Abstract

A coupled magnetic resonator waveguide, composed of a contacting gold nanosphere chain on a gold slab, is proposed and investigated. A broadband coherent magnetic plasmon mode can be excited in this one dimensional nanostructure. By employing the Lagrangian formalism and the Fourier transform method, the dispersion properties of the wave vector and group velocity of the magnetic plasmon mode are investigated. Small group velocity can be obtained from this system which can be applied as subwavelength slow wave waveguides.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
    [CrossRef] [PubMed]
  2. N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
    [CrossRef] [PubMed]
  3. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23(17), 1331–1333 (1998).
    [CrossRef] [PubMed]
  4. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62(24), R16356 (2000).
    [CrossRef]
  5. S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67(20), 205402 (2003).
    [CrossRef]
  6. J. R. Krenn, “Nanoparticle waveguides: Watching energy transfer,” Nat. Mater. 2(4), 210–211 (2003).
    [CrossRef] [PubMed]
  7. C. Girard and R. Quidant, “Near-field optical transmittance of metal particle chain waveguides,” Opt. Express 12(25), 6141–6146 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-25-6141 .
    [CrossRef] [PubMed]
  8. K. B. Crozier, E. Togan, E. Simsek, and T. Yang, “Experimental measurement of the dispersion relations of the surface plasmon modes of metal nanoparticle chains,” Opt. Express 15(26), 17482–17493 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-26-17482 .
    [CrossRef] [PubMed]
  9. K. H. Fung and C. T. Chan, “Plasmonic modes in periodic metal nanoparticle chains: a direct dynamic eigenmode analysis,” Opt. Lett. 32(8), 973–975 (2007).
    [CrossRef] [PubMed]
  10. X. M. Bendana and F. J. García de Abajo, “Confined collective excitations of self-standing and supported planar periodic particle arrays,” Opt. Express 17(21), 18826–18835 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-21-18826 .
    [CrossRef] [PubMed]
  11. A. Alù, P. A. Belov, and N. Engheta, “Coupling and guided propagation along parallel chains of plasmonic nanoparticles,” New J. Phys. 13(3), 033026 (2011).
    [CrossRef]
  12. K. H. Fung, R. C. Tang, and C. T. Chan, “Analytical properties of the plasmon decay profile in a periodic metal-nanoparticle chain,” Opt. Lett. 36(12), 2206–2208 (2011).
    [CrossRef] [PubMed]
  13. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
    [CrossRef]
  14. E. Shamonina, V. Kalinin, K. H. Ringhofer, and L. Solymar, “Magnetoinductive waves in one, two, and three dimensions,” J. Appl. Phys. 92(10), 6252–6261 (2002).
    [CrossRef]
  15. O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Tailoring the near-field guiding properties of magnetic metamaterials with two resonant elements per unit cell,” Phys. Rev. B 73(22), 224406 (2006).
    [CrossRef]
  16. H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97(24), 243902 (2006).
    [CrossRef] [PubMed]
  17. H. Liu, Y. M. Liu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Coupled magnetic plasmons in metamaterials,” Physica Status Solidi B 246(7), 1397–1406 (2009).
    [CrossRef]
  18. H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79(2), 024304 (2009).
    [CrossRef]
  19. C. Zhu, H. Liu, S. M. Wang, T. Li, J. X. Cao, Y. J. Zheng, L. Li, Y. Wang, S. N. Zhu, and X. Zhang, “Electric and magnetic excitation of coherent magnetic plasmon waves in a one-dimensional meta-chain,” Opt. Express 18(25), 26268–26273 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-25-26268 .
    [CrossRef] [PubMed]

2011 (3)

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[CrossRef] [PubMed]

A. Alù, P. A. Belov, and N. Engheta, “Coupling and guided propagation along parallel chains of plasmonic nanoparticles,” New J. Phys. 13(3), 033026 (2011).
[CrossRef]

K. H. Fung, R. C. Tang, and C. T. Chan, “Analytical properties of the plasmon decay profile in a periodic metal-nanoparticle chain,” Opt. Lett. 36(12), 2206–2208 (2011).
[CrossRef] [PubMed]

2010 (1)

2009 (3)

H. Liu, Y. M. Liu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Coupled magnetic plasmons in metamaterials,” Physica Status Solidi B 246(7), 1397–1406 (2009).
[CrossRef]

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79(2), 024304 (2009).
[CrossRef]

X. M. Bendana and F. J. García de Abajo, “Confined collective excitations of self-standing and supported planar periodic particle arrays,” Opt. Express 17(21), 18826–18835 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-21-18826 .
[CrossRef] [PubMed]

2007 (2)

2006 (2)

O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Tailoring the near-field guiding properties of magnetic metamaterials with two resonant elements per unit cell,” Phys. Rev. B 73(22), 224406 (2006).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97(24), 243902 (2006).
[CrossRef] [PubMed]

2004 (1)

2003 (3)

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67(20), 205402 (2003).
[CrossRef]

J. R. Krenn, “Nanoparticle waveguides: Watching energy transfer,” Nat. Mater. 2(4), 210–211 (2003).
[CrossRef] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

2002 (1)

E. Shamonina, V. Kalinin, K. H. Ringhofer, and L. Solymar, “Magnetoinductive waves in one, two, and three dimensions,” J. Appl. Phys. 92(10), 6252–6261 (2002).
[CrossRef]

2000 (1)

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62(24), R16356 (2000).
[CrossRef]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

1998 (1)

Alù, A.

A. Alù, P. A. Belov, and N. Engheta, “Coupling and guided propagation along parallel chains of plasmonic nanoparticles,” New J. Phys. 13(3), 033026 (2011).
[CrossRef]

Atwater, H. A.

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67(20), 205402 (2003).
[CrossRef]

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62(24), R16356 (2000).
[CrossRef]

Aussenegg, F. R.

Belov, P. A.

A. Alù, P. A. Belov, and N. Engheta, “Coupling and guided propagation along parallel chains of plasmonic nanoparticles,” New J. Phys. 13(3), 033026 (2011).
[CrossRef]

Bendana, X. M.

Brongersma, M. L.

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62(24), R16356 (2000).
[CrossRef]

Cao, J. X.

Chan, C. T.

Chang, W. S.

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[CrossRef] [PubMed]

Crozier, K. B.

Edwards, D. J.

O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Tailoring the near-field guiding properties of magnetic metamaterials with two resonant elements per unit cell,” Phys. Rev. B 73(22), 224406 (2006).
[CrossRef]

Engheta, N.

A. Alù, P. A. Belov, and N. Engheta, “Coupling and guided propagation along parallel chains of plasmonic nanoparticles,” New J. Phys. 13(3), 033026 (2011).
[CrossRef]

Faulkner, G.

O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Tailoring the near-field guiding properties of magnetic metamaterials with two resonant elements per unit cell,” Phys. Rev. B 73(22), 224406 (2006).
[CrossRef]

Fung, K. H.

García de Abajo, F. J.

Genov, D. A.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97(24), 243902 (2006).
[CrossRef] [PubMed]

Girard, C.

Halas, N. J.

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[CrossRef] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Hartman, J. W.

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62(24), R16356 (2000).
[CrossRef]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

Kalinin, V.

E. Shamonina, V. Kalinin, K. H. Ringhofer, and L. Solymar, “Magnetoinductive waves in one, two, and three dimensions,” J. Appl. Phys. 92(10), 6252–6261 (2002).
[CrossRef]

Kik, P. G.

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67(20), 205402 (2003).
[CrossRef]

Krenn, J. R.

Lal, S.

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[CrossRef] [PubMed]

Leitner, A.

Li, J. Q.

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79(2), 024304 (2009).
[CrossRef]

Li, L.

Li, T.

C. Zhu, H. Liu, S. M. Wang, T. Li, J. X. Cao, Y. J. Zheng, L. Li, Y. Wang, S. N. Zhu, and X. Zhang, “Electric and magnetic excitation of coherent magnetic plasmon waves in a one-dimensional meta-chain,” Opt. Express 18(25), 26268–26273 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-25-26268 .
[CrossRef] [PubMed]

H. Liu, Y. M. Liu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Coupled magnetic plasmons in metamaterials,” Physica Status Solidi B 246(7), 1397–1406 (2009).
[CrossRef]

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79(2), 024304 (2009).
[CrossRef]

Link, S.

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[CrossRef] [PubMed]

Liu, H.

C. Zhu, H. Liu, S. M. Wang, T. Li, J. X. Cao, Y. J. Zheng, L. Li, Y. Wang, S. N. Zhu, and X. Zhang, “Electric and magnetic excitation of coherent magnetic plasmon waves in a one-dimensional meta-chain,” Opt. Express 18(25), 26268–26273 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-25-26268 .
[CrossRef] [PubMed]

H. Liu, Y. M. Liu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Coupled magnetic plasmons in metamaterials,” Physica Status Solidi B 246(7), 1397–1406 (2009).
[CrossRef]

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79(2), 024304 (2009).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97(24), 243902 (2006).
[CrossRef] [PubMed]

Liu, Y. M.

H. Liu, Y. M. Liu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Coupled magnetic plasmons in metamaterials,” Physica Status Solidi B 246(7), 1397–1406 (2009).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97(24), 243902 (2006).
[CrossRef] [PubMed]

Maier, S. A.

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67(20), 205402 (2003).
[CrossRef]

Nordlander, P.

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[CrossRef] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Pendry, J. B.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Quidant, R.

Quinten, M.

Radkovskaya, A.

O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Tailoring the near-field guiding properties of magnetic metamaterials with two resonant elements per unit cell,” Phys. Rev. B 73(22), 224406 (2006).
[CrossRef]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Ringhofer, K. H.

E. Shamonina, V. Kalinin, K. H. Ringhofer, and L. Solymar, “Magnetoinductive waves in one, two, and three dimensions,” J. Appl. Phys. 92(10), 6252–6261 (2002).
[CrossRef]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

Shamonin, M.

O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Tailoring the near-field guiding properties of magnetic metamaterials with two resonant elements per unit cell,” Phys. Rev. B 73(22), 224406 (2006).
[CrossRef]

Shamonina, E.

O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Tailoring the near-field guiding properties of magnetic metamaterials with two resonant elements per unit cell,” Phys. Rev. B 73(22), 224406 (2006).
[CrossRef]

E. Shamonina, V. Kalinin, K. H. Ringhofer, and L. Solymar, “Magnetoinductive waves in one, two, and three dimensions,” J. Appl. Phys. 92(10), 6252–6261 (2002).
[CrossRef]

Simsek, E.

Solymar, L.

O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Tailoring the near-field guiding properties of magnetic metamaterials with two resonant elements per unit cell,” Phys. Rev. B 73(22), 224406 (2006).
[CrossRef]

E. Shamonina, V. Kalinin, K. H. Ringhofer, and L. Solymar, “Magnetoinductive waves in one, two, and three dimensions,” J. Appl. Phys. 92(10), 6252–6261 (2002).
[CrossRef]

Steele, J. M.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97(24), 243902 (2006).
[CrossRef] [PubMed]

Stevens, C. J.

O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Tailoring the near-field guiding properties of magnetic metamaterials with two resonant elements per unit cell,” Phys. Rev. B 73(22), 224406 (2006).
[CrossRef]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

Sun, C.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97(24), 243902 (2006).
[CrossRef] [PubMed]

Sydoruk, O.

O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Tailoring the near-field guiding properties of magnetic metamaterials with two resonant elements per unit cell,” Phys. Rev. B 73(22), 224406 (2006).
[CrossRef]

Tang, R. C.

Togan, E.

Wang, Q. J.

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79(2), 024304 (2009).
[CrossRef]

Wang, S. M.

C. Zhu, H. Liu, S. M. Wang, T. Li, J. X. Cao, Y. J. Zheng, L. Li, Y. Wang, S. N. Zhu, and X. Zhang, “Electric and magnetic excitation of coherent magnetic plasmon waves in a one-dimensional meta-chain,” Opt. Express 18(25), 26268–26273 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-25-26268 .
[CrossRef] [PubMed]

H. Liu, Y. M. Liu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Coupled magnetic plasmons in metamaterials,” Physica Status Solidi B 246(7), 1397–1406 (2009).
[CrossRef]

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79(2), 024304 (2009).
[CrossRef]

Wang, Y.

Wu, D. M.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97(24), 243902 (2006).
[CrossRef] [PubMed]

Yang, T.

Zhang, X.

C. Zhu, H. Liu, S. M. Wang, T. Li, J. X. Cao, Y. J. Zheng, L. Li, Y. Wang, S. N. Zhu, and X. Zhang, “Electric and magnetic excitation of coherent magnetic plasmon waves in a one-dimensional meta-chain,” Opt. Express 18(25), 26268–26273 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-25-26268 .
[CrossRef] [PubMed]

H. Liu, Y. M. Liu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Coupled magnetic plasmons in metamaterials,” Physica Status Solidi B 246(7), 1397–1406 (2009).
[CrossRef]

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79(2), 024304 (2009).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97(24), 243902 (2006).
[CrossRef] [PubMed]

Zheng, Y. J.

Zhu, C.

Zhu, S. N.

C. Zhu, H. Liu, S. M. Wang, T. Li, J. X. Cao, Y. J. Zheng, L. Li, Y. Wang, S. N. Zhu, and X. Zhang, “Electric and magnetic excitation of coherent magnetic plasmon waves in a one-dimensional meta-chain,” Opt. Express 18(25), 26268–26273 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-25-26268 .
[CrossRef] [PubMed]

H. Liu, Y. M. Liu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Coupled magnetic plasmons in metamaterials,” Physica Status Solidi B 246(7), 1397–1406 (2009).
[CrossRef]

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79(2), 024304 (2009).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97(24), 243902 (2006).
[CrossRef] [PubMed]

Zhu, Y. Y.

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79(2), 024304 (2009).
[CrossRef]

Zhu, Z. H.

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79(2), 024304 (2009).
[CrossRef]

Zhuromskyy, O.

O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Tailoring the near-field guiding properties of magnetic metamaterials with two resonant elements per unit cell,” Phys. Rev. B 73(22), 224406 (2006).
[CrossRef]

Chem. Rev. (1)

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[CrossRef] [PubMed]

IEEE Trans. Microw. Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

J. Appl. Phys. (1)

E. Shamonina, V. Kalinin, K. H. Ringhofer, and L. Solymar, “Magnetoinductive waves in one, two, and three dimensions,” J. Appl. Phys. 92(10), 6252–6261 (2002).
[CrossRef]

Nat. Mater. (1)

J. R. Krenn, “Nanoparticle waveguides: Watching energy transfer,” Nat. Mater. 2(4), 210–211 (2003).
[CrossRef] [PubMed]

New J. Phys. (1)

A. Alù, P. A. Belov, and N. Engheta, “Coupling and guided propagation along parallel chains of plasmonic nanoparticles,” New J. Phys. 13(3), 033026 (2011).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. B (4)

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62(24), R16356 (2000).
[CrossRef]

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67(20), 205402 (2003).
[CrossRef]

O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Tailoring the near-field guiding properties of magnetic metamaterials with two resonant elements per unit cell,” Phys. Rev. B 73(22), 224406 (2006).
[CrossRef]

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79(2), 024304 (2009).
[CrossRef]

Phys. Rev. Lett. (1)

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97(24), 243902 (2006).
[CrossRef] [PubMed]

Physica Status Solidi B (1)

H. Liu, Y. M. Liu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Coupled magnetic plasmons in metamaterials,” Physica Status Solidi B 246(7), 1397–1406 (2009).
[CrossRef]

Science (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Structure of two gold spheres on gold slab; (b) The frequency dependence of local magnetic field with different thickness of the dielectric layer; (c) The induced current at resonance frequency; (d) Equivalent LC circuits for the resonance mode.

Fig. 2
Fig. 2

(a) Structure of three gold spheres on gold slab; (b) The frequency dependence of local magnetic field; The induced current distribution at lower frequency symmetry mode (c) and the equivalent LC circuit (d); The induced current distribution at higher frequency antisymmetry mode (e) and the equivalent LC circuit (f).

Fig. 3
Fig. 3

The structure of one dimensional chain of gold spheres on gold slab, a dipole source is used to excite the first sphere.

Fig. 4
Fig. 4

(a) The frequency dependence of local magnetic field at the end of chain (recorded by a probe at the last gold sphere); (b) The dispersion curve of coherent magnetic plasmon modes (grey map: simulated result; red square dot line: calculated results based on Lagrange mode).

Fig. 5
Fig. 5

The calculated group velocity of the one dimensional magnetic plasmon mode.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Lag= 1 2 L( q ˙ 1 2 + q ˙ 2 2 ) 1 4C ( q 1 2 + q 2 2 )+M q ˙ 1 q ˙ 2 1 4C ( q 1 q 2 ) 2 ,
d dt ( Lag q ˙ m ) Lag q m = R q ˙ m , (m=1,2)
μ ¨ 1 + ω 0 2 μ 1 +Γ μ ˙ 1 = 1 2 κ 1 ω 0 2 ( μ 1 + μ 2 ) κ 2 μ ¨ 2
μ ¨ 2 + ω 0 2 μ 2 +Γ μ ˙ 2 = 1 2 κ 1 ω 0 2 ( μ 1 + μ 2 ) κ 2 μ ¨ 1 ,
Lag= m [ 1 2 L q ˙ m 2 1 4C ( q m q m+1 ) 2 +M n 1 n 2 q ˙ m q ˙ m+1 ] , (m=0,±1±2,...;n=1,2,3...).
R= m 1 2 γ q ˙ m 2 .
μ ¨ m +Γ μ ˙ m + ω 0 2 μ m = 1 2 κ 1 ω 0 2 ( μ m1 +2 μ m + μ m+1 ) κ 2 n 1 n 2 ( μ ¨ mn + μ ¨ m+n ),
ω 2 = ω 0 2 1 κ 1 [1+cos(kd)] 1+2 κ 2 n 1 n 2 cos(nkd) ,
H(ω,k)= H(ω,x) e ikx dx .
V g = ω k = ω 0 2 d 2ω κ 1 sin(kd)[ 1+2 κ 2 n=1 1 n 2 cos(nkd) ]+2 κ 2 [ 1 κ 1 (1+cos(kd)) ] n=1 1 n sin(nkd) [ 1+2 κ 2 n=1 1 n 2 cos(nkd) ] 2 .

Metrics