Abstract

We experimentally demonstrate angle-insensitive (i.e., isotropic) coloration of nanostructured metal surfaces by engineered light scattering from homogenized Pinwheel aperiodic arrays of gold nanoparticles deposited on gold substrates. In sharp contrast to the colorimetric responses of periodically nanopatterned surfaces, which strongly depend on the observation angle, Pinwheel nanoparticle arrays give rise to intense and isotropic structural coloration enhanced by plasmonic resonance. Pinwheel nanoparticle arrays with isotropic Fourier space were fabricated on a gold thin film and investigated using dark-field scattering and angle-resolved reflectivity measurements. Isotropic green coloration of metal films was demonstrated on Pinwheel patterns, with greatly reduced angular sensitivity and enhanced spatial uniformity of coloration compared to both periodic and random arrays. These findings, which are supported by coupled-dipole numerical simulations of differential scattering cross sections and radiation diagrams, could advance plasmonic applications to display, optical tagging and colorimetric sensing technologies.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. WebExhibits, Institute for Dynamic Educational Advancement, “What causes the colors of metals like gold?” http://www.webexhibits.org/causesofcolor/9.html
  2. A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
    [CrossRef]
  3. A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multipulse femtosecond laser ablation,” Phys. Rev. B 72(19), 195422 (2005).
    [CrossRef]
  4. M. Harun-Ur-Rashid, A. Bin Imran, T. Seki, M. Ishii, H. Nakamura, and Y. Takeoka, “Angle-independent structural color in colloidal amorphous arrays,” ChemPhysChem 11(3), 579–583 (2010).
    [CrossRef] [PubMed]
  5. Y. Takeoka, M. Honda, T. Seki, M. Ishii, and H. Nakamura, “Structural colored liquid membrane without angle dependence,” ACS Appl. Mater. Interfaces 1(5), 982–986 (2009).
    [CrossRef] [PubMed]
  6. S. Yoshioka and S. Kinoshita, “Polarization-sensitive color mixing in the wing of the Madagascan sunset moth,” Opt. Express 15(5), 2691–2701 (2007).
    [CrossRef] [PubMed]
  7. S. Kinoshita, S. Yoshioka, Y. Fujii, and N. Okamoto, “Photophysics of structural color in the morpho butterflies,” Forma 17, 103–121 (2002).
  8. S. Yoshioka and S. Kinoshita, “Wavelength-selective and anisotropic light-diffusing scale on the wing of the Morpho butterfly,” Proc. Biol. Sci. 271(1539), 581–587 (2004).
    [CrossRef] [PubMed]
  9. Y. Y. Diao and X. Y. Liu, “Mysterious coloring: structural origin of color mixing for two breeds of Papilio butterflies,” Opt. Express 19(10), 9232–9241 (2011).
    [CrossRef] [PubMed]
  10. D. Pantelić, S. Curčić, S. Savić-Šević, A. Korać, A. Kovačević, B. Curčić, and B. Bokić, “High angular and spectral selectivity of purple emperor (Lepidoptera: Apatura iris and A. ilia) butterfly wings,” Opt. Express 19(7), 5817–5826 (2011).
    [CrossRef] [PubMed]
  11. B. Q. Dong, X. H. Liu, T. R. Zhan, L. P. Jiang, H. W. Yin, F. Liu, and J. Zi, “Structural coloration and photonic pseudogap in natural random close-packing photonic structures,” Opt. Express 18(14), 14430–14438 (2010).
    [CrossRef] [PubMed]
  12. D. J. Brink, N. G. Berg, L. C. Prinsloo, and I. J. Hodgkinson, “Unusual coloration in scarabaeid beetles,” J. Phys. D Appl. Phys. 40(7), 2189–2196 (2007).
    [CrossRef]
  13. F. Liu, B. Q. Dong, X. H. Liu, Y. M. Zheng, and J. Zi, “Structural color change in longhorn beetles Tmesisternus isabellae,” Opt. Express 17(18), 16183–16191 (2009).
    [CrossRef] [PubMed]
  14. H. Noh, S. F. Liew, V. Saranathan, R. O. Prum, S. G. J. Mochrie, E. R. Dufresne, and H. Cao, “Double scattering of light from Biophotonic Nanostructures with short-range order,” Opt. Express 18(11), 11942–11948 (2010).
    [CrossRef] [PubMed]
  15. G. S. Zhang and Z. Q. Huang, “Two-dimensional amorphous photonic structure in the ligament of bivalve Lutraria maximum,” Opt. Express 18(13), 13361–13367 (2010).
    [CrossRef] [PubMed]
  16. A. Saito, Y. Miyamura, Y. Ishikawa, J. Murase, M. Akai-Kasaya, and Y. Kuwahara, “Reproduction, mass production, and control of the Morpho butterfly's blue,” in Advanced Fabrication Technologies for Micro/Nano Optics and Photonics II, (SPIE, 2009), 720506–720509.
  17. A. Saito, Y. Miyamura, M. Nakajima, Y. Ishikawa, K. Sogo, Y. Kuwahara, and Y. Hirai, “Reproduction of the Morpho blue by nanocasting lithography,” J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. 24(6), 3248–3251 (2006).
    [CrossRef]
  18. K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, and S. Matsui, “Brilliant blue observation from a morpho-butterfly-scale quasi-structure,” Jpn. J. Appl. Phys. 44(1), L48–L50 (2005).
    [CrossRef]
  19. S. Torquato and F. H. Stillinger, “Local density fluctuations, hyperuniformity, and order metrics,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(4), 041113 (2003).
    [CrossRef] [PubMed]
  20. J. Trevino, H. Cao, and L. Dal Negro, “Circularly symmetric light scattering from nanoplasmonic spirals,” Nano Lett. 11(5), 2008–2016 (2011).
    [CrossRef] [PubMed]
  21. C. Radin, “The Pinwheel tilings of the plane,” Ann. Math. 139(3), 661–702 (1994).
    [CrossRef]
  22. C. Forestiere, G. Miano, S. V. Boriskina, and L. Dal Negro, “The role of nanoparticle shapes and deterministic aperiodicity for the design of nanoplasmonic arrays,” Opt. Express 17(12), 9648–9661 (2009).
    [CrossRef] [PubMed]
  23. S. Berthier, Iridescence: The Physical Colors of Insects, (Springer, 2007).
  24. S. Kinoshita, Structural Colors in the Realm of Nature (World Scientific, 2008).
  25. C. Forestiere, G. F. Walsh, G. Miano, and L. Dal Negro, “Nanoplasmonics of prime number arrays,” Opt. Express 17(26), 24288–24303 (2009).
    [CrossRef] [PubMed]
  26. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  27. P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
    [CrossRef] [PubMed]
  28. J. Illian, A. Penttinen, H. Stoyan, and D. Stoyan, Statistical Analysis and Modeling of Spatial Point Patterns, S. Senn, M. Scott, and V. Barnett, ed.(John Wiley, 2008).
  29. A. Gopinath, S. V. Boriskina, N. N. Feng, B. M. Reinhard, and L. Dal Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett. 8(8), 2423–2431 (2008).
    [CrossRef] [PubMed]
  30. L. Dal Negro, N. N. Feng, and A. Gopinath, “Electromagnetic coupling and plasmon localization in deterministic aperiodic arrays,” J. Opt. A, Pure Appl. Opt. 10(6), 064013 (2008).
    [CrossRef]
  31. S. V. Boriskina, S. Y. K. Lee, J. J. Amsden, F. G. Omenetto, and L. Dal Negro, “Formation of colorimetric fingerprints on nano-patterned deterministic aperiodic surfaces,” Opt. Express 18(14), 14568–14576 (2010).
    [CrossRef] [PubMed]
  32. B. Delaunay, “Sur la sphere ride,” Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskikh i Estestvennykh Nauk 7, 793–800 (1934).

2011 (3)

2010 (5)

2009 (4)

2008 (3)

A. Gopinath, S. V. Boriskina, N. N. Feng, B. M. Reinhard, and L. Dal Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett. 8(8), 2423–2431 (2008).
[CrossRef] [PubMed]

L. Dal Negro, N. N. Feng, and A. Gopinath, “Electromagnetic coupling and plasmon localization in deterministic aperiodic arrays,” J. Opt. A, Pure Appl. Opt. 10(6), 064013 (2008).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[CrossRef]

2007 (2)

S. Yoshioka and S. Kinoshita, “Polarization-sensitive color mixing in the wing of the Madagascan sunset moth,” Opt. Express 15(5), 2691–2701 (2007).
[CrossRef] [PubMed]

D. J. Brink, N. G. Berg, L. C. Prinsloo, and I. J. Hodgkinson, “Unusual coloration in scarabaeid beetles,” J. Phys. D Appl. Phys. 40(7), 2189–2196 (2007).
[CrossRef]

2006 (1)

A. Saito, Y. Miyamura, M. Nakajima, Y. Ishikawa, K. Sogo, Y. Kuwahara, and Y. Hirai, “Reproduction of the Morpho blue by nanocasting lithography,” J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. 24(6), 3248–3251 (2006).
[CrossRef]

2005 (2)

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, and S. Matsui, “Brilliant blue observation from a morpho-butterfly-scale quasi-structure,” Jpn. J. Appl. Phys. 44(1), L48–L50 (2005).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multipulse femtosecond laser ablation,” Phys. Rev. B 72(19), 195422 (2005).
[CrossRef]

2004 (1)

S. Yoshioka and S. Kinoshita, “Wavelength-selective and anisotropic light-diffusing scale on the wing of the Morpho butterfly,” Proc. Biol. Sci. 271(1539), 581–587 (2004).
[CrossRef] [PubMed]

2003 (2)

S. Torquato and F. H. Stillinger, “Local density fluctuations, hyperuniformity, and order metrics,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(4), 041113 (2003).
[CrossRef] [PubMed]

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[CrossRef] [PubMed]

2002 (1)

S. Kinoshita, S. Yoshioka, Y. Fujii, and N. Okamoto, “Photophysics of structural color in the morpho butterflies,” Forma 17, 103–121 (2002).

1994 (1)

C. Radin, “The Pinwheel tilings of the plane,” Ann. Math. 139(3), 661–702 (1994).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

1934 (1)

B. Delaunay, “Sur la sphere ride,” Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskikh i Estestvennykh Nauk 7, 793–800 (1934).

Amsden, J. J.

Berg, N. G.

D. J. Brink, N. G. Berg, L. C. Prinsloo, and I. J. Hodgkinson, “Unusual coloration in scarabaeid beetles,” J. Phys. D Appl. Phys. 40(7), 2189–2196 (2007).
[CrossRef]

Bin Imran, A.

M. Harun-Ur-Rashid, A. Bin Imran, T. Seki, M. Ishii, H. Nakamura, and Y. Takeoka, “Angle-independent structural color in colloidal amorphous arrays,” ChemPhysChem 11(3), 579–583 (2010).
[CrossRef] [PubMed]

Bokic, B.

Boriskina, S. V.

Brink, D. J.

D. J. Brink, N. G. Berg, L. C. Prinsloo, and I. J. Hodgkinson, “Unusual coloration in scarabaeid beetles,” J. Phys. D Appl. Phys. 40(7), 2189–2196 (2007).
[CrossRef]

Cao, H.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Curcic, B.

Curcic, S.

Dal Negro, L.

J. Trevino, H. Cao, and L. Dal Negro, “Circularly symmetric light scattering from nanoplasmonic spirals,” Nano Lett. 11(5), 2008–2016 (2011).
[CrossRef] [PubMed]

S. V. Boriskina, S. Y. K. Lee, J. J. Amsden, F. G. Omenetto, and L. Dal Negro, “Formation of colorimetric fingerprints on nano-patterned deterministic aperiodic surfaces,” Opt. Express 18(14), 14568–14576 (2010).
[CrossRef] [PubMed]

C. Forestiere, G. F. Walsh, G. Miano, and L. Dal Negro, “Nanoplasmonics of prime number arrays,” Opt. Express 17(26), 24288–24303 (2009).
[CrossRef] [PubMed]

C. Forestiere, G. Miano, S. V. Boriskina, and L. Dal Negro, “The role of nanoparticle shapes and deterministic aperiodicity for the design of nanoplasmonic arrays,” Opt. Express 17(12), 9648–9661 (2009).
[CrossRef] [PubMed]

A. Gopinath, S. V. Boriskina, N. N. Feng, B. M. Reinhard, and L. Dal Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett. 8(8), 2423–2431 (2008).
[CrossRef] [PubMed]

L. Dal Negro, N. N. Feng, and A. Gopinath, “Electromagnetic coupling and plasmon localization in deterministic aperiodic arrays,” J. Opt. A, Pure Appl. Opt. 10(6), 064013 (2008).
[CrossRef]

Delaunay, B.

B. Delaunay, “Sur la sphere ride,” Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskikh i Estestvennykh Nauk 7, 793–800 (1934).

Diao, Y. Y.

Dong, B. Q.

Dufresne, E. R.

Feng, N. N.

A. Gopinath, S. V. Boriskina, N. N. Feng, B. M. Reinhard, and L. Dal Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett. 8(8), 2423–2431 (2008).
[CrossRef] [PubMed]

L. Dal Negro, N. N. Feng, and A. Gopinath, “Electromagnetic coupling and plasmon localization in deterministic aperiodic arrays,” J. Opt. A, Pure Appl. Opt. 10(6), 064013 (2008).
[CrossRef]

Forestiere, C.

Fujii, Y.

S. Kinoshita, S. Yoshioka, Y. Fujii, and N. Okamoto, “Photophysics of structural color in the morpho butterflies,” Forma 17, 103–121 (2002).

Gopinath, A.

A. Gopinath, S. V. Boriskina, N. N. Feng, B. M. Reinhard, and L. Dal Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett. 8(8), 2423–2431 (2008).
[CrossRef] [PubMed]

L. Dal Negro, N. N. Feng, and A. Gopinath, “Electromagnetic coupling and plasmon localization in deterministic aperiodic arrays,” J. Opt. A, Pure Appl. Opt. 10(6), 064013 (2008).
[CrossRef]

Guo, C.

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multipulse femtosecond laser ablation,” Phys. Rev. B 72(19), 195422 (2005).
[CrossRef]

Harun-Ur-Rashid, M.

M. Harun-Ur-Rashid, A. Bin Imran, T. Seki, M. Ishii, H. Nakamura, and Y. Takeoka, “Angle-independent structural color in colloidal amorphous arrays,” ChemPhysChem 11(3), 579–583 (2010).
[CrossRef] [PubMed]

Haruyama, Y.

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, and S. Matsui, “Brilliant blue observation from a morpho-butterfly-scale quasi-structure,” Jpn. J. Appl. Phys. 44(1), L48–L50 (2005).
[CrossRef]

Hirai, Y.

A. Saito, Y. Miyamura, M. Nakajima, Y. Ishikawa, K. Sogo, Y. Kuwahara, and Y. Hirai, “Reproduction of the Morpho blue by nanocasting lithography,” J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. 24(6), 3248–3251 (2006).
[CrossRef]

Hodgkinson, I. J.

D. J. Brink, N. G. Berg, L. C. Prinsloo, and I. J. Hodgkinson, “Unusual coloration in scarabaeid beetles,” J. Phys. D Appl. Phys. 40(7), 2189–2196 (2007).
[CrossRef]

Honda, M.

Y. Takeoka, M. Honda, T. Seki, M. Ishii, and H. Nakamura, “Structural colored liquid membrane without angle dependence,” ACS Appl. Mater. Interfaces 1(5), 982–986 (2009).
[CrossRef] [PubMed]

Hoshino, T.

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, and S. Matsui, “Brilliant blue observation from a morpho-butterfly-scale quasi-structure,” Jpn. J. Appl. Phys. 44(1), L48–L50 (2005).
[CrossRef]

Huang, Z. Q.

Ishii, M.

M. Harun-Ur-Rashid, A. Bin Imran, T. Seki, M. Ishii, H. Nakamura, and Y. Takeoka, “Angle-independent structural color in colloidal amorphous arrays,” ChemPhysChem 11(3), 579–583 (2010).
[CrossRef] [PubMed]

Y. Takeoka, M. Honda, T. Seki, M. Ishii, and H. Nakamura, “Structural colored liquid membrane without angle dependence,” ACS Appl. Mater. Interfaces 1(5), 982–986 (2009).
[CrossRef] [PubMed]

Ishikawa, Y.

A. Saito, Y. Miyamura, M. Nakajima, Y. Ishikawa, K. Sogo, Y. Kuwahara, and Y. Hirai, “Reproduction of the Morpho blue by nanocasting lithography,” J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. 24(6), 3248–3251 (2006).
[CrossRef]

Jiang, L. P.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Kanda, K.

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, and S. Matsui, “Brilliant blue observation from a morpho-butterfly-scale quasi-structure,” Jpn. J. Appl. Phys. 44(1), L48–L50 (2005).
[CrossRef]

Kinoshita, S.

S. Yoshioka and S. Kinoshita, “Polarization-sensitive color mixing in the wing of the Madagascan sunset moth,” Opt. Express 15(5), 2691–2701 (2007).
[CrossRef] [PubMed]

S. Yoshioka and S. Kinoshita, “Wavelength-selective and anisotropic light-diffusing scale on the wing of the Morpho butterfly,” Proc. Biol. Sci. 271(1539), 581–587 (2004).
[CrossRef] [PubMed]

S. Kinoshita, S. Yoshioka, Y. Fujii, and N. Okamoto, “Photophysics of structural color in the morpho butterflies,” Forma 17, 103–121 (2002).

Korac, A.

Kovacevic, A.

Kuwahara, Y.

A. Saito, Y. Miyamura, M. Nakajima, Y. Ishikawa, K. Sogo, Y. Kuwahara, and Y. Hirai, “Reproduction of the Morpho blue by nanocasting lithography,” J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. 24(6), 3248–3251 (2006).
[CrossRef]

Lee, S. Y. K.

Liew, S. F.

Liu, F.

Liu, X. H.

Liu, X. Y.

Matsui, S.

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, and S. Matsui, “Brilliant blue observation from a morpho-butterfly-scale quasi-structure,” Jpn. J. Appl. Phys. 44(1), L48–L50 (2005).
[CrossRef]

Miano, G.

Miyamura, Y.

A. Saito, Y. Miyamura, M. Nakajima, Y. Ishikawa, K. Sogo, Y. Kuwahara, and Y. Hirai, “Reproduction of the Morpho blue by nanocasting lithography,” J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. 24(6), 3248–3251 (2006).
[CrossRef]

Mochrie, S. G. J.

Nakajima, M.

A. Saito, Y. Miyamura, M. Nakajima, Y. Ishikawa, K. Sogo, Y. Kuwahara, and Y. Hirai, “Reproduction of the Morpho blue by nanocasting lithography,” J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. 24(6), 3248–3251 (2006).
[CrossRef]

Nakamura, H.

M. Harun-Ur-Rashid, A. Bin Imran, T. Seki, M. Ishii, H. Nakamura, and Y. Takeoka, “Angle-independent structural color in colloidal amorphous arrays,” ChemPhysChem 11(3), 579–583 (2010).
[CrossRef] [PubMed]

Y. Takeoka, M. Honda, T. Seki, M. Ishii, and H. Nakamura, “Structural colored liquid membrane without angle dependence,” ACS Appl. Mater. Interfaces 1(5), 982–986 (2009).
[CrossRef] [PubMed]

Noh, H.

Okamoto, N.

S. Kinoshita, S. Yoshioka, Y. Fujii, and N. Okamoto, “Photophysics of structural color in the morpho butterflies,” Forma 17, 103–121 (2002).

Omenetto, F. G.

Pantelic, D.

Prinsloo, L. C.

D. J. Brink, N. G. Berg, L. C. Prinsloo, and I. J. Hodgkinson, “Unusual coloration in scarabaeid beetles,” J. Phys. D Appl. Phys. 40(7), 2189–2196 (2007).
[CrossRef]

Prum, R. O.

Radin, C.

C. Radin, “The Pinwheel tilings of the plane,” Ann. Math. 139(3), 661–702 (1994).
[CrossRef]

Reinhard, B. M.

A. Gopinath, S. V. Boriskina, N. N. Feng, B. M. Reinhard, and L. Dal Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett. 8(8), 2423–2431 (2008).
[CrossRef] [PubMed]

Saito, A.

A. Saito, Y. Miyamura, M. Nakajima, Y. Ishikawa, K. Sogo, Y. Kuwahara, and Y. Hirai, “Reproduction of the Morpho blue by nanocasting lithography,” J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. 24(6), 3248–3251 (2006).
[CrossRef]

Sambles, J. R.

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[CrossRef] [PubMed]

Saranathan, V.

Savic-Ševic, S.

Seki, T.

M. Harun-Ur-Rashid, A. Bin Imran, T. Seki, M. Ishii, H. Nakamura, and Y. Takeoka, “Angle-independent structural color in colloidal amorphous arrays,” ChemPhysChem 11(3), 579–583 (2010).
[CrossRef] [PubMed]

Y. Takeoka, M. Honda, T. Seki, M. Ishii, and H. Nakamura, “Structural colored liquid membrane without angle dependence,” ACS Appl. Mater. Interfaces 1(5), 982–986 (2009).
[CrossRef] [PubMed]

Sogo, K.

A. Saito, Y. Miyamura, M. Nakajima, Y. Ishikawa, K. Sogo, Y. Kuwahara, and Y. Hirai, “Reproduction of the Morpho blue by nanocasting lithography,” J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. 24(6), 3248–3251 (2006).
[CrossRef]

Stillinger, F. H.

S. Torquato and F. H. Stillinger, “Local density fluctuations, hyperuniformity, and order metrics,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(4), 041113 (2003).
[CrossRef] [PubMed]

Takeoka, Y.

M. Harun-Ur-Rashid, A. Bin Imran, T. Seki, M. Ishii, H. Nakamura, and Y. Takeoka, “Angle-independent structural color in colloidal amorphous arrays,” ChemPhysChem 11(3), 579–583 (2010).
[CrossRef] [PubMed]

Y. Takeoka, M. Honda, T. Seki, M. Ishii, and H. Nakamura, “Structural colored liquid membrane without angle dependence,” ACS Appl. Mater. Interfaces 1(5), 982–986 (2009).
[CrossRef] [PubMed]

Torquato, S.

S. Torquato and F. H. Stillinger, “Local density fluctuations, hyperuniformity, and order metrics,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(4), 041113 (2003).
[CrossRef] [PubMed]

Trevino, J.

J. Trevino, H. Cao, and L. Dal Negro, “Circularly symmetric light scattering from nanoplasmonic spirals,” Nano Lett. 11(5), 2008–2016 (2011).
[CrossRef] [PubMed]

Vorobyev, A. Y.

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multipulse femtosecond laser ablation,” Phys. Rev. B 72(19), 195422 (2005).
[CrossRef]

Vukusic, P.

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[CrossRef] [PubMed]

Walsh, G. F.

Watanabe, K.

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, and S. Matsui, “Brilliant blue observation from a morpho-butterfly-scale quasi-structure,” Jpn. J. Appl. Phys. 44(1), L48–L50 (2005).
[CrossRef]

Yin, H. W.

Yoshioka, S.

S. Yoshioka and S. Kinoshita, “Polarization-sensitive color mixing in the wing of the Madagascan sunset moth,” Opt. Express 15(5), 2691–2701 (2007).
[CrossRef] [PubMed]

S. Yoshioka and S. Kinoshita, “Wavelength-selective and anisotropic light-diffusing scale on the wing of the Morpho butterfly,” Proc. Biol. Sci. 271(1539), 581–587 (2004).
[CrossRef] [PubMed]

S. Kinoshita, S. Yoshioka, Y. Fujii, and N. Okamoto, “Photophysics of structural color in the morpho butterflies,” Forma 17, 103–121 (2002).

Zhan, T. R.

Zhang, G. S.

Zheng, Y. M.

Zi, J.

ACS Appl. Mater. Interfaces (1)

Y. Takeoka, M. Honda, T. Seki, M. Ishii, and H. Nakamura, “Structural colored liquid membrane without angle dependence,” ACS Appl. Mater. Interfaces 1(5), 982–986 (2009).
[CrossRef] [PubMed]

Ann. Math. (1)

C. Radin, “The Pinwheel tilings of the plane,” Ann. Math. 139(3), 661–702 (1994).
[CrossRef]

Appl. Phys. Lett. (1)

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[CrossRef]

ChemPhysChem (1)

M. Harun-Ur-Rashid, A. Bin Imran, T. Seki, M. Ishii, H. Nakamura, and Y. Takeoka, “Angle-independent structural color in colloidal amorphous arrays,” ChemPhysChem 11(3), 579–583 (2010).
[CrossRef] [PubMed]

Forma (1)

S. Kinoshita, S. Yoshioka, Y. Fujii, and N. Okamoto, “Photophysics of structural color in the morpho butterflies,” Forma 17, 103–121 (2002).

Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskikh i Estestvennykh Nauk (1)

B. Delaunay, “Sur la sphere ride,” Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskikh i Estestvennykh Nauk 7, 793–800 (1934).

J. Opt. A, Pure Appl. Opt. (1)

L. Dal Negro, N. N. Feng, and A. Gopinath, “Electromagnetic coupling and plasmon localization in deterministic aperiodic arrays,” J. Opt. A, Pure Appl. Opt. 10(6), 064013 (2008).
[CrossRef]

J. Phys. D Appl. Phys. (1)

D. J. Brink, N. G. Berg, L. C. Prinsloo, and I. J. Hodgkinson, “Unusual coloration in scarabaeid beetles,” J. Phys. D Appl. Phys. 40(7), 2189–2196 (2007).
[CrossRef]

J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. (1)

A. Saito, Y. Miyamura, M. Nakajima, Y. Ishikawa, K. Sogo, Y. Kuwahara, and Y. Hirai, “Reproduction of the Morpho blue by nanocasting lithography,” J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. 24(6), 3248–3251 (2006).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, and S. Matsui, “Brilliant blue observation from a morpho-butterfly-scale quasi-structure,” Jpn. J. Appl. Phys. 44(1), L48–L50 (2005).
[CrossRef]

Nano Lett. (2)

J. Trevino, H. Cao, and L. Dal Negro, “Circularly symmetric light scattering from nanoplasmonic spirals,” Nano Lett. 11(5), 2008–2016 (2011).
[CrossRef] [PubMed]

A. Gopinath, S. V. Boriskina, N. N. Feng, B. M. Reinhard, and L. Dal Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett. 8(8), 2423–2431 (2008).
[CrossRef] [PubMed]

Nature (1)

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[CrossRef] [PubMed]

Opt. Express (10)

C. Forestiere, G. F. Walsh, G. Miano, and L. Dal Negro, “Nanoplasmonics of prime number arrays,” Opt. Express 17(26), 24288–24303 (2009).
[CrossRef] [PubMed]

C. Forestiere, G. Miano, S. V. Boriskina, and L. Dal Negro, “The role of nanoparticle shapes and deterministic aperiodicity for the design of nanoplasmonic arrays,” Opt. Express 17(12), 9648–9661 (2009).
[CrossRef] [PubMed]

S. V. Boriskina, S. Y. K. Lee, J. J. Amsden, F. G. Omenetto, and L. Dal Negro, “Formation of colorimetric fingerprints on nano-patterned deterministic aperiodic surfaces,” Opt. Express 18(14), 14568–14576 (2010).
[CrossRef] [PubMed]

Y. Y. Diao and X. Y. Liu, “Mysterious coloring: structural origin of color mixing for two breeds of Papilio butterflies,” Opt. Express 19(10), 9232–9241 (2011).
[CrossRef] [PubMed]

D. Pantelić, S. Curčić, S. Savić-Šević, A. Korać, A. Kovačević, B. Curčić, and B. Bokić, “High angular and spectral selectivity of purple emperor (Lepidoptera: Apatura iris and A. ilia) butterfly wings,” Opt. Express 19(7), 5817–5826 (2011).
[CrossRef] [PubMed]

B. Q. Dong, X. H. Liu, T. R. Zhan, L. P. Jiang, H. W. Yin, F. Liu, and J. Zi, “Structural coloration and photonic pseudogap in natural random close-packing photonic structures,” Opt. Express 18(14), 14430–14438 (2010).
[CrossRef] [PubMed]

F. Liu, B. Q. Dong, X. H. Liu, Y. M. Zheng, and J. Zi, “Structural color change in longhorn beetles Tmesisternus isabellae,” Opt. Express 17(18), 16183–16191 (2009).
[CrossRef] [PubMed]

H. Noh, S. F. Liew, V. Saranathan, R. O. Prum, S. G. J. Mochrie, E. R. Dufresne, and H. Cao, “Double scattering of light from Biophotonic Nanostructures with short-range order,” Opt. Express 18(11), 11942–11948 (2010).
[CrossRef] [PubMed]

G. S. Zhang and Z. Q. Huang, “Two-dimensional amorphous photonic structure in the ligament of bivalve Lutraria maximum,” Opt. Express 18(13), 13361–13367 (2010).
[CrossRef] [PubMed]

S. Yoshioka and S. Kinoshita, “Polarization-sensitive color mixing in the wing of the Madagascan sunset moth,” Opt. Express 15(5), 2691–2701 (2007).
[CrossRef] [PubMed]

Phys. Rev. B (2)

A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multipulse femtosecond laser ablation,” Phys. Rev. B 72(19), 195422 (2005).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

S. Torquato and F. H. Stillinger, “Local density fluctuations, hyperuniformity, and order metrics,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(4), 041113 (2003).
[CrossRef] [PubMed]

Proc. Biol. Sci. (1)

S. Yoshioka and S. Kinoshita, “Wavelength-selective and anisotropic light-diffusing scale on the wing of the Morpho butterfly,” Proc. Biol. Sci. 271(1539), 581–587 (2004).
[CrossRef] [PubMed]

Other (5)

WebExhibits, Institute for Dynamic Educational Advancement, “What causes the colors of metals like gold?” http://www.webexhibits.org/causesofcolor/9.html

A. Saito, Y. Miyamura, Y. Ishikawa, J. Murase, M. Akai-Kasaya, and Y. Kuwahara, “Reproduction, mass production, and control of the Morpho butterfly's blue,” in Advanced Fabrication Technologies for Micro/Nano Optics and Photonics II, (SPIE, 2009), 720506–720509.

J. Illian, A. Penttinen, H. Stoyan, and D. Stoyan, Statistical Analysis and Modeling of Spatial Point Patterns, S. Senn, M. Scott, and V. Barnett, ed.(John Wiley, 2008).

S. Berthier, Iridescence: The Physical Colors of Insects, (Springer, 2007).

S. Kinoshita, Structural Colors in the Realm of Nature (World Scientific, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Numerically investigated periodic (a) and random (d) arrays made of N = 3600 and N = 3500 spherical nanoparticles with 100nm diameter and 800nm center-center interparticle separation (b) Scattering maps (logarithmic scale) of the periodic (b) and random (c) arrays when they are excited by a linearly polarized plane wave at normal incidence.. The scattering angles can be calculated from the horizontal and the vertical axes values as cos2θ = max [0,1-x2-y2]; φ = tan−1(y/x).

Fig. 2
Fig. 2

Averaged differential scattering cross section d C sca dΩ φ[ 0,2π ] ( ϑ,λ ) (dB) as a function of the observation angle (zenith) ϑ and of the incident wavelength λ for (a) Periodic and (d) Random structures, normalized to its maximum, when the arrays are excited by a linearly polarized plane wave at normal incidence. d C sca dΩ φ[ 0,2π ] ( ϑ,λ ) (dB) as function of ϑ for three fixed values of λ : λB = 475nm,, λG = 550nm and λR = 610nm for (b) Periodic and (c) Random arrays, respectively.

Fig. 3
Fig. 3

Numerically investigated Pinwheel (a) and DTPC (d) arrays made of N = 3467 and N = 3604 spherical nanoparticles with 100nm diameter and 800nm center-center interparticle separation (b) Scattering map of the Pinwheel (b) and DTPC (logarithmic scale), when the arrays are excited by a linearly polarized plane wave at normal incidence. The scattering angles can be calculated from the horizontal and the vertical axes values as cos2θ = max [0,1-x2-y2]; φ = tan−1(y/x).

Fig. 4
Fig. 4

Averaged differential scattering cross section d C sca dΩ φ[ 0,2π ] ( ϑ,λ ) (dB) as a function of the observation angle (zenith) ϑ and of the incident wavelength λ for Pinwheel (a) and DTPC (d) structures, normalized to its maximum, when the arrays are excited by a linearly polarized plane wave at normal incidence. d C sca dΩ φ[ 0,2π ] ( ϑ,λ ) (dB) as function of ϑ for three fixed values of λ : λB = 475nm,, λG = 550nm and λR = 610nm for Pinwheel (b) and DTPC (c) arrays, respectively.

Fig. 5
Fig. 5

(a) FDTD calculated scattering efficiency spectra of 80nm-thick Au nano-disks with varying diameter in air (a) and on a gold substrate (b). Measured dark-field scattering image (c) obtained on nanofabricated Au nanoparticles with 300nm diameter atop a 100nm-thick gold film.

Fig. 6
Fig. 6

Scanning electron microscope images of nanofabricated (a) periodic; (b) random; (d) Pinwheel; and (c) DTPC arrays of 300nm diameter and 80nm high Au nanoparticles with (a) 840nm interparticle separation; (b) 870nm; (d) 884nm; and (c) 800nm average interparticle separations on 100nm thick gold film.

Fig. 7
Fig. 7

(a) Schematic of the experimental setup used for angle-resolved reflection. Microscope images of (b) periodic, (c) random, (e) Pinwheel, and (d) DTPC arrays collected in dark-field configuration under white light illumination.

Fig. 8
Fig. 8

Angle-resolved reflection spectra of the (a) periodic; (b) random; (d) Pinwheel; and (c) DTPC arrays of gold nanoparticles and their corresponding radiation diagrams in response to different detection angles (inert). All the gold nanoparticles are 300nm diameter and 80nm high fabricated on a 100nm gold film.

Tables (1)

Tables Icon

Table 1 Geometric Parameters Describing the Main Characteristics of Investigated Arrays

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S( k )=1+ρ h ˜ ( k )
h( r )=g( r )1
ρ ^ ( k )= j=1 N exp(j k r j )
S( k )= | ρ ^ ( k ) | 2 N
ρ( r )= j=1 N δ( r r j )

Metrics