Abstract

Cavity opto-mechanics enabled radiation pressure (RP) driven oscillators shown in the past offer an all optical Radio Frequency (RF) source without the need for external electrical feedback. However these oscillators require external tapered fiber or prism coupling and non-standard fabrication processes. In this work, we present a CMOS compatible fabrication process to design high optical quality factor opto-mechanical resonators in silicon nitride. The ring resonators designed in this process demonstrate low phase noise RP driven oscillations. Using integrated grating couplers and waveguide to couple light to the micro-resonator eliminates 1/f3 and other higher order phase noise slopes at close-to-carrier frequencies present in previous demonstrations. We present an RP driven opto-mechanical oscillator (OMO) operating at 41.97MHz with a signal power of −11dBm and phase noise of −85dBc/Hz at 1kHz offset with only 1/f2 noise down to 10Hz offset from carrier.

© 2011 OSA

PDF Article
OSA Recommended Articles
Sub-pg mass sensing and measurement with an optomechanical oscillator

Fenfei Liu, Seyedhamidreza Alaie, Zayd C. Leseman, and Mani Hossein-Zadeh
Opt. Express 21(17) 19555-19567 (2013)

Stability of resonant opto-mechanical oscillators

A. B. Matsko, A. A. Savchenkov, and L. Maleki
Opt. Express 20(15) 16234-16244 (2012)

Integrated waveguide-DBR microcavity opto-mechanical system

Marcel W. Pruessner, Todd H. Stievater, Jacob B. Khurgin, and William S. Rabinovich
Opt. Express 19(22) 21904-21918 (2011)

References

  • View by:
  • |
  • |
  • |

  1. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: Back-action at the mesoscale,” Science 29,  321(5893), 1172–1176, (2008).
    [Crossref]
  2. A. Cho, “Putting light’s light touch to work as optics meets mechanics,” Science 14,  5980(5893), 812–813, (2010).
    [Crossref]
  3. M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micromechanical oscillator,” Phys. Rev. A 74, 023813 (2006).
    [Crossref]
  4. T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
    [Crossref] [PubMed]
  5. G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivire, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nature Phys. 5, 909–914 (2009).
    [Crossref]
  6. Q. P. Unterreithmeier, E. M. Weig, and J. P. Kotthaus, “Universal transduction scheme for nanomechanical systems based on dielectric forces,” Nature 458, 1001–1004 (2009).
    [Crossref] [PubMed]
  7. M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett.,  102, 113601, (2009).
    [Crossref] [PubMed]
  8. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel, and L. Maleki, “Surface acoustic wave opto-mechanical oscillator and frequency comb generator,” Opt. Lett. 36, 3338–3340 (2011).
    [Crossref] [PubMed]
  9. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 7882 (2009).
  10. G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633636 (2009).
    [Crossref] [PubMed]
  11. S. Tallur, S. Sridaran, and S. A. Bhave, “Phase noise modeling of opto-mechanical oscillators,” IEEE Frequency Control Symposium (FCS 2010), Newport Beach, California, 268–272, (2010).
  12. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17, 11366–11370 (2009).
    [Crossref] [PubMed]
  13. S. S. Verbridge, J. M. Parpia, R. B. Reichenbach, L. M. Bellan, and H. G. Craighead, “High quality factor resonance at room temperature with nanostrings under high tensile stress,” J. Appl. Phys. 99, 124304 (2006).
    [Crossref]
  14. H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Theoretical and experimental study of radiation pressure-induced mechanical oscillations (parametric instability) in optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 12, 96–107 (2006).
    [Crossref]
  15. Low Phase Noise Quartz Crystal Oscillator, Model FE-102A. http://www.freqelec.com/qz_osc_fe102a.html

2011 (1)

2010 (2)

A. Cho, “Putting light’s light touch to work as optics meets mechanics,” Science 14,  5980(5893), 812–813, (2010).
[Crossref]

S. Tallur, S. Sridaran, and S. A. Bhave, “Phase noise modeling of opto-mechanical oscillators,” IEEE Frequency Control Symposium (FCS 2010), Newport Beach, California, 268–272, (2010).

2009 (6)

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivire, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nature Phys. 5, 909–914 (2009).
[Crossref]

Q. P. Unterreithmeier, E. M. Weig, and J. P. Kotthaus, “Universal transduction scheme for nanomechanical systems based on dielectric forces,” Nature 458, 1001–1004 (2009).
[Crossref] [PubMed]

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett.,  102, 113601, (2009).
[Crossref] [PubMed]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 7882 (2009).

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633636 (2009).
[Crossref] [PubMed]

A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17, 11366–11370 (2009).
[Crossref] [PubMed]

2008 (1)

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: Back-action at the mesoscale,” Science 29,  321(5893), 1172–1176, (2008).
[Crossref]

2006 (3)

S. S. Verbridge, J. M. Parpia, R. B. Reichenbach, L. M. Bellan, and H. G. Craighead, “High quality factor resonance at room temperature with nanostrings under high tensile stress,” J. Appl. Phys. 99, 124304 (2006).
[Crossref]

H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Theoretical and experimental study of radiation pressure-induced mechanical oscillations (parametric instability) in optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 12, 96–107 (2006).
[Crossref]

M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micromechanical oscillator,” Phys. Rev. A 74, 023813 (2006).
[Crossref]

2005 (1)

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[Crossref] [PubMed]

Anetsberger, G.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivire, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nature Phys. 5, 909–914 (2009).
[Crossref]

Arcizet, O.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivire, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nature Phys. 5, 909–914 (2009).
[Crossref]

Bellan, L. M.

S. S. Verbridge, J. M. Parpia, R. B. Reichenbach, L. M. Bellan, and H. G. Craighead, “High quality factor resonance at room temperature with nanostrings under high tensile stress,” J. Appl. Phys. 99, 124304 (2006).
[Crossref]

Bhave, S. A.

S. Tallur, S. Sridaran, and S. A. Bhave, “Phase noise modeling of opto-mechanical oscillators,” IEEE Frequency Control Symposium (FCS 2010), Newport Beach, California, 268–272, (2010).

Camacho, R. M.

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 7882 (2009).

Carmon, T.

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett.,  102, 113601, (2009).
[Crossref] [PubMed]

H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Theoretical and experimental study of radiation pressure-induced mechanical oscillations (parametric instability) in optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 12, 96–107 (2006).
[Crossref]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[Crossref] [PubMed]

Chan, J.

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 7882 (2009).

Chen, L.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633636 (2009).
[Crossref] [PubMed]

Cho, A.

A. Cho, “Putting light’s light touch to work as optics meets mechanics,” Science 14,  5980(5893), 812–813, (2010).
[Crossref]

Craighead, H. G.

S. S. Verbridge, J. M. Parpia, R. B. Reichenbach, L. M. Bellan, and H. G. Craighead, “High quality factor resonance at room temperature with nanostrings under high tensile stress,” J. Appl. Phys. 99, 124304 (2006).
[Crossref]

Eichenfield, M.

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 7882 (2009).

Gondarenko, A.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633636 (2009).
[Crossref] [PubMed]

A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17, 11366–11370 (2009).
[Crossref] [PubMed]

Hajimiri, A.

M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micromechanical oscillator,” Phys. Rev. A 74, 023813 (2006).
[Crossref]

Hossein-Zadeh, M.

M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micromechanical oscillator,” Phys. Rev. A 74, 023813 (2006).
[Crossref]

Ilchenko, V. S.

Kippenberg, T. J.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivire, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nature Phys. 5, 909–914 (2009).
[Crossref]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: Back-action at the mesoscale,” Science 29,  321(5893), 1172–1176, (2008).
[Crossref]

H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Theoretical and experimental study of radiation pressure-induced mechanical oscillations (parametric instability) in optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 12, 96–107 (2006).
[Crossref]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[Crossref] [PubMed]

Kotthaus, J. P.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivire, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nature Phys. 5, 909–914 (2009).
[Crossref]

Q. P. Unterreithmeier, E. M. Weig, and J. P. Kotthaus, “Universal transduction scheme for nanomechanical systems based on dielectric forces,” Nature 458, 1001–1004 (2009).
[Crossref] [PubMed]

Levy, J. S.

Lipson, M.

A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17, 11366–11370 (2009).
[Crossref] [PubMed]

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633636 (2009).
[Crossref] [PubMed]

Maleki, L.

Matsko, A. B.

Painter, O.

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 7882 (2009).

Parpia, J. M.

S. S. Verbridge, J. M. Parpia, R. B. Reichenbach, L. M. Bellan, and H. G. Craighead, “High quality factor resonance at room temperature with nanostrings under high tensile stress,” J. Appl. Phys. 99, 124304 (2006).
[Crossref]

Reichenbach, R. B.

S. S. Verbridge, J. M. Parpia, R. B. Reichenbach, L. M. Bellan, and H. G. Craighead, “High quality factor resonance at room temperature with nanostrings under high tensile stress,” J. Appl. Phys. 99, 124304 (2006).
[Crossref]

Rivire, R.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivire, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nature Phys. 5, 909–914 (2009).
[Crossref]

Rokhsari, H.

M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micromechanical oscillator,” Phys. Rev. A 74, 023813 (2006).
[Crossref]

H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Theoretical and experimental study of radiation pressure-induced mechanical oscillations (parametric instability) in optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 12, 96–107 (2006).
[Crossref]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[Crossref] [PubMed]

Savchenkov, A. A.

Schliesser, A.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivire, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nature Phys. 5, 909–914 (2009).
[Crossref]

Seidel, D.

Sridaran, S.

S. Tallur, S. Sridaran, and S. A. Bhave, “Phase noise modeling of opto-mechanical oscillators,” IEEE Frequency Control Symposium (FCS 2010), Newport Beach, California, 268–272, (2010).

Tallur, S.

S. Tallur, S. Sridaran, and S. A. Bhave, “Phase noise modeling of opto-mechanical oscillators,” IEEE Frequency Control Symposium (FCS 2010), Newport Beach, California, 268–272, (2010).

Tomes, M.

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett.,  102, 113601, (2009).
[Crossref] [PubMed]

Unterreithmeier, Q. P.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivire, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nature Phys. 5, 909–914 (2009).
[Crossref]

Q. P. Unterreithmeier, E. M. Weig, and J. P. Kotthaus, “Universal transduction scheme for nanomechanical systems based on dielectric forces,” Nature 458, 1001–1004 (2009).
[Crossref] [PubMed]

Vahala, K. J.

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 7882 (2009).

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: Back-action at the mesoscale,” Science 29,  321(5893), 1172–1176, (2008).
[Crossref]

M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micromechanical oscillator,” Phys. Rev. A 74, 023813 (2006).
[Crossref]

H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Theoretical and experimental study of radiation pressure-induced mechanical oscillations (parametric instability) in optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 12, 96–107 (2006).
[Crossref]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[Crossref] [PubMed]

Verbridge, S. S.

S. S. Verbridge, J. M. Parpia, R. B. Reichenbach, L. M. Bellan, and H. G. Craighead, “High quality factor resonance at room temperature with nanostrings under high tensile stress,” J. Appl. Phys. 99, 124304 (2006).
[Crossref]

Weig, E. M.

Q. P. Unterreithmeier, E. M. Weig, and J. P. Kotthaus, “Universal transduction scheme for nanomechanical systems based on dielectric forces,” Nature 458, 1001–1004 (2009).
[Crossref] [PubMed]

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivire, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nature Phys. 5, 909–914 (2009).
[Crossref]

Wiederhecker, G. S.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633636 (2009).
[Crossref] [PubMed]

Yang, L.

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[Crossref] [PubMed]

IEEE Frequency Control Symposium (FCS 2010), Newport Beach, California (1)

S. Tallur, S. Sridaran, and S. A. Bhave, “Phase noise modeling of opto-mechanical oscillators,” IEEE Frequency Control Symposium (FCS 2010), Newport Beach, California, 268–272, (2010).

IEEE J. Sel. Top. Quantum Electron. (1)

H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Theoretical and experimental study of radiation pressure-induced mechanical oscillations (parametric instability) in optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 12, 96–107 (2006).
[Crossref]

J. Appl. Phys. (1)

S. S. Verbridge, J. M. Parpia, R. B. Reichenbach, L. M. Bellan, and H. G. Craighead, “High quality factor resonance at room temperature with nanostrings under high tensile stress,” J. Appl. Phys. 99, 124304 (2006).
[Crossref]

Nature (3)

Q. P. Unterreithmeier, E. M. Weig, and J. P. Kotthaus, “Universal transduction scheme for nanomechanical systems based on dielectric forces,” Nature 458, 1001–1004 (2009).
[Crossref] [PubMed]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 7882 (2009).

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633636 (2009).
[Crossref] [PubMed]

Nature Phys. (1)

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivire, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nature Phys. 5, 909–914 (2009).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (1)

M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micromechanical oscillator,” Phys. Rev. A 74, 023813 (2006).
[Crossref]

Phys. Rev. Lett. (2)

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[Crossref] [PubMed]

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett.,  102, 113601, (2009).
[Crossref] [PubMed]

Science (2)

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: Back-action at the mesoscale,” Science 29,  321(5893), 1172–1176, (2008).
[Crossref]

A. Cho, “Putting light’s light touch to work as optics meets mechanics,” Science 14,  5980(5893), 812–813, (2010).
[Crossref]

Other (1)

Low Phase Noise Quartz Crystal Oscillator, Model FE-102A. http://www.freqelec.com/qz_osc_fe102a.html

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics