Abstract

Using Jamin-Lebedeff interference microscopy, we measured the wavelength dependence of the refractive index of butterfly wing scales and bird feathers. The refractive index values of the glass scales of the butterfly Graphium sarpedon are, at wavelengths 400, 500 and 600 nm, 1.572, 1.552 and 1.541, and those of the feather barbules of the white goose Anas anas domestica are 1.569, 1.556 and 1.548, respectively. The dispersion spectra of the chitin in the butterfly scales and the keratin in the bird barbules are well described by the Cauchy equation n(λ) = A + B/λ2, with A = 1.517 and B = 8.80·103 nm2 for the butterfly chitin and A = 1.532 and B = 5.89·103 nm2 for the bird keratin.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. F. Land, “The physics and biology of animal reflectors,” Prog. Biophys. Mol. Biol. 24, 75–106 (1972).
    [CrossRef] [PubMed]
  2. M. Srinivasarao, “Nano-optics in the biological world: beetles, butterflies, birds and moths,” Chem. Rev. 99(7), 1935–1962 (1999).
    [CrossRef] [PubMed]
  3. P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
    [CrossRef] [PubMed]
  4. S. Kinoshita, Structural Colors in the Realm of Nature (World Scientific, 2008).
  5. L. P. Biró and J.-P. Vigneron, “Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration,” Laser Photon Rev 4, 1–26 (2011).
  6. S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71(7), 076401 (2008).
    [CrossRef]
  7. A. L. Ingram and A. R. Parker, “A review of the diversity and evolution of photonic structures in butterflies, incorporating the work of John Huxley (the Natural History Museum, London from 1961 to 1990),” Philos. Trans. R. Soc. Lond. B Biol. Sci. 363(1502), 2465–2480 (2008).
    [CrossRef] [PubMed]
  8. R. O. Prum, “Anatomy, physics, and evolution of avian structural colors,” in Bird Coloration, Vol. I, Mechanisms and Measurements (eds. G. E. Hill, K. J. McGraw), pp 295–353. (University Press, 2006).
  9. E. Nakamura, S. Yoshioka, and S. Kinoshita, “Structural color of rock dove's neck feather,” J. Phys. Soc. Jpn. 77(12), 124801 (2008).
    [CrossRef]
  10. M. D. Shawkey, V. Saranathan, H. Pálsdóttir, J. C. Crum, M. H. Ellisman, M. L. Auer, and R. O. Prum, “Electron tomography, 3D Fourier analysis and color prediction of a 3D bio-photonic nanostructure,” J. R. Soc. Interface 6(Suppl. 2), S213–S220 (2009).
    [PubMed]
  11. M. N. V. Ravi Kumar, “A review of chitin and chitosan applications,” React. Funct. Polym. 46(1), 1–27 (2000).
    [CrossRef]
  12. A. H. Brush, “Evolving a protofeather and feather diversity,” Am. Zool. 40(4), 631–639 (2000).
    [CrossRef]
  13. C. W. Mason, “Structural colors in insects. II,” J. Phys. Chem. 31(3), 321–354 (1927).
    [CrossRef]
  14. P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci. 266(1427), 1403–1411 (1999).
    [CrossRef]
  15. D. G. Stavenga, M. A. Giraldo, and H. L. Leertouwer, “Butterfly wing colors: glass scales of Graphium sarpedon cause polarized iridescence and enhance blue/green pigment coloration of the wing membrane,” J. Exp. Biol. 213(10), 1731–1739 (2010).
    [CrossRef] [PubMed]
  16. D. G. Stavenga, A. Mashushita, K. Arikawa, H. L. Leertouwer, and B. D. Wilts, “Glass scales on the wing of the swordtail butterfly Graphium sarpedon act as thin film polarizing reflectors,” submitted (2012).
  17. C. W. Mason, “Structural colors in feathers. I,” J. Phys. Chem. 27(3), 201–251 (1923).
    [CrossRef]
  18. C. W. Mason, “Structural colors in feathers. II,” J. Phys. Chem. 27(5), 401–448 (1923).
    [CrossRef]
  19. W. J. Schmidt, “Wie entstehen die Schillerfarben der Federn?” Naturwiss. 39(14), 313–318 (1952).
    [CrossRef]
  20. D. J. Brink and N. G. van der Berg, “Structural colours from the feathers of the bird Bostrychia hagedash,” J. Phys. D Appl. Phys. 37(5), 813–818 (2004).
    [CrossRef]
  21. M. Françon, Progress in Microscopy (Pergamon Press, 1961).
  22. E. Rutschke, “Die submikroskopische Struktur schillernder Federn von Entenvögeln,” Z. Zellforsch. Mikrosk. Anat. 73(3), 432–443 (1966).
    [CrossRef] [PubMed]
  23. S. Yoshioka and S. Kinoshita, “Direct determination of the refractive index of natural multilayer systems,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(5), 051917 (2011).
    [CrossRef] [PubMed]

2012

D. G. Stavenga, A. Mashushita, K. Arikawa, H. L. Leertouwer, and B. D. Wilts, “Glass scales on the wing of the swordtail butterfly Graphium sarpedon act as thin film polarizing reflectors,” submitted (2012).

2011

L. P. Biró and J.-P. Vigneron, “Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration,” Laser Photon Rev 4, 1–26 (2011).

S. Yoshioka and S. Kinoshita, “Direct determination of the refractive index of natural multilayer systems,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(5), 051917 (2011).
[CrossRef] [PubMed]

2010

D. G. Stavenga, M. A. Giraldo, and H. L. Leertouwer, “Butterfly wing colors: glass scales of Graphium sarpedon cause polarized iridescence and enhance blue/green pigment coloration of the wing membrane,” J. Exp. Biol. 213(10), 1731–1739 (2010).
[CrossRef] [PubMed]

2009

M. D. Shawkey, V. Saranathan, H. Pálsdóttir, J. C. Crum, M. H. Ellisman, M. L. Auer, and R. O. Prum, “Electron tomography, 3D Fourier analysis and color prediction of a 3D bio-photonic nanostructure,” J. R. Soc. Interface 6(Suppl. 2), S213–S220 (2009).
[PubMed]

2008

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71(7), 076401 (2008).
[CrossRef]

A. L. Ingram and A. R. Parker, “A review of the diversity and evolution of photonic structures in butterflies, incorporating the work of John Huxley (the Natural History Museum, London from 1961 to 1990),” Philos. Trans. R. Soc. Lond. B Biol. Sci. 363(1502), 2465–2480 (2008).
[CrossRef] [PubMed]

E. Nakamura, S. Yoshioka, and S. Kinoshita, “Structural color of rock dove's neck feather,” J. Phys. Soc. Jpn. 77(12), 124801 (2008).
[CrossRef]

2004

D. J. Brink and N. G. van der Berg, “Structural colours from the feathers of the bird Bostrychia hagedash,” J. Phys. D Appl. Phys. 37(5), 813–818 (2004).
[CrossRef]

2003

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[CrossRef] [PubMed]

2000

M. N. V. Ravi Kumar, “A review of chitin and chitosan applications,” React. Funct. Polym. 46(1), 1–27 (2000).
[CrossRef]

A. H. Brush, “Evolving a protofeather and feather diversity,” Am. Zool. 40(4), 631–639 (2000).
[CrossRef]

1999

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci. 266(1427), 1403–1411 (1999).
[CrossRef]

M. Srinivasarao, “Nano-optics in the biological world: beetles, butterflies, birds and moths,” Chem. Rev. 99(7), 1935–1962 (1999).
[CrossRef] [PubMed]

1972

M. F. Land, “The physics and biology of animal reflectors,” Prog. Biophys. Mol. Biol. 24, 75–106 (1972).
[CrossRef] [PubMed]

1966

E. Rutschke, “Die submikroskopische Struktur schillernder Federn von Entenvögeln,” Z. Zellforsch. Mikrosk. Anat. 73(3), 432–443 (1966).
[CrossRef] [PubMed]

1952

W. J. Schmidt, “Wie entstehen die Schillerfarben der Federn?” Naturwiss. 39(14), 313–318 (1952).
[CrossRef]

1927

C. W. Mason, “Structural colors in insects. II,” J. Phys. Chem. 31(3), 321–354 (1927).
[CrossRef]

1923

C. W. Mason, “Structural colors in feathers. I,” J. Phys. Chem. 27(3), 201–251 (1923).
[CrossRef]

C. W. Mason, “Structural colors in feathers. II,” J. Phys. Chem. 27(5), 401–448 (1923).
[CrossRef]

Arikawa, K.

D. G. Stavenga, A. Mashushita, K. Arikawa, H. L. Leertouwer, and B. D. Wilts, “Glass scales on the wing of the swordtail butterfly Graphium sarpedon act as thin film polarizing reflectors,” submitted (2012).

Auer, M. L.

M. D. Shawkey, V. Saranathan, H. Pálsdóttir, J. C. Crum, M. H. Ellisman, M. L. Auer, and R. O. Prum, “Electron tomography, 3D Fourier analysis and color prediction of a 3D bio-photonic nanostructure,” J. R. Soc. Interface 6(Suppl. 2), S213–S220 (2009).
[PubMed]

Biró, L. P.

L. P. Biró and J.-P. Vigneron, “Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration,” Laser Photon Rev 4, 1–26 (2011).

Brink, D. J.

D. J. Brink and N. G. van der Berg, “Structural colours from the feathers of the bird Bostrychia hagedash,” J. Phys. D Appl. Phys. 37(5), 813–818 (2004).
[CrossRef]

Brush, A. H.

A. H. Brush, “Evolving a protofeather and feather diversity,” Am. Zool. 40(4), 631–639 (2000).
[CrossRef]

Crum, J. C.

M. D. Shawkey, V. Saranathan, H. Pálsdóttir, J. C. Crum, M. H. Ellisman, M. L. Auer, and R. O. Prum, “Electron tomography, 3D Fourier analysis and color prediction of a 3D bio-photonic nanostructure,” J. R. Soc. Interface 6(Suppl. 2), S213–S220 (2009).
[PubMed]

Ellisman, M. H.

M. D. Shawkey, V. Saranathan, H. Pálsdóttir, J. C. Crum, M. H. Ellisman, M. L. Auer, and R. O. Prum, “Electron tomography, 3D Fourier analysis and color prediction of a 3D bio-photonic nanostructure,” J. R. Soc. Interface 6(Suppl. 2), S213–S220 (2009).
[PubMed]

Giraldo, M. A.

D. G. Stavenga, M. A. Giraldo, and H. L. Leertouwer, “Butterfly wing colors: glass scales of Graphium sarpedon cause polarized iridescence and enhance blue/green pigment coloration of the wing membrane,” J. Exp. Biol. 213(10), 1731–1739 (2010).
[CrossRef] [PubMed]

Ingram, A. L.

A. L. Ingram and A. R. Parker, “A review of the diversity and evolution of photonic structures in butterflies, incorporating the work of John Huxley (the Natural History Museum, London from 1961 to 1990),” Philos. Trans. R. Soc. Lond. B Biol. Sci. 363(1502), 2465–2480 (2008).
[CrossRef] [PubMed]

Kinoshita, S.

S. Yoshioka and S. Kinoshita, “Direct determination of the refractive index of natural multilayer systems,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(5), 051917 (2011).
[CrossRef] [PubMed]

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71(7), 076401 (2008).
[CrossRef]

E. Nakamura, S. Yoshioka, and S. Kinoshita, “Structural color of rock dove's neck feather,” J. Phys. Soc. Jpn. 77(12), 124801 (2008).
[CrossRef]

Land, M. F.

M. F. Land, “The physics and biology of animal reflectors,” Prog. Biophys. Mol. Biol. 24, 75–106 (1972).
[CrossRef] [PubMed]

Lawrence, C. R.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci. 266(1427), 1403–1411 (1999).
[CrossRef]

Leertouwer, H. L.

D. G. Stavenga, A. Mashushita, K. Arikawa, H. L. Leertouwer, and B. D. Wilts, “Glass scales on the wing of the swordtail butterfly Graphium sarpedon act as thin film polarizing reflectors,” submitted (2012).

D. G. Stavenga, M. A. Giraldo, and H. L. Leertouwer, “Butterfly wing colors: glass scales of Graphium sarpedon cause polarized iridescence and enhance blue/green pigment coloration of the wing membrane,” J. Exp. Biol. 213(10), 1731–1739 (2010).
[CrossRef] [PubMed]

Mashushita, A.

D. G. Stavenga, A. Mashushita, K. Arikawa, H. L. Leertouwer, and B. D. Wilts, “Glass scales on the wing of the swordtail butterfly Graphium sarpedon act as thin film polarizing reflectors,” submitted (2012).

Mason, C. W.

C. W. Mason, “Structural colors in insects. II,” J. Phys. Chem. 31(3), 321–354 (1927).
[CrossRef]

C. W. Mason, “Structural colors in feathers. II,” J. Phys. Chem. 27(5), 401–448 (1923).
[CrossRef]

C. W. Mason, “Structural colors in feathers. I,” J. Phys. Chem. 27(3), 201–251 (1923).
[CrossRef]

Miyazaki, J.

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71(7), 076401 (2008).
[CrossRef]

Nakamura, E.

E. Nakamura, S. Yoshioka, and S. Kinoshita, “Structural color of rock dove's neck feather,” J. Phys. Soc. Jpn. 77(12), 124801 (2008).
[CrossRef]

Pálsdóttir, H.

M. D. Shawkey, V. Saranathan, H. Pálsdóttir, J. C. Crum, M. H. Ellisman, M. L. Auer, and R. O. Prum, “Electron tomography, 3D Fourier analysis and color prediction of a 3D bio-photonic nanostructure,” J. R. Soc. Interface 6(Suppl. 2), S213–S220 (2009).
[PubMed]

Parker, A. R.

A. L. Ingram and A. R. Parker, “A review of the diversity and evolution of photonic structures in butterflies, incorporating the work of John Huxley (the Natural History Museum, London from 1961 to 1990),” Philos. Trans. R. Soc. Lond. B Biol. Sci. 363(1502), 2465–2480 (2008).
[CrossRef] [PubMed]

Prum, R. O.

M. D. Shawkey, V. Saranathan, H. Pálsdóttir, J. C. Crum, M. H. Ellisman, M. L. Auer, and R. O. Prum, “Electron tomography, 3D Fourier analysis and color prediction of a 3D bio-photonic nanostructure,” J. R. Soc. Interface 6(Suppl. 2), S213–S220 (2009).
[PubMed]

Ravi Kumar, M. N. V.

M. N. V. Ravi Kumar, “A review of chitin and chitosan applications,” React. Funct. Polym. 46(1), 1–27 (2000).
[CrossRef]

Rutschke, E.

E. Rutschke, “Die submikroskopische Struktur schillernder Federn von Entenvögeln,” Z. Zellforsch. Mikrosk. Anat. 73(3), 432–443 (1966).
[CrossRef] [PubMed]

Sambles, J. R.

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[CrossRef] [PubMed]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci. 266(1427), 1403–1411 (1999).
[CrossRef]

Saranathan, V.

M. D. Shawkey, V. Saranathan, H. Pálsdóttir, J. C. Crum, M. H. Ellisman, M. L. Auer, and R. O. Prum, “Electron tomography, 3D Fourier analysis and color prediction of a 3D bio-photonic nanostructure,” J. R. Soc. Interface 6(Suppl. 2), S213–S220 (2009).
[PubMed]

Schmidt, W. J.

W. J. Schmidt, “Wie entstehen die Schillerfarben der Federn?” Naturwiss. 39(14), 313–318 (1952).
[CrossRef]

Shawkey, M. D.

M. D. Shawkey, V. Saranathan, H. Pálsdóttir, J. C. Crum, M. H. Ellisman, M. L. Auer, and R. O. Prum, “Electron tomography, 3D Fourier analysis and color prediction of a 3D bio-photonic nanostructure,” J. R. Soc. Interface 6(Suppl. 2), S213–S220 (2009).
[PubMed]

Srinivasarao, M.

M. Srinivasarao, “Nano-optics in the biological world: beetles, butterflies, birds and moths,” Chem. Rev. 99(7), 1935–1962 (1999).
[CrossRef] [PubMed]

Stavenga, D. G.

D. G. Stavenga, A. Mashushita, K. Arikawa, H. L. Leertouwer, and B. D. Wilts, “Glass scales on the wing of the swordtail butterfly Graphium sarpedon act as thin film polarizing reflectors,” submitted (2012).

D. G. Stavenga, M. A. Giraldo, and H. L. Leertouwer, “Butterfly wing colors: glass scales of Graphium sarpedon cause polarized iridescence and enhance blue/green pigment coloration of the wing membrane,” J. Exp. Biol. 213(10), 1731–1739 (2010).
[CrossRef] [PubMed]

van der Berg, N. G.

D. J. Brink and N. G. van der Berg, “Structural colours from the feathers of the bird Bostrychia hagedash,” J. Phys. D Appl. Phys. 37(5), 813–818 (2004).
[CrossRef]

Vigneron, J.-P.

L. P. Biró and J.-P. Vigneron, “Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration,” Laser Photon Rev 4, 1–26 (2011).

Vukusic, P.

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[CrossRef] [PubMed]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci. 266(1427), 1403–1411 (1999).
[CrossRef]

Wilts, B. D.

D. G. Stavenga, A. Mashushita, K. Arikawa, H. L. Leertouwer, and B. D. Wilts, “Glass scales on the wing of the swordtail butterfly Graphium sarpedon act as thin film polarizing reflectors,” submitted (2012).

Wootton, R. J.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci. 266(1427), 1403–1411 (1999).
[CrossRef]

Yoshioka, S.

S. Yoshioka and S. Kinoshita, “Direct determination of the refractive index of natural multilayer systems,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(5), 051917 (2011).
[CrossRef] [PubMed]

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71(7), 076401 (2008).
[CrossRef]

E. Nakamura, S. Yoshioka, and S. Kinoshita, “Structural color of rock dove's neck feather,” J. Phys. Soc. Jpn. 77(12), 124801 (2008).
[CrossRef]

Am. Zool.

A. H. Brush, “Evolving a protofeather and feather diversity,” Am. Zool. 40(4), 631–639 (2000).
[CrossRef]

Chem. Rev.

M. Srinivasarao, “Nano-optics in the biological world: beetles, butterflies, birds and moths,” Chem. Rev. 99(7), 1935–1962 (1999).
[CrossRef] [PubMed]

J. Exp. Biol.

D. G. Stavenga, M. A. Giraldo, and H. L. Leertouwer, “Butterfly wing colors: glass scales of Graphium sarpedon cause polarized iridescence and enhance blue/green pigment coloration of the wing membrane,” J. Exp. Biol. 213(10), 1731–1739 (2010).
[CrossRef] [PubMed]

J. Phys. Chem.

C. W. Mason, “Structural colors in insects. II,” J. Phys. Chem. 31(3), 321–354 (1927).
[CrossRef]

C. W. Mason, “Structural colors in feathers. I,” J. Phys. Chem. 27(3), 201–251 (1923).
[CrossRef]

C. W. Mason, “Structural colors in feathers. II,” J. Phys. Chem. 27(5), 401–448 (1923).
[CrossRef]

J. Phys. D Appl. Phys.

D. J. Brink and N. G. van der Berg, “Structural colours from the feathers of the bird Bostrychia hagedash,” J. Phys. D Appl. Phys. 37(5), 813–818 (2004).
[CrossRef]

J. Phys. Soc. Jpn.

E. Nakamura, S. Yoshioka, and S. Kinoshita, “Structural color of rock dove's neck feather,” J. Phys. Soc. Jpn. 77(12), 124801 (2008).
[CrossRef]

J. R. Soc. Interface

M. D. Shawkey, V. Saranathan, H. Pálsdóttir, J. C. Crum, M. H. Ellisman, M. L. Auer, and R. O. Prum, “Electron tomography, 3D Fourier analysis and color prediction of a 3D bio-photonic nanostructure,” J. R. Soc. Interface 6(Suppl. 2), S213–S220 (2009).
[PubMed]

Laser Photon Rev

L. P. Biró and J.-P. Vigneron, “Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration,” Laser Photon Rev 4, 1–26 (2011).

Nature

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[CrossRef] [PubMed]

Naturwiss.

W. J. Schmidt, “Wie entstehen die Schillerfarben der Federn?” Naturwiss. 39(14), 313–318 (1952).
[CrossRef]

Philos. Trans. R. Soc. Lond. B Biol. Sci.

A. L. Ingram and A. R. Parker, “A review of the diversity and evolution of photonic structures in butterflies, incorporating the work of John Huxley (the Natural History Museum, London from 1961 to 1990),” Philos. Trans. R. Soc. Lond. B Biol. Sci. 363(1502), 2465–2480 (2008).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

S. Yoshioka and S. Kinoshita, “Direct determination of the refractive index of natural multilayer systems,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(5), 051917 (2011).
[CrossRef] [PubMed]

Proc. Biol. Sci.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci. 266(1427), 1403–1411 (1999).
[CrossRef]

Prog. Biophys. Mol. Biol.

M. F. Land, “The physics and biology of animal reflectors,” Prog. Biophys. Mol. Biol. 24, 75–106 (1972).
[CrossRef] [PubMed]

React. Funct. Polym.

M. N. V. Ravi Kumar, “A review of chitin and chitosan applications,” React. Funct. Polym. 46(1), 1–27 (2000).
[CrossRef]

Rep. Prog. Phys.

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71(7), 076401 (2008).
[CrossRef]

Z. Zellforsch. Mikrosk. Anat.

E. Rutschke, “Die submikroskopische Struktur schillernder Federn von Entenvögeln,” Z. Zellforsch. Mikrosk. Anat. 73(3), 432–443 (1966).
[CrossRef] [PubMed]

Other

S. Kinoshita, Structural Colors in the Realm of Nature (World Scientific, 2008).

R. O. Prum, “Anatomy, physics, and evolution of avian structural colors,” in Bird Coloration, Vol. I, Mechanisms and Measurements (eds. G. E. Hill, K. J. McGraw), pp 295–353. (University Press, 2006).

D. G. Stavenga, A. Mashushita, K. Arikawa, H. L. Leertouwer, and B. D. Wilts, “Glass scales on the wing of the swordtail butterfly Graphium sarpedon act as thin film polarizing reflectors,” submitted (2012).

M. Françon, Progress in Microscopy (Pergamon Press, 1961).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Jamin-Lebedeff interference microscopy of an isolated glass scale of Graphium sarpedon. A-C Images for three angular positions of the analyzer differing by 60° of a scale immersed in a fluid with refractive index 1.46 at 546 nm. (D) Normalized brightness as a function of the analyzer angle, measured in two regions of interest, one region in the scale (red curve) and the other adjacent to it (black curve). The two curves are shifted along the abscissa axis by a negative analyzer angle difference, Δα, indicating that the refractive index of the scale is >1.46.

Fig. 2
Fig. 2

The analyzer angle difference, Δα, as a function of the refractive index of the reference medium, nr. (A) Δα values obtained for three wavelengths, 451, 546 and 650 nm from G. sarpedon glass scales fitted with linear functions. (B) Δα values obtained from white goose feather barbules with linear fits.

Fig. 3
Fig. 3

Refractive index values derived from the zero-crossings of the linear fits of the butterfly glass scales (Fig. 2(A)) and the bird feather barbules (Fig. 2(B)), fitted with the Cauchy equation.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δα=180( n r n o )d/λ.

Metrics