Abstract

Large-area surface ripple structures of indium-tin-oxide films, composed of self-organized nanodots, were induced by femtosecond laser pulses, without scanning. The multi-periodic spacing (∼800 nm, ∼400 nm and ∼200 nm) was observed in the laser-induced ripple of ITO films. The local conductivity of ITO films is significantly higher, by approximately 30 times, than that of the as-deposited ITO films, due to the formation of these nanodots. Such a significant change can be ascribed to the formation of indium metal-like clusters, which appear as budges of ∼ 5 nm height, due to an effective volume increase after breaking the In-O to form In-In bonding.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Al-Ibrahim, H. K. Roth, and S. Sensfuss, “Efficient large-area polymer solar cells on flexible substrates,” Appl. Phys. Lett. 85, 1481–1483 (2004).
    [CrossRef]
  2. H. Liu and R. Sun, “Laminated active matrix organic light-emitting devices,” Appl. Phys. Lett. 92, 063304-1–063304-3 (2008).
  3. H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indiumtinoxide thin films for organic light-emitting devices,” J. Appl. Phys. 86, 6451–6461 (1999).
    [CrossRef]
  4. C. Guillén and J. Herrero, “Structure optical and electrical properties of indium tin oxide thin films prepared by sputtering at room temperature and annealed in air or nitrogen,” J. Appl. Phys. 101, 073514-1–073514-7 (2007).
    [CrossRef]
  5. C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, “Surface modification of indium tin oxide by plasma treatment: an effective method to improve the efficiency, brightness, and reliability of organic light emitting devices,” Appl. Phys. Lett. 70, 1348–1350 (1997).
    [CrossRef]
  6. J. K. Sheu, Y. K. Su, G. C. Chi, P. L. Koh, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung, “High-transparency Ni/Au ohmic contact to p-type GaN,” Appl. Phys. Lett. 74, 2340–2342 (1999).
    [CrossRef]
  7. R. H. Horng, D. S. Wuu, Y. C. Lien, and W. H. Lan, “Low-resistance and high-transparency Ni/indium tin oxide ohmic contacts to p-type GaN,” Appl. Phys. Lett. 79, 2925–2927 (2001).
    [CrossRef]
  8. M. Gross, A. Winnacker, and P. J. Wellmann, “Electrical, optical and morphological properties of nanoparticle indium-tin-oxide layers,” Thin Solid Films 515, 8567–8572 (2007).
    [CrossRef]
  9. H. Hosono, M. Kurita, and H. Kawazoe, “Excimer laser crystallization of amorphous indium-tin-oxide thin films and application to fabrication of bragg gratings,” Thin Solid Films 351, 137–140 (1999).
    [CrossRef]
  10. G. Legeay, X. Castel, R. Benzerga, and J. Pinel, “Excimer laser beam/ITO interaction: from laser processing to surface reaction,” Phys. Stat. Sol. (C) 5, 3248–3254 (2008).
    [CrossRef]
  11. J. G. Lunney, R. R. O’Neill, and K. Schulmeister, “Excimer laser etching of transparent conducting oxides,” Appl. Phys. Lett. 59, 647–649 (1991).
    [CrossRef]
  12. H. M. van Driel, J. E. Sipe, and J. F. Young, “Laser-induced periodic surface structures on solids: a universal phenomenon,” Phys. Rev. Lett. 49, 1955–1958 (1982).
    [CrossRef]
  13. J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. experiments on Ge, Si, Al and brass,” Phys. Rev. B 27, 1155–1172 (1983).
    [CrossRef]
  14. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
    [CrossRef] [PubMed]
  15. A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, P. Balcou, E. Frster, J. P. Geindre, and P. Audebert, i.e., “Non-thermalmelting in semiconductors measured at femtosecond resolution” Nature 410, 65–68 (2001).
    [CrossRef] [PubMed]
  16. J. M. Shieh, Z. H. Chen, B. T. Dai, Y. C. Wang, A. Zaitsev, and C. L. Pan, “Near-infrared femtosecond laser-induced crystallization,” Appl. Phy. Lett. 85, 1232–1234 (2004).
    [CrossRef]
  17. C. W. Cheng, W. C. Shen, C. Y. Lin, Y. J. Lee, and J. S. Chen, “Fabrication of micro/nano crystalline ITO structures by femtosecond laser pulses,” Appl. Phys. A 101, 243–248 (2010).
    [CrossRef]
  18. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3, 4062–4070 (2009).
    [CrossRef] [PubMed]
  19. Q. Z. Zhao, S. Malzer, and L. J. Wang, “Formation of subwavelength periodic structures on tungsten induced by ultrashort laser pulses,” Opt. Lett. 32, 1932–1935 (2007).
    [CrossRef] [PubMed]
  20. X. Jia, T. Q. Jia, Y. Zhang, P. X. Xiong, D. H. Feng, Z. R. Sun, J. R. Qiu, and Z. Z. Xu, “Periodic nanoripples in the surface and subsurface layers in ZnO irradiated by femtosecond laser pulses,” Opt. Lett. 35, 1248–1250 (2010).
    [CrossRef] [PubMed]
  21. G. Zhou, P. M. Fauchet, and A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26, 5366–5381 (1982).
    [CrossRef]
  22. C. W. Luo, C. C. Lee, C. H. Li, H. C. Shih, Y.-J. Chen, C. C. Hsieh, C. H. Su, W. Y. Tzeng, K. H. Wu, and J. Y. Juang, i.e. “Ordered YBCO sub-micron array structures induced by pulsed femtosecond laser irradiation,” Opt. Express 16, 20610–20616 (2008).
    [CrossRef] [PubMed]
  23. A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82, 4462–4464 (2003).
    [CrossRef]
  24. R. L. Harzic, D. Dörr, D. Sauer, M. Neumeier, M. Epple, H. Zimmermann, and F. Stracke, “Large-area, uniform, high-spatial-frequency ripples generated on silicon using a nanojoule-femtosecond laser at high repetition rate,” Opt. Lett. 36, 229–231 (2011).
    [CrossRef] [PubMed]
  25. J. A. Chaney and P. E. Pehrsson, “Work function changes and surface chemistry of oxygen, hydrogen, and carbon on indium tin oxide,” Appl. Surf. Sci. 180, 214–226 (2001).
    [CrossRef]
  26. D. Briggs and M. P. Seah, in Practical surface analysis, (John Wiley and Sons, New York, 1993).
  27. F. Zhu, C. H. A. Huan, K. Zhang, and A. T. S. Wee, “Investigation of annealing effects on indium tin oxide thin films by electron energy loss spectroscopy,” Thin Solid Films 359, 244–250 (2000).
    [CrossRef]
  28. M. Mizuhashi, “Electrical properties of vacuum-deposited indium oxide and indium tin oxide films,” Thin Solid Films 70, 91–100 (1980).
    [CrossRef]
  29. S. Noguchi and H. Sakata, “Electrical properties of undoped In2O3 films prepared by reactive evaporation,” J. Phys. D: Appl. Phys. 13, 1129–1134 (1980).
    [CrossRef]
  30. C. Donley, D. Dunphy, D. Paine, C. Carter, K. Nebesny, P. Lee, D. Alloway, and N. R. Armstrong, “Characterization of indium-tin oxide interfaces using x-ray photoelectron spectroscopy and redox processes of a chemisorbed probe molecule: effect of surface pretreatment conditions,” Langmuir 18, 450–457 (2002).
    [CrossRef]
  31. T. Szörényi, L. D. Laude, I. Bertóti, Z. Kntor, and Zs Geretovszky, “Excimer laser processing of indiumtinoxide films: an optical investigation,” J. Appl. Phys. 78, 6211–6219 (1995).
    [CrossRef]
  32. D. R. Lide, in CRC Handbook of Chemistry and Physics, (Taylor and Francis, Boca Raton, Florida, 2003–2004).
  33. J. C. C. Fan and J. B. Goodenough, “X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films,” J. Appl. Phys. 48, 3524–3531 (1977).
    [CrossRef]
  34. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultra-short light pulses,” Phys. Rev. Lett. 91, 247405-1–247405-8 (2003).
    [CrossRef]
  35. K. Loeschner, G. Seifert, and A. Heilmann, “Gratinglike nanostructures in polymer films with embedded metal nanoparticles induced by femtosecond laser irradiation,” J. Appl. Phys. 108, 073114–073123 (2010).
    [CrossRef]
  36. I. Tanaka, M. Mizuno, and H. Adachi, “Electronic structure of indium oxide using cluster calculations,” Phys. Rev. B 56, 3536–3539 (1997).
    [CrossRef]

2011

2010

X. Jia, T. Q. Jia, Y. Zhang, P. X. Xiong, D. H. Feng, Z. R. Sun, J. R. Qiu, and Z. Z. Xu, “Periodic nanoripples in the surface and subsurface layers in ZnO irradiated by femtosecond laser pulses,” Opt. Lett. 35, 1248–1250 (2010).
[CrossRef] [PubMed]

K. Loeschner, G. Seifert, and A. Heilmann, “Gratinglike nanostructures in polymer films with embedded metal nanoparticles induced by femtosecond laser irradiation,” J. Appl. Phys. 108, 073114–073123 (2010).
[CrossRef]

C. W. Cheng, W. C. Shen, C. Y. Lin, Y. J. Lee, and J. S. Chen, “Fabrication of micro/nano crystalline ITO structures by femtosecond laser pulses,” Appl. Phys. A 101, 243–248 (2010).
[CrossRef]

2009

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3, 4062–4070 (2009).
[CrossRef] [PubMed]

2008

G. Legeay, X. Castel, R. Benzerga, and J. Pinel, “Excimer laser beam/ITO interaction: from laser processing to surface reaction,” Phys. Stat. Sol. (C) 5, 3248–3254 (2008).
[CrossRef]

H. Liu and R. Sun, “Laminated active matrix organic light-emitting devices,” Appl. Phys. Lett. 92, 063304-1–063304-3 (2008).

C. W. Luo, C. C. Lee, C. H. Li, H. C. Shih, Y.-J. Chen, C. C. Hsieh, C. H. Su, W. Y. Tzeng, K. H. Wu, and J. Y. Juang, i.e. “Ordered YBCO sub-micron array structures induced by pulsed femtosecond laser irradiation,” Opt. Express 16, 20610–20616 (2008).
[CrossRef] [PubMed]

2007

C. Guillén and J. Herrero, “Structure optical and electrical properties of indium tin oxide thin films prepared by sputtering at room temperature and annealed in air or nitrogen,” J. Appl. Phys. 101, 073514-1–073514-7 (2007).
[CrossRef]

M. Gross, A. Winnacker, and P. J. Wellmann, “Electrical, optical and morphological properties of nanoparticle indium-tin-oxide layers,” Thin Solid Films 515, 8567–8572 (2007).
[CrossRef]

Q. Z. Zhao, S. Malzer, and L. J. Wang, “Formation of subwavelength periodic structures on tungsten induced by ultrashort laser pulses,” Opt. Lett. 32, 1932–1935 (2007).
[CrossRef] [PubMed]

2004

M. Al-Ibrahim, H. K. Roth, and S. Sensfuss, “Efficient large-area polymer solar cells on flexible substrates,” Appl. Phys. Lett. 85, 1481–1483 (2004).
[CrossRef]

J. M. Shieh, Z. H. Chen, B. T. Dai, Y. C. Wang, A. Zaitsev, and C. L. Pan, “Near-infrared femtosecond laser-induced crystallization,” Appl. Phy. Lett. 85, 1232–1234 (2004).
[CrossRef]

2003

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultra-short light pulses,” Phys. Rev. Lett. 91, 247405-1–247405-8 (2003).
[CrossRef]

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82, 4462–4464 (2003).
[CrossRef]

2002

C. Donley, D. Dunphy, D. Paine, C. Carter, K. Nebesny, P. Lee, D. Alloway, and N. R. Armstrong, “Characterization of indium-tin oxide interfaces using x-ray photoelectron spectroscopy and redox processes of a chemisorbed probe molecule: effect of surface pretreatment conditions,” Langmuir 18, 450–457 (2002).
[CrossRef]

2001

J. A. Chaney and P. E. Pehrsson, “Work function changes and surface chemistry of oxygen, hydrogen, and carbon on indium tin oxide,” Appl. Surf. Sci. 180, 214–226 (2001).
[CrossRef]

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, P. Balcou, E. Frster, J. P. Geindre, and P. Audebert, i.e., “Non-thermalmelting in semiconductors measured at femtosecond resolution” Nature 410, 65–68 (2001).
[CrossRef] [PubMed]

R. H. Horng, D. S. Wuu, Y. C. Lien, and W. H. Lan, “Low-resistance and high-transparency Ni/indium tin oxide ohmic contacts to p-type GaN,” Appl. Phys. Lett. 79, 2925–2927 (2001).
[CrossRef]

2000

F. Zhu, C. H. A. Huan, K. Zhang, and A. T. S. Wee, “Investigation of annealing effects on indium tin oxide thin films by electron energy loss spectroscopy,” Thin Solid Films 359, 244–250 (2000).
[CrossRef]

1999

J. K. Sheu, Y. K. Su, G. C. Chi, P. L. Koh, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung, “High-transparency Ni/Au ohmic contact to p-type GaN,” Appl. Phys. Lett. 74, 2340–2342 (1999).
[CrossRef]

H. Hosono, M. Kurita, and H. Kawazoe, “Excimer laser crystallization of amorphous indium-tin-oxide thin films and application to fabrication of bragg gratings,” Thin Solid Films 351, 137–140 (1999).
[CrossRef]

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indiumtinoxide thin films for organic light-emitting devices,” J. Appl. Phys. 86, 6451–6461 (1999).
[CrossRef]

1997

C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, “Surface modification of indium tin oxide by plasma treatment: an effective method to improve the efficiency, brightness, and reliability of organic light emitting devices,” Appl. Phys. Lett. 70, 1348–1350 (1997).
[CrossRef]

I. Tanaka, M. Mizuno, and H. Adachi, “Electronic structure of indium oxide using cluster calculations,” Phys. Rev. B 56, 3536–3539 (1997).
[CrossRef]

1995

T. Szörényi, L. D. Laude, I. Bertóti, Z. Kntor, and Zs Geretovszky, “Excimer laser processing of indiumtinoxide films: an optical investigation,” J. Appl. Phys. 78, 6211–6219 (1995).
[CrossRef]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef] [PubMed]

1991

J. G. Lunney, R. R. O’Neill, and K. Schulmeister, “Excimer laser etching of transparent conducting oxides,” Appl. Phys. Lett. 59, 647–649 (1991).
[CrossRef]

1983

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. experiments on Ge, Si, Al and brass,” Phys. Rev. B 27, 1155–1172 (1983).
[CrossRef]

1982

H. M. van Driel, J. E. Sipe, and J. F. Young, “Laser-induced periodic surface structures on solids: a universal phenomenon,” Phys. Rev. Lett. 49, 1955–1958 (1982).
[CrossRef]

G. Zhou, P. M. Fauchet, and A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26, 5366–5381 (1982).
[CrossRef]

1980

M. Mizuhashi, “Electrical properties of vacuum-deposited indium oxide and indium tin oxide films,” Thin Solid Films 70, 91–100 (1980).
[CrossRef]

S. Noguchi and H. Sakata, “Electrical properties of undoped In2O3 films prepared by reactive evaporation,” J. Phys. D: Appl. Phys. 13, 1129–1134 (1980).
[CrossRef]

1977

J. C. C. Fan and J. B. Goodenough, “X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films,” J. Appl. Phys. 48, 3524–3531 (1977).
[CrossRef]

Adachi, H.

I. Tanaka, M. Mizuno, and H. Adachi, “Electronic structure of indium oxide using cluster calculations,” Phys. Rev. B 56, 3536–3539 (1997).
[CrossRef]

Al-Ibrahim, M.

M. Al-Ibrahim, H. K. Roth, and S. Sensfuss, “Efficient large-area polymer solar cells on flexible substrates,” Appl. Phys. Lett. 85, 1481–1483 (2004).
[CrossRef]

Alloway, D.

C. Donley, D. Dunphy, D. Paine, C. Carter, K. Nebesny, P. Lee, D. Alloway, and N. R. Armstrong, “Characterization of indium-tin oxide interfaces using x-ray photoelectron spectroscopy and redox processes of a chemisorbed probe molecule: effect of surface pretreatment conditions,” Langmuir 18, 450–457 (2002).
[CrossRef]

Armstrong, N. R.

C. Donley, D. Dunphy, D. Paine, C. Carter, K. Nebesny, P. Lee, D. Alloway, and N. R. Armstrong, “Characterization of indium-tin oxide interfaces using x-ray photoelectron spectroscopy and redox processes of a chemisorbed probe molecule: effect of surface pretreatment conditions,” Langmuir 18, 450–457 (2002).
[CrossRef]

Audebert, P.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, P. Balcou, E. Frster, J. P. Geindre, and P. Audebert, i.e., “Non-thermalmelting in semiconductors measured at femtosecond resolution” Nature 410, 65–68 (2001).
[CrossRef] [PubMed]

Balcou, P.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, P. Balcou, E. Frster, J. P. Geindre, and P. Audebert, i.e., “Non-thermalmelting in semiconductors measured at femtosecond resolution” Nature 410, 65–68 (2001).
[CrossRef] [PubMed]

Benzerga, R.

G. Legeay, X. Castel, R. Benzerga, and J. Pinel, “Excimer laser beam/ITO interaction: from laser processing to surface reaction,” Phys. Stat. Sol. (C) 5, 3248–3254 (2008).
[CrossRef]

Bertóti, I.

T. Szörényi, L. D. Laude, I. Bertóti, Z. Kntor, and Zs Geretovszky, “Excimer laser processing of indiumtinoxide films: an optical investigation,” J. Appl. Phys. 78, 6211–6219 (1995).
[CrossRef]

Borowiec, A.

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82, 4462–4464 (2003).
[CrossRef]

Briggs, D.

D. Briggs and M. P. Seah, in Practical surface analysis, (John Wiley and Sons, New York, 1993).

Carter, C.

C. Donley, D. Dunphy, D. Paine, C. Carter, K. Nebesny, P. Lee, D. Alloway, and N. R. Armstrong, “Characterization of indium-tin oxide interfaces using x-ray photoelectron spectroscopy and redox processes of a chemisorbed probe molecule: effect of surface pretreatment conditions,” Langmuir 18, 450–457 (2002).
[CrossRef]

Castel, X.

G. Legeay, X. Castel, R. Benzerga, and J. Pinel, “Excimer laser beam/ITO interaction: from laser processing to surface reaction,” Phys. Stat. Sol. (C) 5, 3248–3254 (2008).
[CrossRef]

Chaney, J. A.

J. A. Chaney and P. E. Pehrsson, “Work function changes and surface chemistry of oxygen, hydrogen, and carbon on indium tin oxide,” Appl. Surf. Sci. 180, 214–226 (2001).
[CrossRef]

Chang, C. M.

J. K. Sheu, Y. K. Su, G. C. Chi, P. L. Koh, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung, “High-transparency Ni/Au ohmic contact to p-type GaN,” Appl. Phys. Lett. 74, 2340–2342 (1999).
[CrossRef]

Chen, J. S.

C. W. Cheng, W. C. Shen, C. Y. Lin, Y. J. Lee, and J. S. Chen, “Fabrication of micro/nano crystalline ITO structures by femtosecond laser pulses,” Appl. Phys. A 101, 243–248 (2010).
[CrossRef]

Chen, Y.-J.

Chen, Z. H.

J. M. Shieh, Z. H. Chen, B. T. Dai, Y. C. Wang, A. Zaitsev, and C. L. Pan, “Near-infrared femtosecond laser-induced crystallization,” Appl. Phy. Lett. 85, 1232–1234 (2004).
[CrossRef]

Cheng, C. W.

C. W. Cheng, W. C. Shen, C. Y. Lin, Y. J. Lee, and J. S. Chen, “Fabrication of micro/nano crystalline ITO structures by femtosecond laser pulses,” Appl. Phys. A 101, 243–248 (2010).
[CrossRef]

Cheng, Y.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3, 4062–4070 (2009).
[CrossRef] [PubMed]

Chi, G. C.

J. K. Sheu, Y. K. Su, G. C. Chi, P. L. Koh, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung, “High-transparency Ni/Au ohmic contact to p-type GaN,” Appl. Phys. Lett. 74, 2340–2342 (1999).
[CrossRef]

Chrisey, D. B.

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indiumtinoxide thin films for organic light-emitting devices,” J. Appl. Phys. 86, 6451–6461 (1999).
[CrossRef]

Dai, B. T.

J. M. Shieh, Z. H. Chen, B. T. Dai, Y. C. Wang, A. Zaitsev, and C. L. Pan, “Near-infrared femtosecond laser-induced crystallization,” Appl. Phy. Lett. 85, 1232–1234 (2004).
[CrossRef]

Donley, C.

C. Donley, D. Dunphy, D. Paine, C. Carter, K. Nebesny, P. Lee, D. Alloway, and N. R. Armstrong, “Characterization of indium-tin oxide interfaces using x-ray photoelectron spectroscopy and redox processes of a chemisorbed probe molecule: effect of surface pretreatment conditions,” Langmuir 18, 450–457 (2002).
[CrossRef]

Dörr, D.

Dunphy, D.

C. Donley, D. Dunphy, D. Paine, C. Carter, K. Nebesny, P. Lee, D. Alloway, and N. R. Armstrong, “Characterization of indium-tin oxide interfaces using x-ray photoelectron spectroscopy and redox processes of a chemisorbed probe molecule: effect of surface pretreatment conditions,” Langmuir 18, 450–457 (2002).
[CrossRef]

Epple, M.

Fan, J. C. C.

J. C. C. Fan and J. B. Goodenough, “X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films,” J. Appl. Phys. 48, 3524–3531 (1977).
[CrossRef]

Fauchet, P. M.

G. Zhou, P. M. Fauchet, and A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26, 5366–5381 (1982).
[CrossRef]

Feit, M. D.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef] [PubMed]

Feng, D. H.

Fourmaux, S.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, P. Balcou, E. Frster, J. P. Geindre, and P. Audebert, i.e., “Non-thermalmelting in semiconductors measured at femtosecond resolution” Nature 410, 65–68 (2001).
[CrossRef] [PubMed]

Frster, E.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, P. Balcou, E. Frster, J. P. Geindre, and P. Audebert, i.e., “Non-thermalmelting in semiconductors measured at femtosecond resolution” Nature 410, 65–68 (2001).
[CrossRef] [PubMed]

Geindre, J. P.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, P. Balcou, E. Frster, J. P. Geindre, and P. Audebert, i.e., “Non-thermalmelting in semiconductors measured at femtosecond resolution” Nature 410, 65–68 (2001).
[CrossRef] [PubMed]

Geretovszky, Zs

T. Szörényi, L. D. Laude, I. Bertóti, Z. Kntor, and Zs Geretovszky, “Excimer laser processing of indiumtinoxide films: an optical investigation,” J. Appl. Phys. 78, 6211–6219 (1995).
[CrossRef]

Gilmore, C. M.

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indiumtinoxide thin films for organic light-emitting devices,” J. Appl. Phys. 86, 6451–6461 (1999).
[CrossRef]

Goodenough, J. B.

J. C. C. Fan and J. B. Goodenough, “X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films,” J. Appl. Phys. 48, 3524–3531 (1977).
[CrossRef]

Grillon, G.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, P. Balcou, E. Frster, J. P. Geindre, and P. Audebert, i.e., “Non-thermalmelting in semiconductors measured at femtosecond resolution” Nature 410, 65–68 (2001).
[CrossRef] [PubMed]

Gross, M.

M. Gross, A. Winnacker, and P. J. Wellmann, “Electrical, optical and morphological properties of nanoparticle indium-tin-oxide layers,” Thin Solid Films 515, 8567–8572 (2007).
[CrossRef]

Guillén, C.

C. Guillén and J. Herrero, “Structure optical and electrical properties of indium tin oxide thin films prepared by sputtering at room temperature and annealed in air or nitrogen,” J. Appl. Phys. 101, 073514-1–073514-7 (2007).
[CrossRef]

Harzic, R. L.

Haugen, H. K.

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82, 4462–4464 (2003).
[CrossRef]

Heilmann, A.

K. Loeschner, G. Seifert, and A. Heilmann, “Gratinglike nanostructures in polymer films with embedded metal nanoparticles induced by femtosecond laser irradiation,” J. Appl. Phys. 108, 073114–073123 (2010).
[CrossRef]

Herrero, J.

C. Guillén and J. Herrero, “Structure optical and electrical properties of indium tin oxide thin films prepared by sputtering at room temperature and annealed in air or nitrogen,” J. Appl. Phys. 101, 073514-1–073514-7 (2007).
[CrossRef]

Hirao, K.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultra-short light pulses,” Phys. Rev. Lett. 91, 247405-1–247405-8 (2003).
[CrossRef]

Horng, R. H.

R. H. Horng, D. S. Wuu, Y. C. Lien, and W. H. Lan, “Low-resistance and high-transparency Ni/indium tin oxide ohmic contacts to p-type GaN,” Appl. Phys. Lett. 79, 2925–2927 (2001).
[CrossRef]

Horwitz, J. S.

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indiumtinoxide thin films for organic light-emitting devices,” J. Appl. Phys. 86, 6451–6461 (1999).
[CrossRef]

Hosono, H.

H. Hosono, M. Kurita, and H. Kawazoe, “Excimer laser crystallization of amorphous indium-tin-oxide thin films and application to fabrication of bragg gratings,” Thin Solid Films 351, 137–140 (1999).
[CrossRef]

Hsieh, C. C.

Huan, C. H. A.

F. Zhu, C. H. A. Huan, K. Zhang, and A. T. S. Wee, “Investigation of annealing effects on indium tin oxide thin films by electron energy loss spectroscopy,” Thin Solid Films 359, 244–250 (2000).
[CrossRef]

Huang, M.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3, 4062–4070 (2009).
[CrossRef] [PubMed]

Hung, W. C.

J. K. Sheu, Y. K. Su, G. C. Chi, P. L. Koh, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung, “High-transparency Ni/Au ohmic contact to p-type GaN,” Appl. Phys. Lett. 74, 2340–2342 (1999).
[CrossRef]

Jia, T. Q.

Jia, X.

Jou, M. J.

J. K. Sheu, Y. K. Su, G. C. Chi, P. L. Koh, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung, “High-transparency Ni/Au ohmic contact to p-type GaN,” Appl. Phys. Lett. 74, 2340–2342 (1999).
[CrossRef]

Juang, J. Y.

Kafafi, Z. H.

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indiumtinoxide thin films for organic light-emitting devices,” J. Appl. Phys. 86, 6451–6461 (1999).
[CrossRef]

Kahn, A.

C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, “Surface modification of indium tin oxide by plasma treatment: an effective method to improve the efficiency, brightness, and reliability of organic light emitting devices,” Appl. Phys. Lett. 70, 1348–1350 (1997).
[CrossRef]

Kawazoe, H.

H. Hosono, M. Kurita, and H. Kawazoe, “Excimer laser crystallization of amorphous indium-tin-oxide thin films and application to fabrication of bragg gratings,” Thin Solid Films 351, 137–140 (1999).
[CrossRef]

Kazansky, P. G.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultra-short light pulses,” Phys. Rev. Lett. 91, 247405-1–247405-8 (2003).
[CrossRef]

Kim, H.

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indiumtinoxide thin films for organic light-emitting devices,” J. Appl. Phys. 86, 6451–6461 (1999).
[CrossRef]

Kntor, Z.

T. Szörényi, L. D. Laude, I. Bertóti, Z. Kntor, and Zs Geretovszky, “Excimer laser processing of indiumtinoxide films: an optical investigation,” J. Appl. Phys. 78, 6211–6219 (1995).
[CrossRef]

Koh, P. L.

J. K. Sheu, Y. K. Su, G. C. Chi, P. L. Koh, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung, “High-transparency Ni/Au ohmic contact to p-type GaN,” Appl. Phys. Lett. 74, 2340–2342 (1999).
[CrossRef]

Kurita, M.

H. Hosono, M. Kurita, and H. Kawazoe, “Excimer laser crystallization of amorphous indium-tin-oxide thin films and application to fabrication of bragg gratings,” Thin Solid Films 351, 137–140 (1999).
[CrossRef]

Lan, W. H.

R. H. Horng, D. S. Wuu, Y. C. Lien, and W. H. Lan, “Low-resistance and high-transparency Ni/indium tin oxide ohmic contacts to p-type GaN,” Appl. Phys. Lett. 79, 2925–2927 (2001).
[CrossRef]

Laude, L. D.

T. Szörényi, L. D. Laude, I. Bertóti, Z. Kntor, and Zs Geretovszky, “Excimer laser processing of indiumtinoxide films: an optical investigation,” J. Appl. Phys. 78, 6211–6219 (1995).
[CrossRef]

Lee, C. C.

Lee, P.

C. Donley, D. Dunphy, D. Paine, C. Carter, K. Nebesny, P. Lee, D. Alloway, and N. R. Armstrong, “Characterization of indium-tin oxide interfaces using x-ray photoelectron spectroscopy and redox processes of a chemisorbed probe molecule: effect of surface pretreatment conditions,” Langmuir 18, 450–457 (2002).
[CrossRef]

Lee, Y. J.

C. W. Cheng, W. C. Shen, C. Y. Lin, Y. J. Lee, and J. S. Chen, “Fabrication of micro/nano crystalline ITO structures by femtosecond laser pulses,” Appl. Phys. A 101, 243–248 (2010).
[CrossRef]

Legeay, G.

G. Legeay, X. Castel, R. Benzerga, and J. Pinel, “Excimer laser beam/ITO interaction: from laser processing to surface reaction,” Phys. Stat. Sol. (C) 5, 3248–3254 (2008).
[CrossRef]

Li, C. H.

Lide, D. R.

D. R. Lide, in CRC Handbook of Chemistry and Physics, (Taylor and Francis, Boca Raton, Florida, 2003–2004).

Lien, Y. C.

R. H. Horng, D. S. Wuu, Y. C. Lien, and W. H. Lan, “Low-resistance and high-transparency Ni/indium tin oxide ohmic contacts to p-type GaN,” Appl. Phys. Lett. 79, 2925–2927 (2001).
[CrossRef]

Lin, C. Y.

C. W. Cheng, W. C. Shen, C. Y. Lin, Y. J. Lee, and J. S. Chen, “Fabrication of micro/nano crystalline ITO structures by femtosecond laser pulses,” Appl. Phys. A 101, 243–248 (2010).
[CrossRef]

Liu, C. C.

J. K. Sheu, Y. K. Su, G. C. Chi, P. L. Koh, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung, “High-transparency Ni/Au ohmic contact to p-type GaN,” Appl. Phys. Lett. 74, 2340–2342 (1999).
[CrossRef]

Liu, H.

H. Liu and R. Sun, “Laminated active matrix organic light-emitting devices,” Appl. Phys. Lett. 92, 063304-1–063304-3 (2008).

Loeschner, K.

K. Loeschner, G. Seifert, and A. Heilmann, “Gratinglike nanostructures in polymer films with embedded metal nanoparticles induced by femtosecond laser irradiation,” J. Appl. Phys. 108, 073114–073123 (2010).
[CrossRef]

Lunney, J. G.

J. G. Lunney, R. R. O’Neill, and K. Schulmeister, “Excimer laser etching of transparent conducting oxides,” Appl. Phys. Lett. 59, 647–649 (1991).
[CrossRef]

Luo, C. W.

Malzer, S.

Mattoussi, H.

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indiumtinoxide thin films for organic light-emitting devices,” J. Appl. Phys. 86, 6451–6461 (1999).
[CrossRef]

Mizuhashi, M.

M. Mizuhashi, “Electrical properties of vacuum-deposited indium oxide and indium tin oxide films,” Thin Solid Films 70, 91–100 (1980).
[CrossRef]

Mizuno, M.

I. Tanaka, M. Mizuno, and H. Adachi, “Electronic structure of indium oxide using cluster calculations,” Phys. Rev. B 56, 3536–3539 (1997).
[CrossRef]

Murata, H.

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indiumtinoxide thin films for organic light-emitting devices,” J. Appl. Phys. 86, 6451–6461 (1999).
[CrossRef]

Nebesny, K.

C. Donley, D. Dunphy, D. Paine, C. Carter, K. Nebesny, P. Lee, D. Alloway, and N. R. Armstrong, “Characterization of indium-tin oxide interfaces using x-ray photoelectron spectroscopy and redox processes of a chemisorbed probe molecule: effect of surface pretreatment conditions,” Langmuir 18, 450–457 (2002).
[CrossRef]

Neumeier, M.

Noguchi, S.

S. Noguchi and H. Sakata, “Electrical properties of undoped In2O3 films prepared by reactive evaporation,” J. Phys. D: Appl. Phys. 13, 1129–1134 (1980).
[CrossRef]

O’Neill, R. R.

J. G. Lunney, R. R. O’Neill, and K. Schulmeister, “Excimer laser etching of transparent conducting oxides,” Appl. Phys. Lett. 59, 647–649 (1991).
[CrossRef]

Paine, D.

C. Donley, D. Dunphy, D. Paine, C. Carter, K. Nebesny, P. Lee, D. Alloway, and N. R. Armstrong, “Characterization of indium-tin oxide interfaces using x-ray photoelectron spectroscopy and redox processes of a chemisorbed probe molecule: effect of surface pretreatment conditions,” Langmuir 18, 450–457 (2002).
[CrossRef]

Pan, C. L.

J. M. Shieh, Z. H. Chen, B. T. Dai, Y. C. Wang, A. Zaitsev, and C. L. Pan, “Near-infrared femtosecond laser-induced crystallization,” Appl. Phy. Lett. 85, 1232–1234 (2004).
[CrossRef]

Pehrsson, P. E.

J. A. Chaney and P. E. Pehrsson, “Work function changes and surface chemistry of oxygen, hydrogen, and carbon on indium tin oxide,” Appl. Surf. Sci. 180, 214–226 (2001).
[CrossRef]

Perry, M. D.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef] [PubMed]

Pinel, J.

G. Legeay, X. Castel, R. Benzerga, and J. Pinel, “Excimer laser beam/ITO interaction: from laser processing to surface reaction,” Phys. Stat. Sol. (C) 5, 3248–3254 (2008).
[CrossRef]

Piqué, A.

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indiumtinoxide thin films for organic light-emitting devices,” J. Appl. Phys. 86, 6451–6461 (1999).
[CrossRef]

Preston, J. S.

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. experiments on Ge, Si, Al and brass,” Phys. Rev. B 27, 1155–1172 (1983).
[CrossRef]

Qiu, J.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultra-short light pulses,” Phys. Rev. Lett. 91, 247405-1–247405-8 (2003).
[CrossRef]

Qiu, J. R.

Rischel, C.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, P. Balcou, E. Frster, J. P. Geindre, and P. Audebert, i.e., “Non-thermalmelting in semiconductors measured at femtosecond resolution” Nature 410, 65–68 (2001).
[CrossRef] [PubMed]

Roth, H. K.

M. Al-Ibrahim, H. K. Roth, and S. Sensfuss, “Efficient large-area polymer solar cells on flexible substrates,” Appl. Phys. Lett. 85, 1481–1483 (2004).
[CrossRef]

Rousse, A.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, P. Balcou, E. Frster, J. P. Geindre, and P. Audebert, i.e., “Non-thermalmelting in semiconductors measured at femtosecond resolution” Nature 410, 65–68 (2001).
[CrossRef] [PubMed]

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef] [PubMed]

Sakata, H.

S. Noguchi and H. Sakata, “Electrical properties of undoped In2O3 films prepared by reactive evaporation,” J. Phys. D: Appl. Phys. 13, 1129–1134 (1980).
[CrossRef]

Sauer, D.

Schulmeister, K.

J. G. Lunney, R. R. O’Neill, and K. Schulmeister, “Excimer laser etching of transparent conducting oxides,” Appl. Phys. Lett. 59, 647–649 (1991).
[CrossRef]

Seah, M. P.

D. Briggs and M. P. Seah, in Practical surface analysis, (John Wiley and Sons, New York, 1993).

Sebban, S.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, P. Balcou, E. Frster, J. P. Geindre, and P. Audebert, i.e., “Non-thermalmelting in semiconductors measured at femtosecond resolution” Nature 410, 65–68 (2001).
[CrossRef] [PubMed]

Seifert, G.

K. Loeschner, G. Seifert, and A. Heilmann, “Gratinglike nanostructures in polymer films with embedded metal nanoparticles induced by femtosecond laser irradiation,” J. Appl. Phys. 108, 073114–073123 (2010).
[CrossRef]

Sensfuss, S.

M. Al-Ibrahim, H. K. Roth, and S. Sensfuss, “Efficient large-area polymer solar cells on flexible substrates,” Appl. Phys. Lett. 85, 1481–1483 (2004).
[CrossRef]

Shen, W. C.

C. W. Cheng, W. C. Shen, C. Y. Lin, Y. J. Lee, and J. S. Chen, “Fabrication of micro/nano crystalline ITO structures by femtosecond laser pulses,” Appl. Phys. A 101, 243–248 (2010).
[CrossRef]

Sheu, J. K.

J. K. Sheu, Y. K. Su, G. C. Chi, P. L. Koh, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung, “High-transparency Ni/Au ohmic contact to p-type GaN,” Appl. Phys. Lett. 74, 2340–2342 (1999).
[CrossRef]

Shieh, J. M.

J. M. Shieh, Z. H. Chen, B. T. Dai, Y. C. Wang, A. Zaitsev, and C. L. Pan, “Near-infrared femtosecond laser-induced crystallization,” Appl. Phy. Lett. 85, 1232–1234 (2004).
[CrossRef]

Shih, H. C.

Shimotsuma, Y.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultra-short light pulses,” Phys. Rev. Lett. 91, 247405-1–247405-8 (2003).
[CrossRef]

Shore, B. W.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef] [PubMed]

Siegman, A. E.

G. Zhou, P. M. Fauchet, and A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26, 5366–5381 (1982).
[CrossRef]

Sipe, J. E.

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. experiments on Ge, Si, Al and brass,” Phys. Rev. B 27, 1155–1172 (1983).
[CrossRef]

H. M. van Driel, J. E. Sipe, and J. F. Young, “Laser-induced periodic surface structures on solids: a universal phenomenon,” Phys. Rev. Lett. 49, 1955–1958 (1982).
[CrossRef]

Stracke, F.

Stuart, B. C.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef] [PubMed]

Sturm, J. C.

C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, “Surface modification of indium tin oxide by plasma treatment: an effective method to improve the efficiency, brightness, and reliability of organic light emitting devices,” Appl. Phys. Lett. 70, 1348–1350 (1997).
[CrossRef]

Su, C. H.

Su, Y. K.

J. K. Sheu, Y. K. Su, G. C. Chi, P. L. Koh, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung, “High-transparency Ni/Au ohmic contact to p-type GaN,” Appl. Phys. Lett. 74, 2340–2342 (1999).
[CrossRef]

Sun, R.

H. Liu and R. Sun, “Laminated active matrix organic light-emitting devices,” Appl. Phys. Lett. 92, 063304-1–063304-3 (2008).

Sun, Z. R.

Szörényi, T.

T. Szörényi, L. D. Laude, I. Bertóti, Z. Kntor, and Zs Geretovszky, “Excimer laser processing of indiumtinoxide films: an optical investigation,” J. Appl. Phys. 78, 6211–6219 (1995).
[CrossRef]

Tanaka, I.

I. Tanaka, M. Mizuno, and H. Adachi, “Electronic structure of indium oxide using cluster calculations,” Phys. Rev. B 56, 3536–3539 (1997).
[CrossRef]

Tzeng, W. Y.

Uschmann, I.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, P. Balcou, E. Frster, J. P. Geindre, and P. Audebert, i.e., “Non-thermalmelting in semiconductors measured at femtosecond resolution” Nature 410, 65–68 (2001).
[CrossRef] [PubMed]

van Driel, H. M.

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. experiments on Ge, Si, Al and brass,” Phys. Rev. B 27, 1155–1172 (1983).
[CrossRef]

H. M. van Driel, J. E. Sipe, and J. F. Young, “Laser-induced periodic surface structures on solids: a universal phenomenon,” Phys. Rev. Lett. 49, 1955–1958 (1982).
[CrossRef]

Wang, L. J.

Wang, Y. C.

J. M. Shieh, Z. H. Chen, B. T. Dai, Y. C. Wang, A. Zaitsev, and C. L. Pan, “Near-infrared femtosecond laser-induced crystallization,” Appl. Phy. Lett. 85, 1232–1234 (2004).
[CrossRef]

Wee, A. T. S.

F. Zhu, C. H. A. Huan, K. Zhang, and A. T. S. Wee, “Investigation of annealing effects on indium tin oxide thin films by electron energy loss spectroscopy,” Thin Solid Films 359, 244–250 (2000).
[CrossRef]

Wellmann, P. J.

M. Gross, A. Winnacker, and P. J. Wellmann, “Electrical, optical and morphological properties of nanoparticle indium-tin-oxide layers,” Thin Solid Films 515, 8567–8572 (2007).
[CrossRef]

Winnacker, A.

M. Gross, A. Winnacker, and P. J. Wellmann, “Electrical, optical and morphological properties of nanoparticle indium-tin-oxide layers,” Thin Solid Films 515, 8567–8572 (2007).
[CrossRef]

Wu, C. C.

C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, “Surface modification of indium tin oxide by plasma treatment: an effective method to improve the efficiency, brightness, and reliability of organic light emitting devices,” Appl. Phys. Lett. 70, 1348–1350 (1997).
[CrossRef]

Wu, C. I.

C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, “Surface modification of indium tin oxide by plasma treatment: an effective method to improve the efficiency, brightness, and reliability of organic light emitting devices,” Appl. Phys. Lett. 70, 1348–1350 (1997).
[CrossRef]

Wu, K. H.

Wuu, D. S.

R. H. Horng, D. S. Wuu, Y. C. Lien, and W. H. Lan, “Low-resistance and high-transparency Ni/indium tin oxide ohmic contacts to p-type GaN,” Appl. Phys. Lett. 79, 2925–2927 (2001).
[CrossRef]

Xiong, P. X.

Xu, N.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3, 4062–4070 (2009).
[CrossRef] [PubMed]

Xu, Z.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3, 4062–4070 (2009).
[CrossRef] [PubMed]

Xu, Z. Z.

Young, J. F.

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. experiments on Ge, Si, Al and brass,” Phys. Rev. B 27, 1155–1172 (1983).
[CrossRef]

H. M. van Driel, J. E. Sipe, and J. F. Young, “Laser-induced periodic surface structures on solids: a universal phenomenon,” Phys. Rev. Lett. 49, 1955–1958 (1982).
[CrossRef]

Zaitsev, A.

J. M. Shieh, Z. H. Chen, B. T. Dai, Y. C. Wang, A. Zaitsev, and C. L. Pan, “Near-infrared femtosecond laser-induced crystallization,” Appl. Phy. Lett. 85, 1232–1234 (2004).
[CrossRef]

Zhang, K.

F. Zhu, C. H. A. Huan, K. Zhang, and A. T. S. Wee, “Investigation of annealing effects on indium tin oxide thin films by electron energy loss spectroscopy,” Thin Solid Films 359, 244–250 (2000).
[CrossRef]

Zhang, Y.

Zhao, F.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3, 4062–4070 (2009).
[CrossRef] [PubMed]

Zhao, Q. Z.

Zhou, G.

G. Zhou, P. M. Fauchet, and A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26, 5366–5381 (1982).
[CrossRef]

Zhu, F.

F. Zhu, C. H. A. Huan, K. Zhang, and A. T. S. Wee, “Investigation of annealing effects on indium tin oxide thin films by electron energy loss spectroscopy,” Thin Solid Films 359, 244–250 (2000).
[CrossRef]

Zimmermann, H.

ACS Nano

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3, 4062–4070 (2009).
[CrossRef] [PubMed]

Appl. Phy. Lett.

J. M. Shieh, Z. H. Chen, B. T. Dai, Y. C. Wang, A. Zaitsev, and C. L. Pan, “Near-infrared femtosecond laser-induced crystallization,” Appl. Phy. Lett. 85, 1232–1234 (2004).
[CrossRef]

Appl. Phys. A

C. W. Cheng, W. C. Shen, C. Y. Lin, Y. J. Lee, and J. S. Chen, “Fabrication of micro/nano crystalline ITO structures by femtosecond laser pulses,” Appl. Phys. A 101, 243–248 (2010).
[CrossRef]

Appl. Phys. Lett.

J. G. Lunney, R. R. O’Neill, and K. Schulmeister, “Excimer laser etching of transparent conducting oxides,” Appl. Phys. Lett. 59, 647–649 (1991).
[CrossRef]

M. Al-Ibrahim, H. K. Roth, and S. Sensfuss, “Efficient large-area polymer solar cells on flexible substrates,” Appl. Phys. Lett. 85, 1481–1483 (2004).
[CrossRef]

H. Liu and R. Sun, “Laminated active matrix organic light-emitting devices,” Appl. Phys. Lett. 92, 063304-1–063304-3 (2008).

C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, “Surface modification of indium tin oxide by plasma treatment: an effective method to improve the efficiency, brightness, and reliability of organic light emitting devices,” Appl. Phys. Lett. 70, 1348–1350 (1997).
[CrossRef]

J. K. Sheu, Y. K. Su, G. C. Chi, P. L. Koh, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung, “High-transparency Ni/Au ohmic contact to p-type GaN,” Appl. Phys. Lett. 74, 2340–2342 (1999).
[CrossRef]

R. H. Horng, D. S. Wuu, Y. C. Lien, and W. H. Lan, “Low-resistance and high-transparency Ni/indium tin oxide ohmic contacts to p-type GaN,” Appl. Phys. Lett. 79, 2925–2927 (2001).
[CrossRef]

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82, 4462–4464 (2003).
[CrossRef]

Appl. Surf. Sci.

J. A. Chaney and P. E. Pehrsson, “Work function changes and surface chemistry of oxygen, hydrogen, and carbon on indium tin oxide,” Appl. Surf. Sci. 180, 214–226 (2001).
[CrossRef]

J. Appl. Phys.

T. Szörényi, L. D. Laude, I. Bertóti, Z. Kntor, and Zs Geretovszky, “Excimer laser processing of indiumtinoxide films: an optical investigation,” J. Appl. Phys. 78, 6211–6219 (1995).
[CrossRef]

J. C. C. Fan and J. B. Goodenough, “X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films,” J. Appl. Phys. 48, 3524–3531 (1977).
[CrossRef]

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indiumtinoxide thin films for organic light-emitting devices,” J. Appl. Phys. 86, 6451–6461 (1999).
[CrossRef]

C. Guillén and J. Herrero, “Structure optical and electrical properties of indium tin oxide thin films prepared by sputtering at room temperature and annealed in air or nitrogen,” J. Appl. Phys. 101, 073514-1–073514-7 (2007).
[CrossRef]

K. Loeschner, G. Seifert, and A. Heilmann, “Gratinglike nanostructures in polymer films with embedded metal nanoparticles induced by femtosecond laser irradiation,” J. Appl. Phys. 108, 073114–073123 (2010).
[CrossRef]

J. Phys. D: Appl. Phys.

S. Noguchi and H. Sakata, “Electrical properties of undoped In2O3 films prepared by reactive evaporation,” J. Phys. D: Appl. Phys. 13, 1129–1134 (1980).
[CrossRef]

Langmuir

C. Donley, D. Dunphy, D. Paine, C. Carter, K. Nebesny, P. Lee, D. Alloway, and N. R. Armstrong, “Characterization of indium-tin oxide interfaces using x-ray photoelectron spectroscopy and redox processes of a chemisorbed probe molecule: effect of surface pretreatment conditions,” Langmuir 18, 450–457 (2002).
[CrossRef]

Nature

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, P. Balcou, E. Frster, J. P. Geindre, and P. Audebert, i.e., “Non-thermalmelting in semiconductors measured at femtosecond resolution” Nature 410, 65–68 (2001).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. B

G. Zhou, P. M. Fauchet, and A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26, 5366–5381 (1982).
[CrossRef]

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. experiments on Ge, Si, Al and brass,” Phys. Rev. B 27, 1155–1172 (1983).
[CrossRef]

I. Tanaka, M. Mizuno, and H. Adachi, “Electronic structure of indium oxide using cluster calculations,” Phys. Rev. B 56, 3536–3539 (1997).
[CrossRef]

Phys. Rev. Lett.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef] [PubMed]

H. M. van Driel, J. E. Sipe, and J. F. Young, “Laser-induced periodic surface structures on solids: a universal phenomenon,” Phys. Rev. Lett. 49, 1955–1958 (1982).
[CrossRef]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultra-short light pulses,” Phys. Rev. Lett. 91, 247405-1–247405-8 (2003).
[CrossRef]

Phys. Stat. Sol. (C)

G. Legeay, X. Castel, R. Benzerga, and J. Pinel, “Excimer laser beam/ITO interaction: from laser processing to surface reaction,” Phys. Stat. Sol. (C) 5, 3248–3254 (2008).
[CrossRef]

Thin Solid Films

M. Gross, A. Winnacker, and P. J. Wellmann, “Electrical, optical and morphological properties of nanoparticle indium-tin-oxide layers,” Thin Solid Films 515, 8567–8572 (2007).
[CrossRef]

H. Hosono, M. Kurita, and H. Kawazoe, “Excimer laser crystallization of amorphous indium-tin-oxide thin films and application to fabrication of bragg gratings,” Thin Solid Films 351, 137–140 (1999).
[CrossRef]

F. Zhu, C. H. A. Huan, K. Zhang, and A. T. S. Wee, “Investigation of annealing effects on indium tin oxide thin films by electron energy loss spectroscopy,” Thin Solid Films 359, 244–250 (2000).
[CrossRef]

M. Mizuhashi, “Electrical properties of vacuum-deposited indium oxide and indium tin oxide films,” Thin Solid Films 70, 91–100 (1980).
[CrossRef]

Other

D. R. Lide, in CRC Handbook of Chemistry and Physics, (Taylor and Francis, Boca Raton, Florida, 2003–2004).

D. Briggs and M. P. Seah, in Practical surface analysis, (John Wiley and Sons, New York, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a)–(f) show the SEM images of periodic surface structures induced by 800 nm fs laser pulses at a fluence of 0.1 mJ/cm2 and with various pulse numbers (N = 0, 5×103, 2.5×104, 1×105, 3×105, and 3×106, respectively). The black-square inset shows the enlarged surface features at corresponding locations of (f). The red-square inset shows the 2D Fourier-transformed pattern and its cross-section profile at corresponding locations of (f). The arrow indicates the direction of the laser polarization.

Fig. 2
Fig. 2

The carrier concentration, mobility, and resistivity in the fs laser treated ITO films as a function of the pulse numbers (The solid lines are a guide to the eyes).

Fig. 3
Fig. 3

The transmittance in the fs laser treated ITO films as a function of wavelengths with various pulse numbers (N = 0, 5×105 and 5×106, respectively) at a fluence of 0.1 mJ/cm2.

Fig. 4
Fig. 4

(a1)–(c1) The topographic images and (a2)–(c2) their corresponding surface current images of ITO films induced by 800 nm fs laser pulses with various pulse numbers (N = 0, 3×105, and 3×106, respectively) at a fluence of 0.1 mJ/cm2. (d1) Cross-section analysis on the height along the solid line in the AFM image (c1). (d2) Cross-section analysis on the current along the solid line in the CAFM image (c2).

Fig. 5
Fig. 5

(a) The first derivative (dN/dE) of AES peaks, In(MNN), Sn(MNN), and O(KLL) as measured for the as-deposited ITO and fs laser treated ITO films. The point A (outside of dot) and point B (inside of dot) correspond to the spots as marked in the SEM top-view image (b) of a fs laser treated ITO film. The red-square inset shows the 2D Fourier-transformed pattern at corresponding locations of (b).

Fig. 6
Fig. 6

Schematic representation of as-deposited ITO surface composition based on Donley’s model [30] (b)The O 1s XPS spectra of In2O3 powder and fs laser treated ITO films with various pulse numbers (N = 0, 5×103, 2.5×104, 105, 3×105, and 3×106, respectively).

Fig. 7
Fig. 7

The In 3d5/2 XPS spectra of In2O3 powder, In metal, and fs laser treated ITO films with various pulse numbers (N = 0, 5×103, 2.5×104, 105, 3×105, and 3×106, respectively).

Fig. 8
Fig. 8

A schematic illustration for the formation of self-organized nanodots induced by the constructive interference of fs laser at near-surface region. The dot is composed of In-rich clusters with height ∼5 nm as a result of In-O bonding breaking into In-In under local-field enhancement.

Tables (1)

Tables Icon

Table 1 The relative magnitude of three fitting peaks in XPS O 1s spectra (Fig. 6) for various pulse numbers

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Λ = λ 1 ± sin θ

Metrics