Abstract

An all-optical frequency upconversion technique using a quasi optical single sideband (q-OSSB) signal in a nonlinear semiconductor optical amplifier (NSOA) for radio-over-fiber applications is proposed and experimentally demonstrated. An optical radio frequency signal (fRF = 37.5 GHz) in the form of a q-OSSB signal is generated by mixing an optical intermediate frequency (IF) signal (fIF = 2.5 GHz) with an optical local oscillator signal (fLO = 35 GHz) utilizing coherent population oscillation and cross gain modulation effects in an NSOA. The phase noise, conversion efficiency, spurious free dynamic range (SFDR), and transmission characteristics of the q-OSSB signal are investigated.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H.-S. Kim, T. T. Pham, Y.-Y. Won, and S.-K. Han, “Simultaneous wired and wireless 1.25 Gb/s bidirectional WDM-RoF transmission using multiple optical carrier suppression in FP-LD,” J. Lightwave Technol. 27(14), 2744–2750 (2009).
    [CrossRef]
  2. C. Lim, A. Nirmalathas, M. Bakaul, P. Gamage, K.-L. Lee, Y. Yang, D. Novak, and R. Waterhouse, “Fiber-wireless networks and subsystem technologies,” J. Lightwave Technol. 28(4), 390–405 (2010).
    [CrossRef]
  3. P. Bonenfant, “The evolution of SONET/SDH over WDM,” Opt. Photon. News 14(3), 32–37 (2003).
    [CrossRef]
  4. G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
    [CrossRef]
  5. H. Kim, “EML-based optical single sideband transmitter,” IEEE Photon. Technol. Lett. 20(4), 243–245 (2008).
    [CrossRef]
  6. J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fibre chromatic dispersion penalty on 1550nm millimeter-wave optical transmission,” Electron. Lett. 33(6), 512–513 (1997).
    [CrossRef]
  7. S. E. Schwarz and T. Y. Tan, “Wave interactions in saturable absorbers,” Appl. Phys. Lett. 10(1), 4–6 (1967).
    [CrossRef]
  8. M. Sargent, “Spectroscopic techniques based on Lamb’s laser theory,” Phys. Rep. 43(5), 223–265 (1978).
    [CrossRef]
  9. R. W. Boyd, M. G. Raymer, P. Marum, and D. J. Harter, “Four-wave parametric interactions in a strongly driven two-level system,” Phys. Rev. A 24(1), 411–423 (1981).
    [CrossRef]
  10. A. D. Wilson-Gordon, “Gain in a three-level Λ system driven by a single pump,” Phys. Rev. A 48(6), 4639–4647 (1993).
    [CrossRef] [PubMed]
  11. M. Park, K.-C. Kim, and J.-I. Song, “Generation and transmission of a quasi-optical single sideband signal for radio-over-fiber systems,” IEEE Photon. Technol. Lett. 23(6), 383–385 (2011).
    [CrossRef]
  12. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
    [CrossRef] [PubMed]
  13. Y. Chen, W. Xue, F. Ohman, and J. Mork, “Theory of optical-filtering enhanced slow and fast light effects in semiconductor optical waveguides,” J. Lightwave Technol. 26(23), 3734–3743 (2008).
    [CrossRef]
  14. T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
    [CrossRef]
  15. H.-J. Kim and J.-I. Song, “All-optical single-sideband upconversion with an optical interleaver and a semiconductor optical amplifier for radio-over-fiber applications,” Opt. Express 17(12), 9810–9817 (2009).
    [CrossRef] [PubMed]
  16. H.-J. Kim and J.-I. Song, “Full-duplex WDM-based RoF system using all-optical SSB frequency upconversion and wavelength re-use techniques,” IEEE Trans. Microw. Theory Tech. 58(11), 3175–3180 (2010).
    [CrossRef]
  17. V. J. Urick, M. S. Rogge, P. F. Knapp, L. Swingen, and F. Bucholtz, “Wide-band predistortion linearization for externally modulated long-haul analog fiber-optic links,” IEEE Trans. Microw. Theory Tech. 54(4), 1458–1463 (2006).
    [CrossRef]

2011 (1)

M. Park, K.-C. Kim, and J.-I. Song, “Generation and transmission of a quasi-optical single sideband signal for radio-over-fiber systems,” IEEE Photon. Technol. Lett. 23(6), 383–385 (2011).
[CrossRef]

2010 (2)

H.-J. Kim and J.-I. Song, “Full-duplex WDM-based RoF system using all-optical SSB frequency upconversion and wavelength re-use techniques,” IEEE Trans. Microw. Theory Tech. 58(11), 3175–3180 (2010).
[CrossRef]

C. Lim, A. Nirmalathas, M. Bakaul, P. Gamage, K.-L. Lee, Y. Yang, D. Novak, and R. Waterhouse, “Fiber-wireless networks and subsystem technologies,” J. Lightwave Technol. 28(4), 390–405 (2010).
[CrossRef]

2009 (2)

2008 (2)

2006 (1)

V. J. Urick, M. S. Rogge, P. F. Knapp, L. Swingen, and F. Bucholtz, “Wide-band predistortion linearization for externally modulated long-haul analog fiber-optic links,” IEEE Trans. Microw. Theory Tech. 54(4), 1458–1463 (2006).
[CrossRef]

2003 (2)

P. Bonenfant, “The evolution of SONET/SDH over WDM,” Opt. Photon. News 14(3), 32–37 (2003).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[CrossRef] [PubMed]

1997 (2)

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
[CrossRef]

J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fibre chromatic dispersion penalty on 1550nm millimeter-wave optical transmission,” Electron. Lett. 33(6), 512–513 (1997).
[CrossRef]

1996 (1)

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[CrossRef]

1993 (1)

A. D. Wilson-Gordon, “Gain in a three-level Λ system driven by a single pump,” Phys. Rev. A 48(6), 4639–4647 (1993).
[CrossRef] [PubMed]

1981 (1)

R. W. Boyd, M. G. Raymer, P. Marum, and D. J. Harter, “Four-wave parametric interactions in a strongly driven two-level system,” Phys. Rev. A 24(1), 411–423 (1981).
[CrossRef]

1978 (1)

M. Sargent, “Spectroscopic techniques based on Lamb’s laser theory,” Phys. Rep. 43(5), 223–265 (1978).
[CrossRef]

1967 (1)

S. E. Schwarz and T. Y. Tan, “Wave interactions in saturable absorbers,” Appl. Phys. Lett. 10(1), 4–6 (1967).
[CrossRef]

Ahmed, Z.

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
[CrossRef]

Bakaul, M.

Bigelow, M. S.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[CrossRef] [PubMed]

Bonenfant, P.

P. Bonenfant, “The evolution of SONET/SDH over WDM,” Opt. Photon. News 14(3), 32–37 (2003).
[CrossRef]

Boyd, R. W.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[CrossRef] [PubMed]

R. W. Boyd, M. G. Raymer, P. Marum, and D. J. Harter, “Four-wave parametric interactions in a strongly driven two-level system,” Phys. Rev. A 24(1), 411–423 (1981).
[CrossRef]

Bucholtz, F.

V. J. Urick, M. S. Rogge, P. F. Knapp, L. Swingen, and F. Bucholtz, “Wide-band predistortion linearization for externally modulated long-haul analog fiber-optic links,” IEEE Trans. Microw. Theory Tech. 54(4), 1458–1463 (2006).
[CrossRef]

Chen, Y.

Durhuus, T.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[CrossRef]

Gamage, P.

Han, S.-K.

Harter, D. J.

R. W. Boyd, M. G. Raymer, P. Marum, and D. J. Harter, “Four-wave parametric interactions in a strongly driven two-level system,” Phys. Rev. A 24(1), 411–423 (1981).
[CrossRef]

Joergensen, C.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[CrossRef]

Kim, H.

H. Kim, “EML-based optical single sideband transmitter,” IEEE Photon. Technol. Lett. 20(4), 243–245 (2008).
[CrossRef]

Kim, H.-J.

H.-J. Kim and J.-I. Song, “Full-duplex WDM-based RoF system using all-optical SSB frequency upconversion and wavelength re-use techniques,” IEEE Trans. Microw. Theory Tech. 58(11), 3175–3180 (2010).
[CrossRef]

H.-J. Kim and J.-I. Song, “All-optical single-sideband upconversion with an optical interleaver and a semiconductor optical amplifier for radio-over-fiber applications,” Opt. Express 17(12), 9810–9817 (2009).
[CrossRef] [PubMed]

Kim, H.-S.

Kim, K.-C.

M. Park, K.-C. Kim, and J.-I. Song, “Generation and transmission of a quasi-optical single sideband signal for radio-over-fiber systems,” IEEE Photon. Technol. Lett. 23(6), 383–385 (2011).
[CrossRef]

Knapp, P. F.

V. J. Urick, M. S. Rogge, P. F. Knapp, L. Swingen, and F. Bucholtz, “Wide-band predistortion linearization for externally modulated long-haul analog fiber-optic links,” IEEE Trans. Microw. Theory Tech. 54(4), 1458–1463 (2006).
[CrossRef]

Lau, K. Y.

J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fibre chromatic dispersion penalty on 1550nm millimeter-wave optical transmission,” Electron. Lett. 33(6), 512–513 (1997).
[CrossRef]

Lee, K.-L.

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[CrossRef] [PubMed]

Lim, C.

Lykke Danielsen, S.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[CrossRef]

Marum, P.

R. W. Boyd, M. G. Raymer, P. Marum, and D. J. Harter, “Four-wave parametric interactions in a strongly driven two-level system,” Phys. Rev. A 24(1), 411–423 (1981).
[CrossRef]

Mikkelsen, B.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[CrossRef]

Mork, J.

Nirmalathas, A.

Novak, D.

C. Lim, A. Nirmalathas, M. Bakaul, P. Gamage, K.-L. Lee, Y. Yang, D. Novak, and R. Waterhouse, “Fiber-wireless networks and subsystem technologies,” J. Lightwave Technol. 28(4), 390–405 (2010).
[CrossRef]

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
[CrossRef]

Ohman, F.

Park, J.

J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fibre chromatic dispersion penalty on 1550nm millimeter-wave optical transmission,” Electron. Lett. 33(6), 512–513 (1997).
[CrossRef]

Park, M.

M. Park, K.-C. Kim, and J.-I. Song, “Generation and transmission of a quasi-optical single sideband signal for radio-over-fiber systems,” IEEE Photon. Technol. Lett. 23(6), 383–385 (2011).
[CrossRef]

Pham, T. T.

Raymer, M. G.

R. W. Boyd, M. G. Raymer, P. Marum, and D. J. Harter, “Four-wave parametric interactions in a strongly driven two-level system,” Phys. Rev. A 24(1), 411–423 (1981).
[CrossRef]

Rogge, M. S.

V. J. Urick, M. S. Rogge, P. F. Knapp, L. Swingen, and F. Bucholtz, “Wide-band predistortion linearization for externally modulated long-haul analog fiber-optic links,” IEEE Trans. Microw. Theory Tech. 54(4), 1458–1463 (2006).
[CrossRef]

Sargent, M.

M. Sargent, “Spectroscopic techniques based on Lamb’s laser theory,” Phys. Rep. 43(5), 223–265 (1978).
[CrossRef]

Schwarz, S. E.

S. E. Schwarz and T. Y. Tan, “Wave interactions in saturable absorbers,” Appl. Phys. Lett. 10(1), 4–6 (1967).
[CrossRef]

Smith, G. H.

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
[CrossRef]

Song, J.-I.

M. Park, K.-C. Kim, and J.-I. Song, “Generation and transmission of a quasi-optical single sideband signal for radio-over-fiber systems,” IEEE Photon. Technol. Lett. 23(6), 383–385 (2011).
[CrossRef]

H.-J. Kim and J.-I. Song, “Full-duplex WDM-based RoF system using all-optical SSB frequency upconversion and wavelength re-use techniques,” IEEE Trans. Microw. Theory Tech. 58(11), 3175–3180 (2010).
[CrossRef]

H.-J. Kim and J.-I. Song, “All-optical single-sideband upconversion with an optical interleaver and a semiconductor optical amplifier for radio-over-fiber applications,” Opt. Express 17(12), 9810–9817 (2009).
[CrossRef] [PubMed]

Sorin, W. V.

J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fibre chromatic dispersion penalty on 1550nm millimeter-wave optical transmission,” Electron. Lett. 33(6), 512–513 (1997).
[CrossRef]

Stubkjaer, K. E.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[CrossRef]

Swingen, L.

V. J. Urick, M. S. Rogge, P. F. Knapp, L. Swingen, and F. Bucholtz, “Wide-band predistortion linearization for externally modulated long-haul analog fiber-optic links,” IEEE Trans. Microw. Theory Tech. 54(4), 1458–1463 (2006).
[CrossRef]

Tan, T. Y.

S. E. Schwarz and T. Y. Tan, “Wave interactions in saturable absorbers,” Appl. Phys. Lett. 10(1), 4–6 (1967).
[CrossRef]

Urick, V. J.

V. J. Urick, M. S. Rogge, P. F. Knapp, L. Swingen, and F. Bucholtz, “Wide-band predistortion linearization for externally modulated long-haul analog fiber-optic links,” IEEE Trans. Microw. Theory Tech. 54(4), 1458–1463 (2006).
[CrossRef]

Waterhouse, R.

Wilson-Gordon, A. D.

A. D. Wilson-Gordon, “Gain in a three-level Λ system driven by a single pump,” Phys. Rev. A 48(6), 4639–4647 (1993).
[CrossRef] [PubMed]

Won, Y.-Y.

Xue, W.

Yang, Y.

Appl. Phys. Lett. (1)

S. E. Schwarz and T. Y. Tan, “Wave interactions in saturable absorbers,” Appl. Phys. Lett. 10(1), 4–6 (1967).
[CrossRef]

Electron. Lett. (1)

J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fibre chromatic dispersion penalty on 1550nm millimeter-wave optical transmission,” Electron. Lett. 33(6), 512–513 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

H. Kim, “EML-based optical single sideband transmitter,” IEEE Photon. Technol. Lett. 20(4), 243–245 (2008).
[CrossRef]

M. Park, K.-C. Kim, and J.-I. Song, “Generation and transmission of a quasi-optical single sideband signal for radio-over-fiber systems,” IEEE Photon. Technol. Lett. 23(6), 383–385 (2011).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (3)

H.-J. Kim and J.-I. Song, “Full-duplex WDM-based RoF system using all-optical SSB frequency upconversion and wavelength re-use techniques,” IEEE Trans. Microw. Theory Tech. 58(11), 3175–3180 (2010).
[CrossRef]

V. J. Urick, M. S. Rogge, P. F. Knapp, L. Swingen, and F. Bucholtz, “Wide-band predistortion linearization for externally modulated long-haul analog fiber-optic links,” IEEE Trans. Microw. Theory Tech. 54(4), 1458–1463 (2006).
[CrossRef]

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
[CrossRef]

J. Lightwave Technol. (4)

Opt. Express (1)

Opt. Photon. News (1)

P. Bonenfant, “The evolution of SONET/SDH over WDM,” Opt. Photon. News 14(3), 32–37 (2003).
[CrossRef]

Phys. Rep. (1)

M. Sargent, “Spectroscopic techniques based on Lamb’s laser theory,” Phys. Rep. 43(5), 223–265 (1978).
[CrossRef]

Phys. Rev. A (2)

R. W. Boyd, M. G. Raymer, P. Marum, and D. J. Harter, “Four-wave parametric interactions in a strongly driven two-level system,” Phys. Rev. A 24(1), 411–423 (1981).
[CrossRef]

A. D. Wilson-Gordon, “Gain in a three-level Λ system driven by a single pump,” Phys. Rev. A 48(6), 4639–4647 (1993).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Concept of q-OSSB upconversion: (a) Optical spectra at the input of the NSOA, (b) Optical spectra at the output of the NSOA (c) spectra of the electrical signal detected by a photodetector.

Fig. 2
Fig. 2

Experimental setup for the all-optical frequency upconversion of a q-OSSB signal and transmission (LD: laser diode, EAM: electroabsorption modulator, VOA: variable optical attenuator, EDFA: erbium-doped amplifier, NSOA: nonlinear semiconductor optical amplifier, OC: optical coupler, OF: optical fiber, PD: photodetector, PA: power amplifier, ESA: electrical spectrum analyzer).

Fig. 3
Fig. 3

Relative frequency responses of the photodetector and the power amplifier as a function of the frequency.

Fig. 4
Fig. 4

(a) Optical spectra of an upconverted q-OSSB signal and an optical LO signal: (b) Ratio of two optical sideband signals as a function of the optical LO signal power for different optical IF signal powers, (c) Electrical spectrum of the q-OSSB signal converted by a photodetector.

Fig. 5
Fig. 5

Measured phase noise of the upper sideband of the electrical IF, LO, and RF signals.

Fig. 6
Fig. 6

Upconversion efficiency as a function of the optical LO power for different optical IF powers.

Fig. 7
Fig. 7

Measured electrical power of the fundamental and third harmonics of the electrical RF signal. Solid: electrical IF signal before q-OSSB upconversion, Open: electrical RF signal (USB) after q-OSSB upconversion.

Fig. 8
Fig. 8

SFDRs as a function of the electrical LO power for different optical IF and LO powers.

Fig. 9
Fig. 9

Measured electrical powers of the q-OSSB and ODSB signals as a function of the RF frequency.

Metrics