Abstract

We theoretically propose and demonstrate experimentally a Coherent Direct Sequence OCDMA en/decoder for multi-channel WDM operation based on a single device. It presents a broadband spectral envelope and a periodic spectral pattern that can be employed for en/decoding multiple sub-bands simultaneously. Multi-channel operation is verified experimentally by means of Multi-Band Super Structured Fiber Bragg Gratings with binary phase encoded chips fabricated with 1mm inter-chip separation that provides 4x100 GHz ITU sub-band separation at 1.25 Gbps. The WDM-OCDMA system verification was carried out employing simultaneous encoding of four adjacent sub-bands and two different OCDMA codes.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Green, “Paving the last mile with glass,” IEEE Spectr. 39(12), 13–14 (2002).
    [CrossRef]
  2. K. Kitayama, X. Wang, and N. Wada, “OCDMA over WDM PON-solution path to gigabit-symmetric FTTH,” J. Lightwave Technol. 24(4), 1654–1662 (2006).
    [CrossRef]
  3. X. Wang, K. Matsushima, A. Nishiki, N. Wada, F. Kubota, and K.-I. Kitayama, “Experimental demonstration of 511-chip 640 Gchip/s superstructured FBG for high performance optical code processing,” in Proc. of the Europeam Conference Optical Communication (ECOC), (Stockholm, Sweden, 2004), Paper Tu1.3.7.
  4. W. Amaya, D. Pastor, and J. Capmany, “Modeling of a Time-Spreading OCDMA System Including Nonperfect Time Gating, Optical Thresholding, and Fully Asynchronous Signal/Interference Overlapping,” J. Lightwave Technol. 26(7), 768–776 (2008).
    [CrossRef]
  5. X. Wang and N. Wada, “Experimental Demonstration of OCDMA Traffic Over Optical Packet Switching Network With Hybrid PLC and SSFBG En/Decoders,” J. Lightwave Technol. 24(8), 3012–3020 (2006).
    [CrossRef]
  6. K. Matsushima, X. Wang, S. Kutsuzawa, A. Nishiki, S. Oshiba, N. Wada, and K. Kitayama, “Experimental demonstration of performance improvement of 127-chip SSFBG en/decoder using apodization technique,” IEEE Photon. Technol. Lett. 16(9), 2192–2194 (2004).
    [CrossRef]
  7. P. C. Teh, M. Ibsen, J. H. Lee, P. Petropoulos, and D. J. Richardson, “Demonstration of a Four-Channel WDM/OCDMA System Using 255-Chip 320-Gchip/s Quaternary Phase Coding Gratings,” IEEE Photon. Technol. Lett. 14(2), 227–229 (2002).
    [CrossRef]
  8. H. Zheng, B. Chen, D. Wang, X. Hong, and S. He, “Investigation of DWDM over OCDMA System Based on Parallelly Combined SSFBG Encoder/Decoders,” in Proceedings of Symposium on Photonics and Optoelectronics (SOPO), (Wuhan, China, 2011), 1–3.
  9. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, (New York: Dover Publications, 1972).
  10. D. Pastor, W. Amaya, and R. Garcia-Olcina, “Coherent Direct Sequence optical en/decoding employing low cost DFB lasers with narrow optical band consumption – towards realizable photonic label switching,” in Proceedings of 12th International Conference on Transparent Optical Networks (ICTON),(Munich, Germany, 2010), 1–4.
  11. D. Pastor, W. Amaya, R. García-Olcina, and S. Sales, “Coherent direct sequence optical code multiple access encoding-decoding efficiency versus wavelength detuning,” Opt. Lett. 32(13), 1896–1898 (2007).
    [CrossRef] [PubMed]

2008 (1)

2007 (1)

2006 (2)

2004 (1)

K. Matsushima, X. Wang, S. Kutsuzawa, A. Nishiki, S. Oshiba, N. Wada, and K. Kitayama, “Experimental demonstration of performance improvement of 127-chip SSFBG en/decoder using apodization technique,” IEEE Photon. Technol. Lett. 16(9), 2192–2194 (2004).
[CrossRef]

2002 (2)

P. C. Teh, M. Ibsen, J. H. Lee, P. Petropoulos, and D. J. Richardson, “Demonstration of a Four-Channel WDM/OCDMA System Using 255-Chip 320-Gchip/s Quaternary Phase Coding Gratings,” IEEE Photon. Technol. Lett. 14(2), 227–229 (2002).
[CrossRef]

P. Green, “Paving the last mile with glass,” IEEE Spectr. 39(12), 13–14 (2002).
[CrossRef]

Amaya, W.

Capmany, J.

García-Olcina, R.

Green, P.

P. Green, “Paving the last mile with glass,” IEEE Spectr. 39(12), 13–14 (2002).
[CrossRef]

Ibsen, M.

P. C. Teh, M. Ibsen, J. H. Lee, P. Petropoulos, and D. J. Richardson, “Demonstration of a Four-Channel WDM/OCDMA System Using 255-Chip 320-Gchip/s Quaternary Phase Coding Gratings,” IEEE Photon. Technol. Lett. 14(2), 227–229 (2002).
[CrossRef]

Kitayama, K.

K. Kitayama, X. Wang, and N. Wada, “OCDMA over WDM PON-solution path to gigabit-symmetric FTTH,” J. Lightwave Technol. 24(4), 1654–1662 (2006).
[CrossRef]

K. Matsushima, X. Wang, S. Kutsuzawa, A. Nishiki, S. Oshiba, N. Wada, and K. Kitayama, “Experimental demonstration of performance improvement of 127-chip SSFBG en/decoder using apodization technique,” IEEE Photon. Technol. Lett. 16(9), 2192–2194 (2004).
[CrossRef]

Kutsuzawa, S.

K. Matsushima, X. Wang, S. Kutsuzawa, A. Nishiki, S. Oshiba, N. Wada, and K. Kitayama, “Experimental demonstration of performance improvement of 127-chip SSFBG en/decoder using apodization technique,” IEEE Photon. Technol. Lett. 16(9), 2192–2194 (2004).
[CrossRef]

Lee, J. H.

P. C. Teh, M. Ibsen, J. H. Lee, P. Petropoulos, and D. J. Richardson, “Demonstration of a Four-Channel WDM/OCDMA System Using 255-Chip 320-Gchip/s Quaternary Phase Coding Gratings,” IEEE Photon. Technol. Lett. 14(2), 227–229 (2002).
[CrossRef]

Matsushima, K.

K. Matsushima, X. Wang, S. Kutsuzawa, A. Nishiki, S. Oshiba, N. Wada, and K. Kitayama, “Experimental demonstration of performance improvement of 127-chip SSFBG en/decoder using apodization technique,” IEEE Photon. Technol. Lett. 16(9), 2192–2194 (2004).
[CrossRef]

Nishiki, A.

K. Matsushima, X. Wang, S. Kutsuzawa, A. Nishiki, S. Oshiba, N. Wada, and K. Kitayama, “Experimental demonstration of performance improvement of 127-chip SSFBG en/decoder using apodization technique,” IEEE Photon. Technol. Lett. 16(9), 2192–2194 (2004).
[CrossRef]

Oshiba, S.

K. Matsushima, X. Wang, S. Kutsuzawa, A. Nishiki, S. Oshiba, N. Wada, and K. Kitayama, “Experimental demonstration of performance improvement of 127-chip SSFBG en/decoder using apodization technique,” IEEE Photon. Technol. Lett. 16(9), 2192–2194 (2004).
[CrossRef]

Pastor, D.

Petropoulos, P.

P. C. Teh, M. Ibsen, J. H. Lee, P. Petropoulos, and D. J. Richardson, “Demonstration of a Four-Channel WDM/OCDMA System Using 255-Chip 320-Gchip/s Quaternary Phase Coding Gratings,” IEEE Photon. Technol. Lett. 14(2), 227–229 (2002).
[CrossRef]

Richardson, D. J.

P. C. Teh, M. Ibsen, J. H. Lee, P. Petropoulos, and D. J. Richardson, “Demonstration of a Four-Channel WDM/OCDMA System Using 255-Chip 320-Gchip/s Quaternary Phase Coding Gratings,” IEEE Photon. Technol. Lett. 14(2), 227–229 (2002).
[CrossRef]

Sales, S.

Teh, P. C.

P. C. Teh, M. Ibsen, J. H. Lee, P. Petropoulos, and D. J. Richardson, “Demonstration of a Four-Channel WDM/OCDMA System Using 255-Chip 320-Gchip/s Quaternary Phase Coding Gratings,” IEEE Photon. Technol. Lett. 14(2), 227–229 (2002).
[CrossRef]

Wada, N.

X. Wang and N. Wada, “Experimental Demonstration of OCDMA Traffic Over Optical Packet Switching Network With Hybrid PLC and SSFBG En/Decoders,” J. Lightwave Technol. 24(8), 3012–3020 (2006).
[CrossRef]

K. Kitayama, X. Wang, and N. Wada, “OCDMA over WDM PON-solution path to gigabit-symmetric FTTH,” J. Lightwave Technol. 24(4), 1654–1662 (2006).
[CrossRef]

K. Matsushima, X. Wang, S. Kutsuzawa, A. Nishiki, S. Oshiba, N. Wada, and K. Kitayama, “Experimental demonstration of performance improvement of 127-chip SSFBG en/decoder using apodization technique,” IEEE Photon. Technol. Lett. 16(9), 2192–2194 (2004).
[CrossRef]

Wang, X.

K. Kitayama, X. Wang, and N. Wada, “OCDMA over WDM PON-solution path to gigabit-symmetric FTTH,” J. Lightwave Technol. 24(4), 1654–1662 (2006).
[CrossRef]

X. Wang and N. Wada, “Experimental Demonstration of OCDMA Traffic Over Optical Packet Switching Network With Hybrid PLC and SSFBG En/Decoders,” J. Lightwave Technol. 24(8), 3012–3020 (2006).
[CrossRef]

K. Matsushima, X. Wang, S. Kutsuzawa, A. Nishiki, S. Oshiba, N. Wada, and K. Kitayama, “Experimental demonstration of performance improvement of 127-chip SSFBG en/decoder using apodization technique,” IEEE Photon. Technol. Lett. 16(9), 2192–2194 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

K. Matsushima, X. Wang, S. Kutsuzawa, A. Nishiki, S. Oshiba, N. Wada, and K. Kitayama, “Experimental demonstration of performance improvement of 127-chip SSFBG en/decoder using apodization technique,” IEEE Photon. Technol. Lett. 16(9), 2192–2194 (2004).
[CrossRef]

P. C. Teh, M. Ibsen, J. H. Lee, P. Petropoulos, and D. J. Richardson, “Demonstration of a Four-Channel WDM/OCDMA System Using 255-Chip 320-Gchip/s Quaternary Phase Coding Gratings,” IEEE Photon. Technol. Lett. 14(2), 227–229 (2002).
[CrossRef]

IEEE Spectr. (1)

P. Green, “Paving the last mile with glass,” IEEE Spectr. 39(12), 13–14 (2002).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Lett. (1)

Other (4)

X. Wang, K. Matsushima, A. Nishiki, N. Wada, F. Kubota, and K.-I. Kitayama, “Experimental demonstration of 511-chip 640 Gchip/s superstructured FBG for high performance optical code processing,” in Proc. of the Europeam Conference Optical Communication (ECOC), (Stockholm, Sweden, 2004), Paper Tu1.3.7.

H. Zheng, B. Chen, D. Wang, X. Hong, and S. He, “Investigation of DWDM over OCDMA System Based on Parallelly Combined SSFBG Encoder/Decoders,” in Proceedings of Symposium on Photonics and Optoelectronics (SOPO), (Wuhan, China, 2011), 1–3.

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, (New York: Dover Publications, 1972).

D. Pastor, W. Amaya, and R. Garcia-Olcina, “Coherent Direct Sequence optical en/decoding employing low cost DFB lasers with narrow optical band consumption – towards realizable photonic label switching,” in Proceedings of 12th International Conference on Transparent Optical Networks (ICTON),(Munich, Germany, 2010), 1–4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Averaged gated ratio rg, a). Averaged acp/w, rw ratio b)

Fig. 2
Fig. 2

Multi-Band proposal by shortening the chip temporal width σchip,t. Inset: Chip temporal shapes.

Fig. 3
Fig. 3

Comparison between the non focalized fabrication and the proposed focalized UV beam technique in the low reflectivity regime. Scheme of the standard not focalized technique a). Scheme of the chip by chip with focalizing lens b). Measured spectrum for non focalized c) and focalized technique d)

Fig. 4
Fig. 4

Experimental system set-up.

Fig. 5
Fig. 5

a) Spectral measurement of the Multi-band en/decoders, b) Spectrum detail with respect to the AWG bands.

Fig. 6
Fig. 6

Encoded spectrums at the AWG outputs. Code 2 in CH1 (blue), Code 1 in CH2 (red), CH3 (green) and CH4 (black)

Fig. 7
Fig. 7

Codified sequences at the AWG input. Code 2 in CH1 (blue), Code 1 in CH2 (red) and CH3 (green)

Fig. 8
Fig. 8

Decoded temporal signals at the exit of each decoder when the code is correctly decoded and when the encoder and decoder patterns do not match. Inset autocorrelation figures for C2*C2c case using the MLL.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

h p en (t)= h chip (t) k=1 N a p,k en exp(j ϕ p,k en )δ(tk t ch )
H p en (ω)= H chip (ω) k=1 N a p,k en exp(j ϕ p,k en )exp(jkω t ch )
y p,q (t)=x(t) h p,q system (t)= h pulses (t) h p,q coding (t)
h p,q coding (t)= k=1 N a p,k en exp(j ϕ p,k en )δ(tk t ch ) l=1 N a q,l dec exp(j ϕ q,l dec )δ(tl t ch )
ac p p = 1 T g T g /2 T g /2 | y p,p (t) | 2 dt
w p = 1 T tot [ T tot /2 T g /2 | y p,p (t) | 2 dt + T g /2 T tot /2 | y p,p (t) | 2 dt ]
r w = 1 M p=1 M ac p p / w p
c p,q = 1 T tot T tot /2 T tot /2 | y p,q (t) | 2 dt
r g = 1 M(M1) p=1 M qp M ac p p / c p,q
σ chip,ω = c 2n σ UV

Metrics