Abstract

In this paper we present results of experiments designed to increase our understanding of the photorefractive effect occurring during processes of dynamic hologram generation in Hybrid Photorefractive Liquid Crystal Structures (HPLCS). We also propose equivalent mathematical model which can be used to optimize those structures in order to obtain the highest diffraction efficiency in possibly shortest time.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Nakagawa, M. Zgonik, and P. Günter, “Reflection gratings in self-pumped phase-conjugate mirrors,” J. Opt. Soc. Am. B 14(4), 839–845 (1997).
    [CrossRef]
  2. S. Zwick, T. Haist, M. Warber, and W. Osten, “Dynamic holography using pixelated light modulators,” Appl. Opt. 49(25), F47–F58 (2010).
    [CrossRef] [PubMed]
  3. S. Bartkiewicz, P. Sikorski, and A. Miniewicz, “Optical image correlator realized with a hybrid liquid-crystal-photoconducting polymer structure,” Opt. Lett. 23(22), 1769–1771 (1998).
    [CrossRef] [PubMed]
  4. J. Mysliwiec, S. Bartkiewicz, and A. Miniewicz, “Influence of light on self-diffraction process in liquid crystal sells with photoconducting polymeric layers,” Opto-Electron. Rev. 10, 53–58 (2002).
  5. J. Merlin, E. Chao, M. Winkler, K. Singer, P. Korneychuk, and Y. Reznikov, “All-optical switching in a nematic liquid crystal twist cell,” Opt. Express 13(13), 5024–5029 (2005).
    [CrossRef] [PubMed]
  6. G. Cook, A. V. Glushchenko, V. Reshetnyak, A. T. Griffith, M. A. Saleh, and D. R. Evans, “Nanoparticle doped organic-inorganic hybrid photorefractives,” Opt. Express 16(6), 4015–4022 (2008).
    [CrossRef] [PubMed]
  7. E. V. Rudenko and A. V. Sukhov, “Photoinduced conductivity and photorefraction in nematic liquid crystals,” JETP Lett. 59, 142–145 (1994).
  8. I. C. Khoo, “Orientation photorefractive effects in nematic liquid crystal films,” IEEE J. Quantum Electron. 32(3), 525–534 (1996).
    [CrossRef]
  9. S. Bartkiewicz and A. Miniewicz, “Mechanism of optical recording in doped liquid crystals,” Adv. Mater. Opt. Electron. 6(56), 219–224 (1996).
    [CrossRef]
  10. F. Simoni, G. Cipparrone, A. Mazzulla, and P. Pagliusi, “Polymer dispersed liquid crystals: effects of photorefractivity and local heating on holographic recording,” Chem. Phys. 245(1-3), 429–436 (1999).
    [CrossRef]
  11. N. Tabiryan and C. Umeton, “Surface-activated photorefractivity and electro-optic phenomena in liquid crystals,” J. Opt. Soc. Am. B 15(7), 1912–1917 (1998).
    [CrossRef]
  12. L. Sznitko, S. Bartkiewicz, A. Anczykowska, and J. Mysliwiec, “Study of self-diffraction phenomenon in hybrid liquid crystal panel,” J. Phys. D Appl. Phys. 42(20), 205107 (2009).
    [CrossRef]
  13. P. Pagliusi and G. Cipparone, “Surface-induced photorefractive-like effect in pure liquid crystals,” Appl. Phys. Lett. 80(2), 168–170 (2002).
    [CrossRef]
  14. M. Kaczmarek, A. Dyadusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two beam coupling in liquid crystal cells with photoconducting polymer layers,” J. Appl. Phys. 96(5), 2616–2623 (2004).
    [CrossRef]
  15. P. Korneychuk, O. Tereshchenko, Y. Reznikov, V. Reshetnyak, and K. Singer, “Hidden surface photorefractive gratings in a nematic-liquid crystal cell in the absence of a deposited alignment layer,” J. Opt. Soc. Am. B 23(6), 1007–1011 (2006).
    [CrossRef]
  16. J.-I. Baek, Y.-H. Kwon, J. C. Kim, and T.-H. Yoon, “Dual-mode switching of a liquid crystal panel for viewing angle control,” Appl. Phys. Lett. 90(10), 101104 (2007).
    [CrossRef]
  17. I. C. Khoo, “Liquid crystal optics and electro-optics” in Liquid Crystals, (Wiley-Interscience, New Jersey, 2007).
  18. R. Dąbrowski, J. Dziaduszek, A. Ziółek, Ł. Szczuciński, Z. Stolarz, G. Sasnouski, V. Bezborodov, W. Lapanik, S. Gauza, and S. T. Wu, “Low viscosity, high birefringence liquid crystalline compounds and mixtures,” Opto-Electron. Rev. 15(1), 47–51 (2007).
    [CrossRef]
  19. A. Sobolewska and S. Bartkiewicz, “Three gratings coupling during the holographic grating recording process in azobenzene-functionalized polymer,” Appl. Phys. Lett. 92(25), 253305 (2008).
    [CrossRef]
  20. M. G. Moharam and L. Young, “Criterion for Bragg and Raman-Nath diffraction regimes,” Appl. Opt. 17(11), 1757–1759 (1978).
    [CrossRef] [PubMed]
  21. W. D. Gill, “Drift mobilities in amorphous charge-transfer complexes of trinitrofluorenone and poly-n-vinylcarbazole,” J. Appl. Phys. 43(12), 5033–5040 (1972).
    [CrossRef]

2010

2009

L. Sznitko, S. Bartkiewicz, A. Anczykowska, and J. Mysliwiec, “Study of self-diffraction phenomenon in hybrid liquid crystal panel,” J. Phys. D Appl. Phys. 42(20), 205107 (2009).
[CrossRef]

2008

G. Cook, A. V. Glushchenko, V. Reshetnyak, A. T. Griffith, M. A. Saleh, and D. R. Evans, “Nanoparticle doped organic-inorganic hybrid photorefractives,” Opt. Express 16(6), 4015–4022 (2008).
[CrossRef] [PubMed]

A. Sobolewska and S. Bartkiewicz, “Three gratings coupling during the holographic grating recording process in azobenzene-functionalized polymer,” Appl. Phys. Lett. 92(25), 253305 (2008).
[CrossRef]

2007

J.-I. Baek, Y.-H. Kwon, J. C. Kim, and T.-H. Yoon, “Dual-mode switching of a liquid crystal panel for viewing angle control,” Appl. Phys. Lett. 90(10), 101104 (2007).
[CrossRef]

R. Dąbrowski, J. Dziaduszek, A. Ziółek, Ł. Szczuciński, Z. Stolarz, G. Sasnouski, V. Bezborodov, W. Lapanik, S. Gauza, and S. T. Wu, “Low viscosity, high birefringence liquid crystalline compounds and mixtures,” Opto-Electron. Rev. 15(1), 47–51 (2007).
[CrossRef]

2006

2005

2004

M. Kaczmarek, A. Dyadusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two beam coupling in liquid crystal cells with photoconducting polymer layers,” J. Appl. Phys. 96(5), 2616–2623 (2004).
[CrossRef]

2002

P. Pagliusi and G. Cipparone, “Surface-induced photorefractive-like effect in pure liquid crystals,” Appl. Phys. Lett. 80(2), 168–170 (2002).
[CrossRef]

J. Mysliwiec, S. Bartkiewicz, and A. Miniewicz, “Influence of light on self-diffraction process in liquid crystal sells with photoconducting polymeric layers,” Opto-Electron. Rev. 10, 53–58 (2002).

1999

F. Simoni, G. Cipparrone, A. Mazzulla, and P. Pagliusi, “Polymer dispersed liquid crystals: effects of photorefractivity and local heating on holographic recording,” Chem. Phys. 245(1-3), 429–436 (1999).
[CrossRef]

1998

1997

1996

I. C. Khoo, “Orientation photorefractive effects in nematic liquid crystal films,” IEEE J. Quantum Electron. 32(3), 525–534 (1996).
[CrossRef]

S. Bartkiewicz and A. Miniewicz, “Mechanism of optical recording in doped liquid crystals,” Adv. Mater. Opt. Electron. 6(56), 219–224 (1996).
[CrossRef]

1994

E. V. Rudenko and A. V. Sukhov, “Photoinduced conductivity and photorefraction in nematic liquid crystals,” JETP Lett. 59, 142–145 (1994).

1978

1972

W. D. Gill, “Drift mobilities in amorphous charge-transfer complexes of trinitrofluorenone and poly-n-vinylcarbazole,” J. Appl. Phys. 43(12), 5033–5040 (1972).
[CrossRef]

Anczykowska, A.

L. Sznitko, S. Bartkiewicz, A. Anczykowska, and J. Mysliwiec, “Study of self-diffraction phenomenon in hybrid liquid crystal panel,” J. Phys. D Appl. Phys. 42(20), 205107 (2009).
[CrossRef]

Baek, J.-I.

J.-I. Baek, Y.-H. Kwon, J. C. Kim, and T.-H. Yoon, “Dual-mode switching of a liquid crystal panel for viewing angle control,” Appl. Phys. Lett. 90(10), 101104 (2007).
[CrossRef]

Bartkiewicz, S.

L. Sznitko, S. Bartkiewicz, A. Anczykowska, and J. Mysliwiec, “Study of self-diffraction phenomenon in hybrid liquid crystal panel,” J. Phys. D Appl. Phys. 42(20), 205107 (2009).
[CrossRef]

A. Sobolewska and S. Bartkiewicz, “Three gratings coupling during the holographic grating recording process in azobenzene-functionalized polymer,” Appl. Phys. Lett. 92(25), 253305 (2008).
[CrossRef]

J. Mysliwiec, S. Bartkiewicz, and A. Miniewicz, “Influence of light on self-diffraction process in liquid crystal sells with photoconducting polymeric layers,” Opto-Electron. Rev. 10, 53–58 (2002).

S. Bartkiewicz, P. Sikorski, and A. Miniewicz, “Optical image correlator realized with a hybrid liquid-crystal-photoconducting polymer structure,” Opt. Lett. 23(22), 1769–1771 (1998).
[CrossRef] [PubMed]

S. Bartkiewicz and A. Miniewicz, “Mechanism of optical recording in doped liquid crystals,” Adv. Mater. Opt. Electron. 6(56), 219–224 (1996).
[CrossRef]

Bezborodov, V.

R. Dąbrowski, J. Dziaduszek, A. Ziółek, Ł. Szczuciński, Z. Stolarz, G. Sasnouski, V. Bezborodov, W. Lapanik, S. Gauza, and S. T. Wu, “Low viscosity, high birefringence liquid crystalline compounds and mixtures,” Opto-Electron. Rev. 15(1), 47–51 (2007).
[CrossRef]

Chao, E.

Cipparone, G.

P. Pagliusi and G. Cipparone, “Surface-induced photorefractive-like effect in pure liquid crystals,” Appl. Phys. Lett. 80(2), 168–170 (2002).
[CrossRef]

Cipparrone, G.

F. Simoni, G. Cipparrone, A. Mazzulla, and P. Pagliusi, “Polymer dispersed liquid crystals: effects of photorefractivity and local heating on holographic recording,” Chem. Phys. 245(1-3), 429–436 (1999).
[CrossRef]

Cook, G.

Dabrowski, R.

R. Dąbrowski, J. Dziaduszek, A. Ziółek, Ł. Szczuciński, Z. Stolarz, G. Sasnouski, V. Bezborodov, W. Lapanik, S. Gauza, and S. T. Wu, “Low viscosity, high birefringence liquid crystalline compounds and mixtures,” Opto-Electron. Rev. 15(1), 47–51 (2007).
[CrossRef]

Dyadusha, A.

M. Kaczmarek, A. Dyadusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two beam coupling in liquid crystal cells with photoconducting polymer layers,” J. Appl. Phys. 96(5), 2616–2623 (2004).
[CrossRef]

Dziaduszek, J.

R. Dąbrowski, J. Dziaduszek, A. Ziółek, Ł. Szczuciński, Z. Stolarz, G. Sasnouski, V. Bezborodov, W. Lapanik, S. Gauza, and S. T. Wu, “Low viscosity, high birefringence liquid crystalline compounds and mixtures,” Opto-Electron. Rev. 15(1), 47–51 (2007).
[CrossRef]

Evans, D. R.

Gauza, S.

R. Dąbrowski, J. Dziaduszek, A. Ziółek, Ł. Szczuciński, Z. Stolarz, G. Sasnouski, V. Bezborodov, W. Lapanik, S. Gauza, and S. T. Wu, “Low viscosity, high birefringence liquid crystalline compounds and mixtures,” Opto-Electron. Rev. 15(1), 47–51 (2007).
[CrossRef]

Gill, W. D.

W. D. Gill, “Drift mobilities in amorphous charge-transfer complexes of trinitrofluorenone and poly-n-vinylcarbazole,” J. Appl. Phys. 43(12), 5033–5040 (1972).
[CrossRef]

Glushchenko, A. V.

Griffith, A. T.

Günter, P.

Haist, T.

Kaczmarek, M.

M. Kaczmarek, A. Dyadusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two beam coupling in liquid crystal cells with photoconducting polymer layers,” J. Appl. Phys. 96(5), 2616–2623 (2004).
[CrossRef]

Khoo, I. C.

M. Kaczmarek, A. Dyadusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two beam coupling in liquid crystal cells with photoconducting polymer layers,” J. Appl. Phys. 96(5), 2616–2623 (2004).
[CrossRef]

I. C. Khoo, “Orientation photorefractive effects in nematic liquid crystal films,” IEEE J. Quantum Electron. 32(3), 525–534 (1996).
[CrossRef]

Kim, J. C.

J.-I. Baek, Y.-H. Kwon, J. C. Kim, and T.-H. Yoon, “Dual-mode switching of a liquid crystal panel for viewing angle control,” Appl. Phys. Lett. 90(10), 101104 (2007).
[CrossRef]

Korneychuk, P.

Kwon, Y.-H.

J.-I. Baek, Y.-H. Kwon, J. C. Kim, and T.-H. Yoon, “Dual-mode switching of a liquid crystal panel for viewing angle control,” Appl. Phys. Lett. 90(10), 101104 (2007).
[CrossRef]

Lapanik, W.

R. Dąbrowski, J. Dziaduszek, A. Ziółek, Ł. Szczuciński, Z. Stolarz, G. Sasnouski, V. Bezborodov, W. Lapanik, S. Gauza, and S. T. Wu, “Low viscosity, high birefringence liquid crystalline compounds and mixtures,” Opto-Electron. Rev. 15(1), 47–51 (2007).
[CrossRef]

Mazzulla, A.

F. Simoni, G. Cipparrone, A. Mazzulla, and P. Pagliusi, “Polymer dispersed liquid crystals: effects of photorefractivity and local heating on holographic recording,” Chem. Phys. 245(1-3), 429–436 (1999).
[CrossRef]

Merlin, J.

Miniewicz, A.

J. Mysliwiec, S. Bartkiewicz, and A. Miniewicz, “Influence of light on self-diffraction process in liquid crystal sells with photoconducting polymeric layers,” Opto-Electron. Rev. 10, 53–58 (2002).

S. Bartkiewicz, P. Sikorski, and A. Miniewicz, “Optical image correlator realized with a hybrid liquid-crystal-photoconducting polymer structure,” Opt. Lett. 23(22), 1769–1771 (1998).
[CrossRef] [PubMed]

S. Bartkiewicz and A. Miniewicz, “Mechanism of optical recording in doped liquid crystals,” Adv. Mater. Opt. Electron. 6(56), 219–224 (1996).
[CrossRef]

Moharam, M. G.

Mysliwiec, J.

L. Sznitko, S. Bartkiewicz, A. Anczykowska, and J. Mysliwiec, “Study of self-diffraction phenomenon in hybrid liquid crystal panel,” J. Phys. D Appl. Phys. 42(20), 205107 (2009).
[CrossRef]

J. Mysliwiec, S. Bartkiewicz, and A. Miniewicz, “Influence of light on self-diffraction process in liquid crystal sells with photoconducting polymeric layers,” Opto-Electron. Rev. 10, 53–58 (2002).

Nakagawa, K.

Osten, W.

Pagliusi, P.

P. Pagliusi and G. Cipparone, “Surface-induced photorefractive-like effect in pure liquid crystals,” Appl. Phys. Lett. 80(2), 168–170 (2002).
[CrossRef]

F. Simoni, G. Cipparrone, A. Mazzulla, and P. Pagliusi, “Polymer dispersed liquid crystals: effects of photorefractivity and local heating on holographic recording,” Chem. Phys. 245(1-3), 429–436 (1999).
[CrossRef]

Reshetnyak, V.

Reznikov, Y.

Rudenko, E. V.

E. V. Rudenko and A. V. Sukhov, “Photoinduced conductivity and photorefraction in nematic liquid crystals,” JETP Lett. 59, 142–145 (1994).

Saleh, M. A.

Sasnouski, G.

R. Dąbrowski, J. Dziaduszek, A. Ziółek, Ł. Szczuciński, Z. Stolarz, G. Sasnouski, V. Bezborodov, W. Lapanik, S. Gauza, and S. T. Wu, “Low viscosity, high birefringence liquid crystalline compounds and mixtures,” Opto-Electron. Rev. 15(1), 47–51 (2007).
[CrossRef]

Sikorski, P.

Simoni, F.

F. Simoni, G. Cipparrone, A. Mazzulla, and P. Pagliusi, “Polymer dispersed liquid crystals: effects of photorefractivity and local heating on holographic recording,” Chem. Phys. 245(1-3), 429–436 (1999).
[CrossRef]

Singer, K.

Slussarenko, S.

M. Kaczmarek, A. Dyadusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two beam coupling in liquid crystal cells with photoconducting polymer layers,” J. Appl. Phys. 96(5), 2616–2623 (2004).
[CrossRef]

Sobolewska, A.

A. Sobolewska and S. Bartkiewicz, “Three gratings coupling during the holographic grating recording process in azobenzene-functionalized polymer,” Appl. Phys. Lett. 92(25), 253305 (2008).
[CrossRef]

Stolarz, Z.

R. Dąbrowski, J. Dziaduszek, A. Ziółek, Ł. Szczuciński, Z. Stolarz, G. Sasnouski, V. Bezborodov, W. Lapanik, S. Gauza, and S. T. Wu, “Low viscosity, high birefringence liquid crystalline compounds and mixtures,” Opto-Electron. Rev. 15(1), 47–51 (2007).
[CrossRef]

Sukhov, A. V.

E. V. Rudenko and A. V. Sukhov, “Photoinduced conductivity and photorefraction in nematic liquid crystals,” JETP Lett. 59, 142–145 (1994).

Szczucinski, L.

R. Dąbrowski, J. Dziaduszek, A. Ziółek, Ł. Szczuciński, Z. Stolarz, G. Sasnouski, V. Bezborodov, W. Lapanik, S. Gauza, and S. T. Wu, “Low viscosity, high birefringence liquid crystalline compounds and mixtures,” Opto-Electron. Rev. 15(1), 47–51 (2007).
[CrossRef]

Sznitko, L.

L. Sznitko, S. Bartkiewicz, A. Anczykowska, and J. Mysliwiec, “Study of self-diffraction phenomenon in hybrid liquid crystal panel,” J. Phys. D Appl. Phys. 42(20), 205107 (2009).
[CrossRef]

Tabiryan, N.

Tereshchenko, O.

Umeton, C.

Warber, M.

Winkler, M.

Wu, S. T.

R. Dąbrowski, J. Dziaduszek, A. Ziółek, Ł. Szczuciński, Z. Stolarz, G. Sasnouski, V. Bezborodov, W. Lapanik, S. Gauza, and S. T. Wu, “Low viscosity, high birefringence liquid crystalline compounds and mixtures,” Opto-Electron. Rev. 15(1), 47–51 (2007).
[CrossRef]

Yoon, T.-H.

J.-I. Baek, Y.-H. Kwon, J. C. Kim, and T.-H. Yoon, “Dual-mode switching of a liquid crystal panel for viewing angle control,” Appl. Phys. Lett. 90(10), 101104 (2007).
[CrossRef]

Young, L.

Zgonik, M.

Ziólek, A.

R. Dąbrowski, J. Dziaduszek, A. Ziółek, Ł. Szczuciński, Z. Stolarz, G. Sasnouski, V. Bezborodov, W. Lapanik, S. Gauza, and S. T. Wu, “Low viscosity, high birefringence liquid crystalline compounds and mixtures,” Opto-Electron. Rev. 15(1), 47–51 (2007).
[CrossRef]

Zwick, S.

Adv. Mater. Opt. Electron.

S. Bartkiewicz and A. Miniewicz, “Mechanism of optical recording in doped liquid crystals,” Adv. Mater. Opt. Electron. 6(56), 219–224 (1996).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

A. Sobolewska and S. Bartkiewicz, “Three gratings coupling during the holographic grating recording process in azobenzene-functionalized polymer,” Appl. Phys. Lett. 92(25), 253305 (2008).
[CrossRef]

P. Pagliusi and G. Cipparone, “Surface-induced photorefractive-like effect in pure liquid crystals,” Appl. Phys. Lett. 80(2), 168–170 (2002).
[CrossRef]

J.-I. Baek, Y.-H. Kwon, J. C. Kim, and T.-H. Yoon, “Dual-mode switching of a liquid crystal panel for viewing angle control,” Appl. Phys. Lett. 90(10), 101104 (2007).
[CrossRef]

Chem. Phys.

F. Simoni, G. Cipparrone, A. Mazzulla, and P. Pagliusi, “Polymer dispersed liquid crystals: effects of photorefractivity and local heating on holographic recording,” Chem. Phys. 245(1-3), 429–436 (1999).
[CrossRef]

IEEE J. Quantum Electron.

I. C. Khoo, “Orientation photorefractive effects in nematic liquid crystal films,” IEEE J. Quantum Electron. 32(3), 525–534 (1996).
[CrossRef]

J. Appl. Phys.

M. Kaczmarek, A. Dyadusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two beam coupling in liquid crystal cells with photoconducting polymer layers,” J. Appl. Phys. 96(5), 2616–2623 (2004).
[CrossRef]

W. D. Gill, “Drift mobilities in amorphous charge-transfer complexes of trinitrofluorenone and poly-n-vinylcarbazole,” J. Appl. Phys. 43(12), 5033–5040 (1972).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. D Appl. Phys.

L. Sznitko, S. Bartkiewicz, A. Anczykowska, and J. Mysliwiec, “Study of self-diffraction phenomenon in hybrid liquid crystal panel,” J. Phys. D Appl. Phys. 42(20), 205107 (2009).
[CrossRef]

JETP Lett.

E. V. Rudenko and A. V. Sukhov, “Photoinduced conductivity and photorefraction in nematic liquid crystals,” JETP Lett. 59, 142–145 (1994).

Opt. Express

Opt. Lett.

Opto-Electron. Rev.

J. Mysliwiec, S. Bartkiewicz, and A. Miniewicz, “Influence of light on self-diffraction process in liquid crystal sells with photoconducting polymeric layers,” Opto-Electron. Rev. 10, 53–58 (2002).

R. Dąbrowski, J. Dziaduszek, A. Ziółek, Ł. Szczuciński, Z. Stolarz, G. Sasnouski, V. Bezborodov, W. Lapanik, S. Gauza, and S. T. Wu, “Low viscosity, high birefringence liquid crystalline compounds and mixtures,” Opto-Electron. Rev. 15(1), 47–51 (2007).
[CrossRef]

Other

I. C. Khoo, “Liquid crystal optics and electro-optics” in Liquid Crystals, (Wiley-Interscience, New Jersey, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Hybrid Photorefractive Liquid Crystal Structure (a). Experimental setup (b). S – liquid crystal cell, L1 – writing laser (Cobolt Jive λ = 561 nm), L2 – reading laser (He:Ne λ = 633 nm), B – beamsplitter, M – mirror, D – detector, Os – oscilloscope, U – DC power supply, Sh – shutter, F – filter, Iz – writing beams, Ic – reading beam.

Fig. 2
Fig. 2

Hologram writing process for negative polarization. Detailed description in the text.

Fig. 3
Fig. 3

Temporal changes of diffraction efficiency (hologram recording) – approximation results for Λ = 1.45μm and: (a) positive polarization, U = +20V; (b) negative polarization, U = −20V; (c) positive polarization, U = +15V; gray points – experimental data, black points – estimated values.

Tables (1)

Tables Icon

Table 1 Summary of approximation parameters.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

L C 01 k 1 ' k 1 L C 1 k 1 '' L C 01
L C 02 k 2 ' k 2 L C 2
d c 1 dt = k 1 c 01 c 1 ( k 1 ' + k 1 '' )
d c 2 dt = k 2 c 02 k 2 ' c 2
c 1 = A 1 [1exp[( k 1 + k 1 ' + k 1 '' )t]]
c 2 = A 2 [1exp[( k 2 + k 2 ' )t]]
Δn=Χ 2Δ n 1 Δ n 2 cosφ+Δ n 1 2 +Δ n 2 2
η= | J 1 ( 2πdΔn λcosβ ) | 2

Metrics