guiding with a PCF filled with a Rhodamine solution is also demonstrated.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibers,” Meas. Sci. Technol. 12(7), 854–858 (2001).
    [CrossRef]
  2. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9(13), 698–713 (2001).
    [CrossRef] [PubMed]
  3. T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11(20), 2589–2596 (2003).
    [CrossRef] [PubMed]
  4. J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15(6), 1120–1128 (2004).
    [CrossRef]
  5. C. Martelli, J. Canning, K. Lyytikainen, and N. Groothoff, “Water-core Fresnel fiber,” Opt. Express 13(10), 3890–3895 (2005).
    [CrossRef] [PubMed]
  6. C. J. S. De Matos, C. M. B. Cordeiro, E. M. Dos Santos, J. S. Ong, A. Bozolan, and C. H. Brito Cruz, “Liquid-core, liquid-cladding photonic crystal fibers,” Opt. Express 15(18), 11207–11212 (2007).
    [CrossRef] [PubMed]
  7. S. Smolka, M. Barth, and O. Benson, “Highly efficient fluorescence sensing with hollow core photonic crystal fibers,” Opt. Express 15(20), 12783–12791 (2007).
    [CrossRef] [PubMed]
  8. S. Afshar V, S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Opt. Express 15(26), 17891–17901 (2007).
    [CrossRef] [PubMed]
  9. J. Canning, M. Stevenson, T. K. Yip, S. K. Lim, and C. Martelli, “White light sources based on multiple precision selective micro-filling of structured optical waveguides,” Opt. Express 16(20), 15700–15708 (2008).
    [CrossRef] [PubMed]
  10. B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, “Fluid-filled solid-core photonic bandgap fibers,” J. Lightwave Technol. 27(11), 1617–1630 (2009).
    [CrossRef]
  11. M. Vieweg, T. Gissibl, S. Pricking, B. T. Kuhlmey, D. C. Wu, B. J. Eggleton, and H. Giessen, “Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers,” Opt. Express 18(24), 25232–25240 (2010).
    [CrossRef] [PubMed]
  12. A. Bozolan, R. M. Gerosa, C. J. S. de Matos, and M. A. Romero, “Temperature sensing using colloidal-core photonic crystal fiber,” IEEE Sens. J. (to be published).
  13. S. Yiou, P. Delaye, A. Rouvie, J. Chinaud, R. Frey, G. Roosen, P. Viale, S. Février, P. Roy, J.-L. Auguste, and J.-M. Blondy, “Stimulated Raman scattering in an ethanol core microstructured optical fiber,” Opt. Express 13(12), 4786–4791 (2005).
    [CrossRef] [PubMed]
  14. A. Bozolan, C. J. S. de Matos, C. M. B. Cordeiro, E. M. Dos Santos, and J. Travers, “Supercontinuum generation in a water-core photonic crystal fiber,” Opt. Express 16(13), 9671–9676 (2008).
    [CrossRef] [PubMed]
  15. K. E. Meissner, C. Holton, and W. B. Spillman., “Optical characterization of quantum dots entrained in microstructured optical fibers,” Physica E 26(1-4), 377–381 (2005).
    [CrossRef]
  16. A. E. Vasdekis, G. E. Town, G. A. Turnbull, and I. D. Samuel, “Fluidic fibre dye lasers,” Opt. Express 15(7), 3962–3967 (2007).
    [CrossRef] [PubMed]
  17. C. J. S. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
    [CrossRef] [PubMed]
  18. Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85(22), 5182–5184 (2004).
    [CrossRef]
  19. L. Xiao, W. Jin, M. Demokan, H. Ho, Y. Hoo, and C. Zhao, “Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer,” Opt. Express 13(22), 9014–9022 (2005).
    [CrossRef] [PubMed]
  20. C. Kerbage, P. Steinvurzel, P. Reyes, P. S. Westbrook, R. S. Windeler, A. Hale, and B. J. Eggleton, “Highly tunable birefringent microstructured optical fiber,” Opt. Lett. 27(10), 842–844 (2002).
    [CrossRef] [PubMed]
  21. Y. Wang, C. R. Liao, and D. N. Wang, “Femtosecond laser-assisted selective infiltration of microstructured optical fibers,” Opt. Express 18(17), 18056–18060 (2010).
    [CrossRef] [PubMed]
  22. D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009).
    [CrossRef] [PubMed]
  23. M. Yang, D. N. Wang, Y. Wang, and C. R. Liao, “Fiber in-line Mach-Zehnder interferometer constructed by selective infiltration of two air holes in photonic crystal fiber,” Opt. Lett. 36(5), 636–638 (2011).
    [CrossRef] [PubMed]
  24. J. Du, Y. Liu, Z. Wang, Z. Liu, B. Zou, L. Jin, B. Liu, G. Kai, and X. Dong, “Thermally tunable dual-core photonic bandgap fiber based on the infusion of a temperature-responsive liquid,” Opt. Express 16(6), 4263–4269 (2008).
    [CrossRef] [PubMed]
  25. G. E. Town, W. Yuan, R. McCosker, and O. Bang, “Microstructured optical fiber refractive index sensor,” Opt. Lett. 35(6), 856–858 (2010).
    [CrossRef] [PubMed]
  26. W. Yuan, G. E. Town, and O. Bang, “Refractive index sensing in an all-solid twin-core photonic bandgap fiber,” IEEE Sens. J. 10(7), 1192–1199 (2010).
    [CrossRef]
  27. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
    [CrossRef]
  28. M. Midrio, M. P. Singh, and C. G. Someda, “The space filling mode of holey fibers: an analytical vectorial solution,” J. Lightwave Technol. 18(7), 1031–1037 (2000).
    [CrossRef]
  29. G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, “Thermally stabilized PCF-based sensor for temperature measurements up to 1000 ° C,” Opt. Express 17(24), 21551–21559 (2009).
    [CrossRef] [PubMed]
  30. R. M. Gerosa, D. H. Spadoti, L. S. Menezes, and C. J. de Matos, “In-fiber modal Mach-Zehnder interferometer based on the locally post-processed core of a photonic crystal fiber,” Opt. Express 19(4), 3124–3129 (2011).
    [CrossRef] [PubMed]
  31. D. Kácik, I. Turek, I. Martinček, J. Canning, N. Issa, and K. Lyytikäinen, “Intermodal interference in a photonic crystal fibre,” Opt. Express 12(15), 3465–3470 (2004).
    [CrossRef] [PubMed]
  32. A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68(12), 4309–4341 (1997).
    [CrossRef]

2011 (2)

2010 (4)

2009 (3)

2008 (3)

2007 (5)

2005 (4)

2004 (3)

J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15(6), 1120–1128 (2004).
[CrossRef]

Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85(22), 5182–5184 (2004).
[CrossRef]

D. Kácik, I. Turek, I. Martinček, J. Canning, N. Issa, and K. Lyytikäinen, “Intermodal interference in a photonic crystal fibre,” Opt. Express 12(15), 3465–3470 (2004).
[CrossRef] [PubMed]

2003 (1)

2002 (1)

2001 (2)

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibers,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[CrossRef]

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9(13), 698–713 (2001).
[CrossRef] [PubMed]

2000 (1)

1997 (1)

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68(12), 4309–4341 (1997).
[CrossRef]

1995 (1)

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[CrossRef]

Afshar V, S.

Auguste, J.-L.

Baggett, J. C.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibers,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[CrossRef]

Bang, O.

G. E. Town, W. Yuan, R. McCosker, and O. Bang, “Microstructured optical fiber refractive index sensor,” Opt. Lett. 35(6), 856–858 (2010).
[CrossRef] [PubMed]

W. Yuan, G. E. Town, and O. Bang, “Refractive index sensing in an all-solid twin-core photonic bandgap fiber,” IEEE Sens. J. 10(7), 1192–1199 (2010).
[CrossRef]

Barth, M.

Belardi, W.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibers,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[CrossRef]

Benson, O.

Bjarklev, A.

Blondy, J.-M.

Bozolan, A.

Brito Cruz, C. H.

Brito-Silva, A. M.

C. J. S. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[CrossRef] [PubMed]

Broderick, N. G. R.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibers,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[CrossRef]

Broeng, J.

Canning, J.

Chinaud, J.

Cordeiro, C. M. B.

Coviello, G.

de Araújo, C. B.

C. J. S. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[CrossRef] [PubMed]

de Matos, C. J.

de Matos, C. J. S.

A. Bozolan, C. J. S. de Matos, C. M. B. Cordeiro, E. M. Dos Santos, and J. Travers, “Supercontinuum generation in a water-core photonic crystal fiber,” Opt. Express 16(13), 9671–9676 (2008).
[CrossRef] [PubMed]

C. J. S. De Matos, C. M. B. Cordeiro, E. M. Dos Santos, J. S. Ong, A. Bozolan, and C. H. Brito Cruz, “Liquid-core, liquid-cladding photonic crystal fibers,” Opt. Express 15(18), 11207–11212 (2007).
[CrossRef] [PubMed]

C. J. S. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[CrossRef] [PubMed]

A. Bozolan, R. M. Gerosa, C. J. S. de Matos, and M. A. Romero, “Temperature sensing using colloidal-core photonic crystal fiber,” IEEE Sens. J. (to be published).

de S Menezes, L.

C. J. S. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[CrossRef] [PubMed]

Delaye, P.

Demokan, M.

Dong, X.

Dos Santos, E. M.

Du, J.

Eggleton, B. J.

Février, S.

Finazzi, V.

Fini, J. M.

J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15(6), 1120–1128 (2004).
[CrossRef]

Frey, R.

Furusawa, K.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibers,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[CrossRef]

Gerosa, R. M.

R. M. Gerosa, D. H. Spadoti, L. S. Menezes, and C. J. de Matos, “In-fiber modal Mach-Zehnder interferometer based on the locally post-processed core of a photonic crystal fiber,” Opt. Express 19(4), 3124–3129 (2011).
[CrossRef] [PubMed]

A. Bozolan, R. M. Gerosa, C. J. S. de Matos, and M. A. Romero, “Temperature sensing using colloidal-core photonic crystal fiber,” IEEE Sens. J. (to be published).

Giessen, H.

Gissibl, T.

Gomes, A. S.

C. J. S. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[CrossRef] [PubMed]

Groothoff, N.

Hale, A.

Hermann, D.

Ho, H.

Holton, C.

K. E. Meissner, C. Holton, and W. B. Spillman., “Optical characterization of quantum dots entrained in microstructured optical fibers,” Physica E 26(1-4), 377–381 (2005).
[CrossRef]

Hoo, Y.

Huang, Y.

Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85(22), 5182–5184 (2004).
[CrossRef]

Issa, N.

Jin, L.

Jin, W.

Kácik, D.

Kai, G.

Kerbage, C.

Kuhlmey, B. T.

Larsen, T.

Liao, C. R.

Lim, S. K.

Liu, B.

Liu, Y.

Liu, Z.

Lyytikainen, K.

Lyytikäinen, K.

Martelli, C.

Martincek, I.

Martinez Gámez, M. A.

C. J. S. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[CrossRef] [PubMed]

McCosker, R.

Meissner, K. E.

K. E. Meissner, C. Holton, and W. B. Spillman., “Optical characterization of quantum dots entrained in microstructured optical fibers,” Physica E 26(1-4), 377–381 (2005).
[CrossRef]

Menezes, L. S.

Midrio, M.

Monro, T. M.

S. Afshar V, S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Opt. Express 15(26), 17891–17901 (2007).
[CrossRef] [PubMed]

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibers,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[CrossRef]

Ong, J. S.

Othonos, A.

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68(12), 4309–4341 (1997).
[CrossRef]

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[CrossRef]

Pricking, S.

Pruneri, V.

Reyes, P.

Richardson, D. J.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibers,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[CrossRef]

Romero, M. A.

A. Bozolan, R. M. Gerosa, C. J. S. de Matos, and M. A. Romero, “Temperature sensing using colloidal-core photonic crystal fiber,” IEEE Sens. J. (to be published).

Roosen, G.

Rouvie, A.

Roy, P.

Samuel, I. D.

Singh, M. P.

Smolka, S.

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[CrossRef]

Someda, C. G.

Spadoti, D. H.

Spillman, W. B.

K. E. Meissner, C. Holton, and W. B. Spillman., “Optical characterization of quantum dots entrained in microstructured optical fibers,” Physica E 26(1-4), 377–381 (2005).
[CrossRef]

Steinvurzel, P.

Stevenson, M.

Town, G. E.

Travers, J.

Turek, I.

Turnbull, G. A.

Vasdekis, A. E.

Viale, P.

Vieweg, M.

Villatoro, J.

Wang, D. N.

Wang, Y.

Wang, Z.

Warren-Smith, S. C.

Westbrook, P. S.

Windeler, R. S.

Wu, D. C.

Wu, D. K. C.

Xiao, L.

Xu, Y.

Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85(22), 5182–5184 (2004).
[CrossRef]

Yang, M.

Yariv, A.

Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85(22), 5182–5184 (2004).
[CrossRef]

Yiou, S.

Yip, T. K.

Yuan, W.

G. E. Town, W. Yuan, R. McCosker, and O. Bang, “Microstructured optical fiber refractive index sensor,” Opt. Lett. 35(6), 856–858 (2010).
[CrossRef] [PubMed]

W. Yuan, G. E. Town, and O. Bang, “Refractive index sensing in an all-solid twin-core photonic bandgap fiber,” IEEE Sens. J. 10(7), 1192–1199 (2010).
[CrossRef]

Zhao, C.

Zou, B.

Appl. Phys. Lett. (1)

Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85(22), 5182–5184 (2004).
[CrossRef]

IEEE Sens. J. (2)

A. Bozolan, R. M. Gerosa, C. J. S. de Matos, and M. A. Romero, “Temperature sensing using colloidal-core photonic crystal fiber,” IEEE Sens. J. (to be published).

W. Yuan, G. E. Town, and O. Bang, “Refractive index sensing in an all-solid twin-core photonic bandgap fiber,” IEEE Sens. J. 10(7), 1192–1199 (2010).
[CrossRef]

J. Lightwave Technol. (3)

Meas. Sci. Technol. (2)

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibers,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[CrossRef]

J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15(6), 1120–1128 (2004).
[CrossRef]

Opt. Express (17)

C. Martelli, J. Canning, K. Lyytikainen, and N. Groothoff, “Water-core Fresnel fiber,” Opt. Express 13(10), 3890–3895 (2005).
[CrossRef] [PubMed]

C. J. S. De Matos, C. M. B. Cordeiro, E. M. Dos Santos, J. S. Ong, A. Bozolan, and C. H. Brito Cruz, “Liquid-core, liquid-cladding photonic crystal fibers,” Opt. Express 15(18), 11207–11212 (2007).
[CrossRef] [PubMed]

S. Smolka, M. Barth, and O. Benson, “Highly efficient fluorescence sensing with hollow core photonic crystal fibers,” Opt. Express 15(20), 12783–12791 (2007).
[CrossRef] [PubMed]

S. Afshar V, S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Opt. Express 15(26), 17891–17901 (2007).
[CrossRef] [PubMed]

J. Canning, M. Stevenson, T. K. Yip, S. K. Lim, and C. Martelli, “White light sources based on multiple precision selective micro-filling of structured optical waveguides,” Opt. Express 16(20), 15700–15708 (2008).
[CrossRef] [PubMed]

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9(13), 698–713 (2001).
[CrossRef] [PubMed]

T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11(20), 2589–2596 (2003).
[CrossRef] [PubMed]

M. Vieweg, T. Gissibl, S. Pricking, B. T. Kuhlmey, D. C. Wu, B. J. Eggleton, and H. Giessen, “Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers,” Opt. Express 18(24), 25232–25240 (2010).
[CrossRef] [PubMed]

S. Yiou, P. Delaye, A. Rouvie, J. Chinaud, R. Frey, G. Roosen, P. Viale, S. Février, P. Roy, J.-L. Auguste, and J.-M. Blondy, “Stimulated Raman scattering in an ethanol core microstructured optical fiber,” Opt. Express 13(12), 4786–4791 (2005).
[CrossRef] [PubMed]

A. Bozolan, C. J. S. de Matos, C. M. B. Cordeiro, E. M. Dos Santos, and J. Travers, “Supercontinuum generation in a water-core photonic crystal fiber,” Opt. Express 16(13), 9671–9676 (2008).
[CrossRef] [PubMed]

L. Xiao, W. Jin, M. Demokan, H. Ho, Y. Hoo, and C. Zhao, “Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer,” Opt. Express 13(22), 9014–9022 (2005).
[CrossRef] [PubMed]

A. E. Vasdekis, G. E. Town, G. A. Turnbull, and I. D. Samuel, “Fluidic fibre dye lasers,” Opt. Express 15(7), 3962–3967 (2007).
[CrossRef] [PubMed]

G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, “Thermally stabilized PCF-based sensor for temperature measurements up to 1000 ° C,” Opt. Express 17(24), 21551–21559 (2009).
[CrossRef] [PubMed]

R. M. Gerosa, D. H. Spadoti, L. S. Menezes, and C. J. de Matos, “In-fiber modal Mach-Zehnder interferometer based on the locally post-processed core of a photonic crystal fiber,” Opt. Express 19(4), 3124–3129 (2011).
[CrossRef] [PubMed]

D. Kácik, I. Turek, I. Martinček, J. Canning, N. Issa, and K. Lyytikäinen, “Intermodal interference in a photonic crystal fibre,” Opt. Express 12(15), 3465–3470 (2004).
[CrossRef] [PubMed]

Y. Wang, C. R. Liao, and D. N. Wang, “Femtosecond laser-assisted selective infiltration of microstructured optical fibers,” Opt. Express 18(17), 18056–18060 (2010).
[CrossRef] [PubMed]

J. Du, Y. Liu, Z. Wang, Z. Liu, B. Zou, L. Jin, B. Liu, G. Kai, and X. Dong, “Thermally tunable dual-core photonic bandgap fiber based on the infusion of a temperature-responsive liquid,” Opt. Express 16(6), 4263–4269 (2008).
[CrossRef] [PubMed]

Opt. Lett. (4)

Phys. Rev. Lett. (1)

C. J. S. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[CrossRef] [PubMed]

Physica E (1)

K. E. Meissner, C. Holton, and W. B. Spillman., “Optical characterization of quantum dots entrained in microstructured optical fibers,” Physica E 26(1-4), 377–381 (2005).
[CrossRef]

Rev. Sci. Instrum. (1)

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68(12), 4309–4341 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Scheme of a PCF with a hole adjacent to the solid core filled with a refractive index-matched liquid (red). (b) Optical microscope image of the cross section of the PCF used in the experiments.

Fig. 2
Fig. 2

Scheme of the experimental setup for characterizing the selectively filled PCF. Inset: Image of the output of a PCF filled with mineral oil, where light coming from the filled channel (left) and from the solid core (right) is visible.

Fig. 3
Fig. 3

Transmission spectra for PCFs with 3.3-mm (a) and 4.2-mm (b) long sections of a channel adjacent to the solid core filled with mineral oil. (c) Fast Fourier Transform traces of the reciprocal wavelength linear power spectra for the 3.3-mm (top) and 4.2-mm (bottom) long filled sections.

Fig. 4
Fig. 4

Fundamental (solid line), second mode (dashed line) and cladding (dash-dotted line) effective indices as functions of wavelength. Insets: Fundamental and second guided mode intensity distributions.

Fig. 5
Fig. 5

(a) Output spectra obtained from the fiber with a 4.2-mm-long filled channel, selecting light preferably coming from the solid core (blue, solid line) and from the liquid channel (red, dashed line). (b) Modulation period (in terms of the reciprocal wavelength) versus channel filling length.

Fig. 6
Fig. 6

(a) Transmission spectra of an oil-filled PCF submitted to temperature variations. The black, red, blue and green lines correspond to temperatures of 22.7°C, 23.7°C, 24.3°C and 24.7°C, respectively. (b) Temperature versus transmission peak wavelength for the same PCF.

Fig. 7
Fig. 7

(a) Luminescence spectra measured at the exit of PCFs filled with a Rhodamine 610 solution. Solid (blue) curve: solid-core PCF with a 5.0-cm-long filled channel next to the solid core; dashed (red) curve: 5.5-cm-long hollow-core PCF with its core filled with the same solution. (b) Image of the filled solid-core PCF exit, showing fluorescence being guided by the solid core.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

L 2π = λ Δ n eff ,
Δλ= λ 2 Δ n eff L .
Δκ= Δλ λ 2 = 1 Δ n eff L ,

Metrics