Abstract

We show that dispersion-enhanced phase noise (DEPN) induces performance degradations in both conventional CO-OFDM systems and reduced-guard-interval (RGI) CO-OFDM systems employing RF-pilot phase compensation. After analytically studying DEPN, we show that DEPN causes a 2 to 6 dB optical signal-to-noise ratio (OSNR) penalty at transmission distances of 3200 km and 1600 km for 28 and 56 Gbaud QPSK systems, respectively, using lasers with 2 MHz linewidths. At such distances, DEPN reduces the linewidth tolerance at 1 dB OSNR penalty to 250-500 kHz while in the back-to-back case the tolerance is 1-3 MHz for both systems. When fiber nonlinearity is included, we observe similar performance degradations.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Shieh, X. Yi, Y. Ma, and Q. Yang, “Coherent optical OFDM: has its time come?[Invited],” J. Opt. Netw. 7(3), 234–255 (2008).
    [CrossRef]
  2. Q. Yang, Y. Tang, Y. Ma, and W. Shieh, “Experimental demonstration and numerical simulation of 107-Gb/s high spectral efficiency coherent optical OFDM,” J. Lightwave Technol. 27(3), 168–176 (2009).
    [CrossRef]
  3. S. L. Jansen, I. Morita, T. C. W. Schenk, and H. Tanaka, “121.9-Gb/s PDM-OFDM transmission with 2-b/s/Hz spectral efficiency over 1000 km of SSMF,” J. Lightwave Technol. 27(3), 177–188 (2009).
    [CrossRef]
  4. X. Liu, S. Chandrasekhar, B. Zhu, P. J. Winzer, A. H. Gnauck, and D. W. Peckham, “448-Gb/s reduced-guard-interval CO-OFDM transmission over 2000 km of ultra-large-area fiber and five 80-GHz-grid ROADMs,” J. Lightwave Technol. 29(4), 483–490 (2011).
    [CrossRef]
  5. X. Liu, S. Chandrasekhar, P. J. Winzer, S. Draving, J. Evangelista, N. Hoffman, B. Zhu, and D. W. Peckham, “Single coherent detection of a 606-Gb/s CO-OFDM signal with 32-QAM subcarrier modulation using 4x 80-Gsamples/s ADCs,” in Proc. ECOC’10, Paper PD2.6 (2010).
  6. A. Barbieri, G. Colavolpe, T. Foggi, E. Forestieri, and G. Prati, “OFDM versus single-carrier transmission for 100 Gbps optical communication,” J. Lightwave Technol. 28(17), 2537–2551 (2010).
    [CrossRef]
  7. S. L. Jansen, I. Morita, T. Schenk, N. Takeda, and H. Tanaka, “Coherent optical 25.8-Gb/s OFDM transmission over 4160-km SSMF,” J. Lightwave Technol. 26(1), 6–15 (2008).
    [CrossRef]
  8. S. Randel, S. Adhikari, and S. L. Jansen, “Analysis of RF-pilot-based phase noise compensation for coherent optical OFDM systems,” IEEE Photon. Technol. Lett. 22(17), 1288–1290 (2010).
    [CrossRef]
  9. S. L. Jansen, A. Lobato, S. Adhikari, B. Inan, and D. van den Borne, “Optical OFDM for ultra-high capacity long-haul transmission applications,” in Proc. ONDM’11, pp. 1–4 (2011).
  10. Q. Zhuge, C. Chen, and D. V. Plant, “Dispersion-enhanced phase noise effects on reduced-guard-interval CO-OFDM transmission,” Opt. Express 19(5), 4472–4484 (2011).
    [CrossRef] [PubMed]
  11. W. Shieh and K.-P. Ho, “Equalization-enhanced phase noise for coherent-detection systems using electronic digital signal processing,” Opt. Express 16(20), 15718–15727 (2008).
    [CrossRef] [PubMed]
  12. F. Buchali, R. Dischler, M. Mayrock, X. Xiao, and Y. Tang, “Improved frequency offset correction in coherent optical OFDM systems,” in Proc. ECOC’08, Paper Mo.4.D.4 (2008).
  13. B. Inan, S. Randel, S. L. Jansen, A. Lobato, S. Adhikari, and N. Hanik, “Pilot-tone-based nonlinearity compensation for optical OFDM systems,” in Proc. ECOC’10, Paper Tu.4.A.6 (2010).
  14. A. Lobato, B. Inan, S. Adhikari, and S. L. Jansen, “On the efficiency of RF-Pilot-based nonlinearity compensation for CO-OFDM,” in Proc. OFC’11, Paper OThF2 (2011).
  15. M. H. Morsy-Osman, L. R. Chen, and D. V. Plant, “Joint mitigation of laser phase noise and fiber nonlinearity using pilot-aided transmission for single-carrier systems,” in Proc. ECOC’11, Paper Tu.3.A.3 (2011).
  16. Q. Zhuge and D. V. Plant, “Compensation for dispersion-enhanced phase noise in reduced-guard-interval CO-OFDM transmissions,” in Proc. SPPCom’11, Paper SPTuC4 (2011).
  17. S. Wu and Y. Bar-Ness, “OFDM systems in the presence of phase noise: consequences and solutions,” IEEE Trans. Commun. 52(11), 1988–1996 (2004).
    [CrossRef]

2011 (2)

2010 (2)

S. Randel, S. Adhikari, and S. L. Jansen, “Analysis of RF-pilot-based phase noise compensation for coherent optical OFDM systems,” IEEE Photon. Technol. Lett. 22(17), 1288–1290 (2010).
[CrossRef]

A. Barbieri, G. Colavolpe, T. Foggi, E. Forestieri, and G. Prati, “OFDM versus single-carrier transmission for 100 Gbps optical communication,” J. Lightwave Technol. 28(17), 2537–2551 (2010).
[CrossRef]

2009 (2)

2008 (3)

2004 (1)

S. Wu and Y. Bar-Ness, “OFDM systems in the presence of phase noise: consequences and solutions,” IEEE Trans. Commun. 52(11), 1988–1996 (2004).
[CrossRef]

Adhikari, S.

S. Randel, S. Adhikari, and S. L. Jansen, “Analysis of RF-pilot-based phase noise compensation for coherent optical OFDM systems,” IEEE Photon. Technol. Lett. 22(17), 1288–1290 (2010).
[CrossRef]

Barbieri, A.

Bar-Ness, Y.

S. Wu and Y. Bar-Ness, “OFDM systems in the presence of phase noise: consequences and solutions,” IEEE Trans. Commun. 52(11), 1988–1996 (2004).
[CrossRef]

Chandrasekhar, S.

Chen, C.

Colavolpe, G.

Foggi, T.

Forestieri, E.

Gnauck, A. H.

Ho, K.-P.

Jansen, S. L.

Liu, X.

Ma, Y.

Morita, I.

Peckham, D. W.

Plant, D. V.

Prati, G.

Randel, S.

S. Randel, S. Adhikari, and S. L. Jansen, “Analysis of RF-pilot-based phase noise compensation for coherent optical OFDM systems,” IEEE Photon. Technol. Lett. 22(17), 1288–1290 (2010).
[CrossRef]

Schenk, T.

Schenk, T. C. W.

Shieh, W.

Takeda, N.

Tanaka, H.

Tang, Y.

Winzer, P. J.

Wu, S.

S. Wu and Y. Bar-Ness, “OFDM systems in the presence of phase noise: consequences and solutions,” IEEE Trans. Commun. 52(11), 1988–1996 (2004).
[CrossRef]

Yang, Q.

Yi, X.

Zhu, B.

Zhuge, Q.

IEEE Photon. Technol. Lett. (1)

S. Randel, S. Adhikari, and S. L. Jansen, “Analysis of RF-pilot-based phase noise compensation for coherent optical OFDM systems,” IEEE Photon. Technol. Lett. 22(17), 1288–1290 (2010).
[CrossRef]

IEEE Trans. Commun. (1)

S. Wu and Y. Bar-Ness, “OFDM systems in the presence of phase noise: consequences and solutions,” IEEE Trans. Commun. 52(11), 1988–1996 (2004).
[CrossRef]

J. Lightwave Technol. (5)

J. Opt. Netw. (1)

Opt. Express (2)

Other (7)

F. Buchali, R. Dischler, M. Mayrock, X. Xiao, and Y. Tang, “Improved frequency offset correction in coherent optical OFDM systems,” in Proc. ECOC’08, Paper Mo.4.D.4 (2008).

B. Inan, S. Randel, S. L. Jansen, A. Lobato, S. Adhikari, and N. Hanik, “Pilot-tone-based nonlinearity compensation for optical OFDM systems,” in Proc. ECOC’10, Paper Tu.4.A.6 (2010).

A. Lobato, B. Inan, S. Adhikari, and S. L. Jansen, “On the efficiency of RF-Pilot-based nonlinearity compensation for CO-OFDM,” in Proc. OFC’11, Paper OThF2 (2011).

M. H. Morsy-Osman, L. R. Chen, and D. V. Plant, “Joint mitigation of laser phase noise and fiber nonlinearity using pilot-aided transmission for single-carrier systems,” in Proc. ECOC’11, Paper Tu.3.A.3 (2011).

Q. Zhuge and D. V. Plant, “Compensation for dispersion-enhanced phase noise in reduced-guard-interval CO-OFDM transmissions,” in Proc. SPPCom’11, Paper SPTuC4 (2011).

X. Liu, S. Chandrasekhar, P. J. Winzer, S. Draving, J. Evangelista, N. Hoffman, B. Zhu, and D. W. Peckham, “Single coherent detection of a 606-Gb/s CO-OFDM signal with 32-QAM subcarrier modulation using 4x 80-Gsamples/s ADCs,” in Proc. ECOC’10, Paper PD2.6 (2010).

S. L. Jansen, A. Lobato, S. Adhikari, B. Inan, and D. van den Borne, “Optical OFDM for ultra-high capacity long-haul transmission applications,” in Proc. ONDM’11, pp. 1–4 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The illustration of DEPN with RF-pilot phase compensation. (a) The dispersion-induced walk-off between OFDM subcarriers within one symbol and the RF-pilot tone. The constellations of (b), the middle subcarriers, and (c), the edge subcarriers for systems with 320 subcarriers, 2 MHz linewidth and 3200 km transmission.

Fig. 2
Fig. 2

The illustration of the relationship between RPS & ICI and the number of subcarriers. (a) RGI OFDM with 80 subcarriers. (b) RGI OFDM with 320 subcarriers. (c) Conventional OFDM with 1280 subcarriers. For each figure, the left constellation is for back-to-back case, and the right constellation is for L = 3200 km. The curves correspond to the right constellation with β = 2 MHz and no ASE noise. For RPS, the unit is rad2.

Fig. 3
Fig. 3

OSNR penalty at BER = 10−3 versus the transmission distance L. (a) 28 Gbaud. (b) 56 Gbaud. Conv denotes conventional CO-OFDM.

Fig. 4
Fig. 4

OSNR penalty at BER = 10−3 versus the laser linewidth β. (a) 28 Gbaud. (b) 56 Gbaud.

Fig. 5
Fig. 5

BER versus OSNR for DP-QPSK transmissions. Solid: RGI CO-OFDM with Nc = 80. Dashed: Conventional CO-OFDM. (a) 28 Gbaud. (b) 56 Gbaud.

Tables (1)

Tables Icon

Table 1 Simulation conditions

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

r(t)= k=1 N c c k e j2πkΔf(t T k )+j ϕ t (t T k )+j ϕ r (t) +z(t)
Φ RF (t)= ϕ t (t)+ ϕ r (t)+ ϕ n (t)
r (t)=r(t)exp[ j Φ RF (t) ] = k=1 N c c k e j2πkΔf(t T k )+j[ ϕ t (t T k ) ϕ t (t) ]j ϕ n (t) + z (t)
R(k)= c k I k (0)+ICI(k)+Z(k)
I k (p)= 1 N n=0 N1 e j[ 2πpn N + ϕ t (n) ϕ t (n+ D k ) ϕ n (n+ D k ) ]

Metrics