Abstract

We present an all-optical passive low-cost spectral filter that exhibits a high-resolution periodic sawtooth spectral pattern without the need for active optoelectronic components. The principle of the filter is the partial masking of a phased array of virtual light sources with multiply jammed diffraction orders. We utilize the filter’s periodic linear map between frequency and intensity to demonstrate fast sensitive interrogation of fiber Bragg grating sensor arrays and ultrahigh-frequency electrical sawtooth waveform generation.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Macleod, Thin-film optical filters (CRC Press, 2010)
  2. G. Z. Xiao, P. Zhao, F. G. Sun, Z. G. Lu, Z. Zhang, and C. P. Grover, “Interrogating fiber Bragg grating sensors by thermally scanning a demultiplexer based on arrayed waveguide gratings,” Opt. Lett. 29(19), 2222–2224 (2004).
    [CrossRef] [PubMed]
  3. S. Baskar, P. N. Suganthan, N. Q. Ngo, A. Alphones, and R. T. Zheng, “Design of triangular FBG filter for sensor applications using covariance matrix adapted evolution algorithm,” Opt. Commun. 260(2), 716–722 (2006).
    [CrossRef]
  4. S. Bandyopadhyay, P. Biswas, A. Pal, S. K. Bhadra, and K. Dasgupta, “Empirical relations for design of linear edge filters using apodized linearly chirped fiber Bragg grating,” J. Lightwave Technol. 26(24), 3853–3859 (2008).
    [CrossRef]
  5. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
    [CrossRef]
  6. M. Shirasaki, “Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer,” Opt. Lett. 21(5), 366–368 (1996).
    [CrossRef] [PubMed]
  7. S. Xiao, A. M. Weiner, and C. L. Lin, “A dispersion law for virtually imaged phased array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40(4), 420–426 (2004).
    [CrossRef]
  8. K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
    [CrossRef] [PubMed]
  9. D. Chen, C. Shu, and S. He, “Multiple fiber Bragg grating interrogation based on a spectrum-limited Fourier domain mode-locking fiber laser,” Opt. Lett. 33(13), 1395–1397 (2008).
    [CrossRef] [PubMed]
  10. H. Xia, C. Wang, S. Blais, and J. Yao, “Ultrafast and precise interrogation of fiber Bragg grating sensor based on wavelength-to-time mapping incorporating higher order dispersion,” J. Lightwave Technol. 28(3), 254–261 (2010).
    [CrossRef]
  11. J. H. Reed, An introduction to ultra wideband communication systems (Prentice-Hall, 2005)
  12. B. Jalali, P. V. Kelkar, and V. Saxena, “Photonic arbitrary waveform generator,” Proc. Lasers Electro-Opt. Soc. 1, 253–254 (2001).

2010 (1)

2009 (1)

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[CrossRef] [PubMed]

2008 (2)

2006 (1)

S. Baskar, P. N. Suganthan, N. Q. Ngo, A. Alphones, and R. T. Zheng, “Design of triangular FBG filter for sensor applications using covariance matrix adapted evolution algorithm,” Opt. Commun. 260(2), 716–722 (2006).
[CrossRef]

2004 (2)

G. Z. Xiao, P. Zhao, F. G. Sun, Z. G. Lu, Z. Zhang, and C. P. Grover, “Interrogating fiber Bragg grating sensors by thermally scanning a demultiplexer based on arrayed waveguide gratings,” Opt. Lett. 29(19), 2222–2224 (2004).
[CrossRef] [PubMed]

S. Xiao, A. M. Weiner, and C. L. Lin, “A dispersion law for virtually imaged phased array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40(4), 420–426 (2004).
[CrossRef]

2001 (1)

B. Jalali, P. V. Kelkar, and V. Saxena, “Photonic arbitrary waveform generator,” Proc. Lasers Electro-Opt. Soc. 1, 253–254 (2001).

2000 (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[CrossRef]

1996 (1)

Alphones, A.

S. Baskar, P. N. Suganthan, N. Q. Ngo, A. Alphones, and R. T. Zheng, “Design of triangular FBG filter for sensor applications using covariance matrix adapted evolution algorithm,” Opt. Commun. 260(2), 716–722 (2006).
[CrossRef]

Bandyopadhyay, S.

Baskar, S.

S. Baskar, P. N. Suganthan, N. Q. Ngo, A. Alphones, and R. T. Zheng, “Design of triangular FBG filter for sensor applications using covariance matrix adapted evolution algorithm,” Opt. Commun. 260(2), 716–722 (2006).
[CrossRef]

Bhadra, S. K.

Biswas, P.

Blais, S.

Chen, D.

Dasgupta, K.

Goda, K.

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[CrossRef] [PubMed]

Grover, C. P.

He, S.

Jalali, B.

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[CrossRef] [PubMed]

B. Jalali, P. V. Kelkar, and V. Saxena, “Photonic arbitrary waveform generator,” Proc. Lasers Electro-Opt. Soc. 1, 253–254 (2001).

Kelkar, P. V.

B. Jalali, P. V. Kelkar, and V. Saxena, “Photonic arbitrary waveform generator,” Proc. Lasers Electro-Opt. Soc. 1, 253–254 (2001).

Lin, C. L.

S. Xiao, A. M. Weiner, and C. L. Lin, “A dispersion law for virtually imaged phased array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40(4), 420–426 (2004).
[CrossRef]

Lu, Z. G.

Ngo, N. Q.

S. Baskar, P. N. Suganthan, N. Q. Ngo, A. Alphones, and R. T. Zheng, “Design of triangular FBG filter for sensor applications using covariance matrix adapted evolution algorithm,” Opt. Commun. 260(2), 716–722 (2006).
[CrossRef]

Pal, A.

Saxena, V.

B. Jalali, P. V. Kelkar, and V. Saxena, “Photonic arbitrary waveform generator,” Proc. Lasers Electro-Opt. Soc. 1, 253–254 (2001).

Shirasaki, M.

Shu, C.

Suganthan, P. N.

S. Baskar, P. N. Suganthan, N. Q. Ngo, A. Alphones, and R. T. Zheng, “Design of triangular FBG filter for sensor applications using covariance matrix adapted evolution algorithm,” Opt. Commun. 260(2), 716–722 (2006).
[CrossRef]

Sun, F. G.

Tsia, K. K.

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[CrossRef] [PubMed]

Wang, C.

Weiner, A. M.

S. Xiao, A. M. Weiner, and C. L. Lin, “A dispersion law for virtually imaged phased array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40(4), 420–426 (2004).
[CrossRef]

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[CrossRef]

Xia, H.

Xiao, G. Z.

Xiao, S.

S. Xiao, A. M. Weiner, and C. L. Lin, “A dispersion law for virtually imaged phased array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40(4), 420–426 (2004).
[CrossRef]

Yao, J.

Zhang, Z.

Zhao, P.

Zheng, R. T.

S. Baskar, P. N. Suganthan, N. Q. Ngo, A. Alphones, and R. T. Zheng, “Design of triangular FBG filter for sensor applications using covariance matrix adapted evolution algorithm,” Opt. Commun. 260(2), 716–722 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. Xiao, A. M. Weiner, and C. L. Lin, “A dispersion law for virtually imaged phased array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40(4), 420–426 (2004).
[CrossRef]

J. Lightwave Technol. (2)

Nature (1)

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[CrossRef] [PubMed]

Opt. Commun. (1)

S. Baskar, P. N. Suganthan, N. Q. Ngo, A. Alphones, and R. T. Zheng, “Design of triangular FBG filter for sensor applications using covariance matrix adapted evolution algorithm,” Opt. Commun. 260(2), 716–722 (2006).
[CrossRef]

Opt. Lett. (3)

Proc. Lasers Electro-Opt. Soc. (1)

B. Jalali, P. V. Kelkar, and V. Saxena, “Photonic arbitrary waveform generator,” Proc. Lasers Electro-Opt. Soc. 1, 253–254 (2001).

Rev. Sci. Instrum. (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[CrossRef]

Other (2)

H. A. Macleod, Thin-film optical filters (CRC Press, 2010)

J. H. Reed, An introduction to ultra wideband communication systems (Prentice-Hall, 2005)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

JAWS filter. (a) Schematic. The dispersed light with spatially overlapped degenerate FSRs interferes in the Fourier plane at the intensity mask. The returned light exhibits a periodic sawtooth spectral pattern. (b) Simulation of the mapping relation between the wavelength and diffraction angle. (c) Simulation of the filter response: when the area of x < 0 is masked (top) and when the area of x > 0 is masked (bottom).

Fig. 2
Fig. 2

Experimental demonstration of the JAWS filter. The period of the sawtooth spectrum (i.e., the FSR) can easily be varied by changing the thickness of the VIPA, depending on the requirements for various applications. The slight nonlinearity in the sawtooth pattern comes mainly from the finite length of the VIPA due to which a small portion of the resonant light leaks out of the top end of the VIPA and can be suppressed by the use of a longer VIPA.

Fig. 3
Fig. 3

Application of the JAWS filter to a FBG sensor array. (a) Experimental apparatus. Strain-induced wavelength shifts in the reflections from the FBGs are converted by the JAWS filter into intensity changes. (b) Pulses detected by the photodiode with and without strain on the FBGs, indicating that the applied strain is converted to the intensity change in each pulse. (c) Corresponding spectra of the pulses reflected by the FBGs measured by an optical spectrum analyzer, showing that the intensity change agrees with the wavelength shift for each pulse. (d) Relation between intensity change and strain on each FBG, indicating that all the FBGs have linear relations.

Fig. 4
Fig. 4

Application of the JAWS filter to ultrahigh-frequency sawtooth waveform generation. (a) Experimental apparatus. The spectrum filtered by the JAWS filter is mapped into the time domain by GVD in the dispersive fiber. (b) Sawtooth waveform produced by the sawtooth generator and measured by an oscilloscope with 16 GHz bandwidth and 50 GS/s sampling rate. The fundamental frequency of the sawtooth waveform is 1.52 GHz.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I(x,ω)exp( 2 f 1 2 x 2 f 2 2 a 2 ) 1 ( 1 R 1 R 2 ) 2 +4 R 1 R 2 sin 2 ( ω/2FSR )
ω/2FSR=mπ for m=0,±1,±2,..
T(x>0,ω)= 0 I(x,ω)dx m=0 exp[ 2 f 1 2 a 2 ( 1 tan θ 1 mπc dωsin θ 1 ) 2 ] da c f 1 ω ,

Metrics