Abstract

In this paper we present a procedure for fabricating an array of micropolarization filter array via an optimized interference lithography and microfabrication procedure. The filter array is composed of two linear polarization filters offset by 45 degrees with pixel pitch of 18 microns. The individual polarization filters are composed of aluminum nanowires with 140 nm pitch, 140 nm height and 70 nm width. The maximum extinction ratio of the pixelated filters is measured to be 95 at 700nm wavelength.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90, 061104.1–061104.3 (2007).
  2. T. Weber, T. Käsebier, E. B. Kley, and A. Tünnermann, “Broadband iridium wire grid polarizer for UV applications,” Opt. Lett. 36(4), 445–447 (2011).
    [CrossRef] [PubMed]
  3. J. G. Ok, H. J. Park, M. K. Kwak, C. A. Pina-Hernandez, S. H. Ahn, and L. J. Guo, “Continuous patterning of nanogratings by nanochannel-guided lithography on liquid resists,” Adv. Mater. (Deerfield Beach Fla.) 23(38), 4444–4448 (2011).
    [CrossRef] [PubMed]
  4. V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18(18), 19087–19094 (2010).
    [CrossRef] [PubMed]
  5. R. Perkins and V. Gruev, “Signal-to-noise analysis of Stokes parameters in division of focal plane polarimeters,” Opt. Express 18(25), 25815–25824 (2010).
    [CrossRef] [PubMed]
  6. V. Gruev, J. Van der Spiegel, and N. Engheta, “Dual-tier thin film polymer polarization imaging sensor,” Opt. Express 18(18), 19292–19303 (2010).
    [CrossRef] [PubMed]
  7. M. Momeni and A. H. Titus, “An analog VLSI chip emulating polarization vision of Octopus retina,” IEEE Trans. Neural Netw. 17(1), 222–232 (2006).
    [CrossRef] [PubMed]
  8. T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polarizer,” Electron. Lett. 45(4), 228–230 (2009).
    [CrossRef]
  9. X. Zhao, F. Boussaid, A. Bermak, and V. G. Chigrinov, “Thin Photo-Patterned Micropolarizer Array for CMOS Image Sensors,” IEEE Photon. Technol. Lett. 21(12), 805–807 (2009).
    [CrossRef]
  10. B. E. Bayer, Color Imaging Array U.S. Patent 3,971,065, (July 20, 1976).
  11. G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16(5), 1168–1174 (1999).
    [CrossRef]
  12. S. Franssila, Introduction to Microfabrication (John Wiley & Sons, West Sussex, UK, 2010).
  13. J. S. Tyo, “Optimum linear combination strategy for an N-channel polarization-sensitive imaging or vision system,” J. Opt. Soc. Am. A 15(2), 359–366 (1998).
    [CrossRef]
  14. M. L. Schattenburg, R. J. Aucoin, and R. C. Fleming, “Optically matched trilevel resist process for nanostructure fabrication,” J. Vac. Sci. Technol. B 13(6), 3007–3011 (1995).
    [CrossRef]
  15. V. Gruev, Z. Yang, J. Van der Spiegel, and R. Etienne-Cummings, “Current mode image sensor with two transistors per pixel,” IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 57(6), 1154–1165 (2010).
    [CrossRef]
  16. http:\\ www.opalkelly.com .

2011

J. G. Ok, H. J. Park, M. K. Kwak, C. A. Pina-Hernandez, S. H. Ahn, and L. J. Guo, “Continuous patterning of nanogratings by nanochannel-guided lithography on liquid resists,” Adv. Mater. (Deerfield Beach Fla.) 23(38), 4444–4448 (2011).
[CrossRef] [PubMed]

T. Weber, T. Käsebier, E. B. Kley, and A. Tünnermann, “Broadband iridium wire grid polarizer for UV applications,” Opt. Lett. 36(4), 445–447 (2011).
[CrossRef] [PubMed]

2010

2009

T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polarizer,” Electron. Lett. 45(4), 228–230 (2009).
[CrossRef]

X. Zhao, F. Boussaid, A. Bermak, and V. G. Chigrinov, “Thin Photo-Patterned Micropolarizer Array for CMOS Image Sensors,” IEEE Photon. Technol. Lett. 21(12), 805–807 (2009).
[CrossRef]

2007

J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90, 061104.1–061104.3 (2007).

2006

M. Momeni and A. H. Titus, “An analog VLSI chip emulating polarization vision of Octopus retina,” IEEE Trans. Neural Netw. 17(1), 222–232 (2006).
[CrossRef] [PubMed]

1999

1998

1995

M. L. Schattenburg, R. J. Aucoin, and R. C. Fleming, “Optically matched trilevel resist process for nanostructure fabrication,” J. Vac. Sci. Technol. B 13(6), 3007–3011 (1995).
[CrossRef]

Ahn, S. H.

J. G. Ok, H. J. Park, M. K. Kwak, C. A. Pina-Hernandez, S. H. Ahn, and L. J. Guo, “Continuous patterning of nanogratings by nanochannel-guided lithography on liquid resists,” Adv. Mater. (Deerfield Beach Fla.) 23(38), 4444–4448 (2011).
[CrossRef] [PubMed]

Aucoin, R. J.

M. L. Schattenburg, R. J. Aucoin, and R. C. Fleming, “Optically matched trilevel resist process for nanostructure fabrication,” J. Vac. Sci. Technol. B 13(6), 3007–3011 (1995).
[CrossRef]

Bermak, A.

X. Zhao, F. Boussaid, A. Bermak, and V. G. Chigrinov, “Thin Photo-Patterned Micropolarizer Array for CMOS Image Sensors,” IEEE Photon. Technol. Lett. 21(12), 805–807 (2009).
[CrossRef]

Boussaid, F.

X. Zhao, F. Boussaid, A. Bermak, and V. G. Chigrinov, “Thin Photo-Patterned Micropolarizer Array for CMOS Image Sensors,” IEEE Photon. Technol. Lett. 21(12), 805–807 (2009).
[CrossRef]

Chigrinov, V. G.

X. Zhao, F. Boussaid, A. Bermak, and V. G. Chigrinov, “Thin Photo-Patterned Micropolarizer Array for CMOS Image Sensors,” IEEE Photon. Technol. Lett. 21(12), 805–807 (2009).
[CrossRef]

Deguzman, P. C.

Deng, X.

J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90, 061104.1–061104.3 (2007).

Engheta, N.

Etienne-Cummings, R.

V. Gruev, Z. Yang, J. Van der Spiegel, and R. Etienne-Cummings, “Current mode image sensor with two transistors per pixel,” IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 57(6), 1154–1165 (2010).
[CrossRef]

Fleming, R. C.

M. L. Schattenburg, R. J. Aucoin, and R. C. Fleming, “Optically matched trilevel resist process for nanostructure fabrication,” J. Vac. Sci. Technol. B 13(6), 3007–3011 (1995).
[CrossRef]

Gruev, V.

Guo, L. J.

J. G. Ok, H. J. Park, M. K. Kwak, C. A. Pina-Hernandez, S. H. Ahn, and L. J. Guo, “Continuous patterning of nanogratings by nanochannel-guided lithography on liquid resists,” Adv. Mater. (Deerfield Beach Fla.) 23(38), 4444–4448 (2011).
[CrossRef] [PubMed]

Jones, M. W.

Käsebier, T.

Kley, E. B.

Kwak, M. K.

J. G. Ok, H. J. Park, M. K. Kwak, C. A. Pina-Hernandez, S. H. Ahn, and L. J. Guo, “Continuous patterning of nanogratings by nanochannel-guided lithography on liquid resists,” Adv. Mater. (Deerfield Beach Fla.) 23(38), 4444–4448 (2011).
[CrossRef] [PubMed]

Liu, X.

J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90, 061104.1–061104.3 (2007).

Meier, J. T.

Momeni, M.

M. Momeni and A. H. Titus, “An analog VLSI chip emulating polarization vision of Octopus retina,” IEEE Trans. Neural Netw. 17(1), 222–232 (2006).
[CrossRef] [PubMed]

Nordin, G. P.

Ohta, J.

T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polarizer,” Electron. Lett. 45(4), 228–230 (2009).
[CrossRef]

Ok, J. G.

J. G. Ok, H. J. Park, M. K. Kwak, C. A. Pina-Hernandez, S. H. Ahn, and L. J. Guo, “Continuous patterning of nanogratings by nanochannel-guided lithography on liquid resists,” Adv. Mater. (Deerfield Beach Fla.) 23(38), 4444–4448 (2011).
[CrossRef] [PubMed]

Park, H. J.

J. G. Ok, H. J. Park, M. K. Kwak, C. A. Pina-Hernandez, S. H. Ahn, and L. J. Guo, “Continuous patterning of nanogratings by nanochannel-guided lithography on liquid resists,” Adv. Mater. (Deerfield Beach Fla.) 23(38), 4444–4448 (2011).
[CrossRef] [PubMed]

Perkins, R.

Pina-Hernandez, C. A.

J. G. Ok, H. J. Park, M. K. Kwak, C. A. Pina-Hernandez, S. H. Ahn, and L. J. Guo, “Continuous patterning of nanogratings by nanochannel-guided lithography on liquid resists,” Adv. Mater. (Deerfield Beach Fla.) 23(38), 4444–4448 (2011).
[CrossRef] [PubMed]

Sasagawa, K.

T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polarizer,” Electron. Lett. 45(4), 228–230 (2009).
[CrossRef]

Sato, S.

T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polarizer,” Electron. Lett. 45(4), 228–230 (2009).
[CrossRef]

Schattenburg, M. L.

M. L. Schattenburg, R. J. Aucoin, and R. C. Fleming, “Optically matched trilevel resist process for nanostructure fabrication,” J. Vac. Sci. Technol. B 13(6), 3007–3011 (1995).
[CrossRef]

Sciortino, P.

J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90, 061104.1–061104.3 (2007).

Titus, A. H.

M. Momeni and A. H. Titus, “An analog VLSI chip emulating polarization vision of Octopus retina,” IEEE Trans. Neural Netw. 17(1), 222–232 (2006).
[CrossRef] [PubMed]

Tokuda, T.

T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polarizer,” Electron. Lett. 45(4), 228–230 (2009).
[CrossRef]

Tünnermann, A.

Tyo, J. S.

Van der Spiegel, J.

V. Gruev, J. Van der Spiegel, and N. Engheta, “Dual-tier thin film polymer polarization imaging sensor,” Opt. Express 18(18), 19292–19303 (2010).
[CrossRef] [PubMed]

V. Gruev, Z. Yang, J. Van der Spiegel, and R. Etienne-Cummings, “Current mode image sensor with two transistors per pixel,” IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 57(6), 1154–1165 (2010).
[CrossRef]

Walters, F.

J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90, 061104.1–061104.3 (2007).

Wang, J.

J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90, 061104.1–061104.3 (2007).

Weber, T.

Yamada, H.

T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polarizer,” Electron. Lett. 45(4), 228–230 (2009).
[CrossRef]

Yang, Z.

V. Gruev, Z. Yang, J. Van der Spiegel, and R. Etienne-Cummings, “Current mode image sensor with two transistors per pixel,” IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 57(6), 1154–1165 (2010).
[CrossRef]

York, T.

Zhao, X.

X. Zhao, F. Boussaid, A. Bermak, and V. G. Chigrinov, “Thin Photo-Patterned Micropolarizer Array for CMOS Image Sensors,” IEEE Photon. Technol. Lett. 21(12), 805–807 (2009).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.)

J. G. Ok, H. J. Park, M. K. Kwak, C. A. Pina-Hernandez, S. H. Ahn, and L. J. Guo, “Continuous patterning of nanogratings by nanochannel-guided lithography on liquid resists,” Adv. Mater. (Deerfield Beach Fla.) 23(38), 4444–4448 (2011).
[CrossRef] [PubMed]

Appl. Phys. Lett.

J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90, 061104.1–061104.3 (2007).

Electron. Lett.

T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polarizer,” Electron. Lett. 45(4), 228–230 (2009).
[CrossRef]

IEEE Photon. Technol. Lett.

X. Zhao, F. Boussaid, A. Bermak, and V. G. Chigrinov, “Thin Photo-Patterned Micropolarizer Array for CMOS Image Sensors,” IEEE Photon. Technol. Lett. 21(12), 805–807 (2009).
[CrossRef]

IEEE Trans. Circuits Syst. I: Fundam. Theory Appl.

V. Gruev, Z. Yang, J. Van der Spiegel, and R. Etienne-Cummings, “Current mode image sensor with two transistors per pixel,” IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 57(6), 1154–1165 (2010).
[CrossRef]

IEEE Trans. Neural Netw.

M. Momeni and A. H. Titus, “An analog VLSI chip emulating polarization vision of Octopus retina,” IEEE Trans. Neural Netw. 17(1), 222–232 (2006).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

J. Vac. Sci. Technol. B

M. L. Schattenburg, R. J. Aucoin, and R. C. Fleming, “Optically matched trilevel resist process for nanostructure fabrication,” J. Vac. Sci. Technol. B 13(6), 3007–3011 (1995).
[CrossRef]

Opt. Express

Opt. Lett.

Other

http:\\ www.opalkelly.com .

B. E. Bayer, Color Imaging Array U.S. Patent 3,971,065, (July 20, 1976).

S. Franssila, Introduction to Microfabrication (John Wiley & Sons, West Sussex, UK, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

A block diagram of division of focal plane polarization imaging sensor composed of two pixelated linear polarization filters offset by 45° and one pixel that records the total intensity of incoming light wave.

Fig. 2
Fig. 2

Micro- and nanofabrication steps of dual layer aluminum nanowire polarization filter array.

Fig. 3
Fig. 3

Optical microscope images of the dual layer pixelated polarization filter array. The filter array is back illuminated with (a) 0° polarized light; (b) 45° polarized light; (c) 90° polarized light; (d) 135° polarized light;

Fig. 4
Fig. 4

Intensity response of two neighboring pixels as a function of different angles of linearly polarized light. The two pixels have nanowire polarization filters offset by 45 o relative to each other. Hence, the pixels exhibit minimums and maximums shifted 45° from each other.

Fig. 5
Fig. 5

Photo response of 0 degree pixel for different angle of polarization and different integration times of the CMOS imaging sensor.

Fig. 6
Fig. 6

Extinction ratio of the 0 degree and 45 degree pixel as a function of the integration time of the custom CMOS imaging sensor.

Tables (2)

Tables Icon

Table 1 Reactive Ion Etching Recipe for Etching Aluminum Nanowires

Tables Icon

Table 2 Reactive Ion Etching Recipe for Etching 18 μm by 18 μm Pixelated Polarization Filters

Metrics