Abstract

For sustainable growth of the Internet, wavelength-tunable optical regeneration is the key to scaling up high energy-efficiency dynamic optical path networks while keeping the flexibility of the network. Wavelength-tunable optical parametric regenerator (T-OPR) based on the gain saturation effect of parametric amplification in a highly nonlinear fiber is promising for noise reduction in phase-shift keying signals. In this paper, we experimentally evaluated the T-OPR performance for ASE-degraded 43-Gb/s RZ-DPSK signals over a 20-nm input wavelength range between 1527 nm and 1547 nm. As a result, we achieved improved power penalty performance for the regenerated idler with a proper pump power range.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, K. Oyamada, and K. Oyamada, “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Top. Quantum Electron. 17(2), 446–457 (2011).
    [CrossRef]
  2. S. Namiki, T. Hasama, and H. Ishikawa, “Optical signal processing for energy-efficient dynamic optical path network,” in Proc. Eur. Conf. Optical Communication (ECOC 2010), Paper Mo.2.A.4, 2010.
  3. J. Berthold, A. A. M. Saleh, L. Blair, and J. M. Simmons, “Optical networking: past, present, and future,” J. Lightwave Technol. 26(9), 1104–1118 (2008).
    [CrossRef]
  4. M. Gao, J. Kurumida, and S. Namiki, “Wavelength-tunable optical parametric regenerator,” Opt. Lett. 35(20), 3468–3470 (2010).
    [CrossRef] [PubMed]
  5. M. Gao, J. Kurumida, and S. Namiki, “43-Gbit/s operation of wavelength-tunable optical parametric regenerator,” IEEE Photon. Technol. Lett. 23(11), 718–720 (2011).
    [CrossRef]
  6. M. Gao, J. Kurumida, and S. Namiki, “Cascaded optical parametric amplitude thresholder and limiter,” in Proc. Opto-Electronics and Communications Conference (OECC 2011), Paper 7C4_4, 2011.
  7. J. P. Gordon and L. F. Mollenauer, “Phase noise in photonic communications systems using linear amplifiers,” Opt. Lett. 15(23), 1351–1353 (1990).
    [CrossRef] [PubMed]
  8. M. Matsumoto and K. Sanuki, “Performance improvement of DPSK signal transmission by a phase-preserving amplitude limiter,” Opt. Express 15(13), 8094–8103 (2007), http://www.opticsinfobase.org/oe /abstract.cfm?uri=oe-15–13–8094 .
    [CrossRef] [PubMed]
  9. M. Sköld, J. Yang, H. Sunnerud, M. Karlsson, S. Oda, and P. A. Andrekson, “Constellation diagram analysis of DPSK signal regeneration in a saturated parametric amplifier,” Opt. Express 16(9), 5974–5982 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-9-5974 .
    [CrossRef] [PubMed]
  10. C. Peucheret, M. Lorenzen, J. Seoane, D. Noordegraaf, C. V. Nielsen, L. Gruner-Nielsen, and K. Rottwitt, “Amplitude regeneration of RZ-DPSK signals in single-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett. 21(13), 872–874 (2009).
    [CrossRef]
  11. Q. T. Le, L. Bramerie, H. T. Nguyen, M. Gay, S. Lobo, M. Joindot, J.-L. Oudar, and J.-C. Simon, “Saturable-absorber-based phase-preserving amplitude regeneration of RZ DPSK signals,” IEEE Photon. Technol. Lett. 22(12), 887–889 (2010).
    [CrossRef]
  12. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
    [CrossRef]
  13. T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser Photon. Rev. 2(1-2), 83–99 (2008).
    [CrossRef]
  14. M. Takahashi, M. Tadakuma, J. Hiroishi, and T. Yagi, “5.7dB SBS suppression with a HNLF (module) comprised of 3 HNLFs having different GeO2 concentration,” in Proc. Eur. Conf. Optical Communication (ECOC 2007), Paper P014, 2007.
  15. M. Matsumoto, “Phase noise generation in an amplitude limiter using saturation of a fiber-optic parametric amplifier,” Opt. Lett. 33(15), 1638–1640 (2008).
    [CrossRef] [PubMed]

2011 (2)

M. Gao, J. Kurumida, and S. Namiki, “43-Gbit/s operation of wavelength-tunable optical parametric regenerator,” IEEE Photon. Technol. Lett. 23(11), 718–720 (2011).
[CrossRef]

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, K. Oyamada, and K. Oyamada, “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Top. Quantum Electron. 17(2), 446–457 (2011).
[CrossRef]

2010 (2)

Q. T. Le, L. Bramerie, H. T. Nguyen, M. Gay, S. Lobo, M. Joindot, J.-L. Oudar, and J.-C. Simon, “Saturable-absorber-based phase-preserving amplitude regeneration of RZ DPSK signals,” IEEE Photon. Technol. Lett. 22(12), 887–889 (2010).
[CrossRef]

M. Gao, J. Kurumida, and S. Namiki, “Wavelength-tunable optical parametric regenerator,” Opt. Lett. 35(20), 3468–3470 (2010).
[CrossRef] [PubMed]

2009 (1)

C. Peucheret, M. Lorenzen, J. Seoane, D. Noordegraaf, C. V. Nielsen, L. Gruner-Nielsen, and K. Rottwitt, “Amplitude regeneration of RZ-DPSK signals in single-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett. 21(13), 872–874 (2009).
[CrossRef]

2008 (4)

2007 (1)

2002 (1)

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[CrossRef]

1990 (1)

Andrekson, P. A.

Berthold, J.

Blair, L.

Bramerie, L.

Q. T. Le, L. Bramerie, H. T. Nguyen, M. Gay, S. Lobo, M. Joindot, J.-L. Oudar, and J.-C. Simon, “Saturable-absorber-based phase-preserving amplitude regeneration of RZ DPSK signals,” IEEE Photon. Technol. Lett. 22(12), 887–889 (2010).
[CrossRef]

Gao, M.

M. Gao, J. Kurumida, and S. Namiki, “43-Gbit/s operation of wavelength-tunable optical parametric regenerator,” IEEE Photon. Technol. Lett. 23(11), 718–720 (2011).
[CrossRef]

M. Gao, J. Kurumida, and S. Namiki, “Wavelength-tunable optical parametric regenerator,” Opt. Lett. 35(20), 3468–3470 (2010).
[CrossRef] [PubMed]

Gay, M.

Q. T. Le, L. Bramerie, H. T. Nguyen, M. Gay, S. Lobo, M. Joindot, J.-L. Oudar, and J.-C. Simon, “Saturable-absorber-based phase-preserving amplitude regeneration of RZ DPSK signals,” IEEE Photon. Technol. Lett. 22(12), 887–889 (2010).
[CrossRef]

Gordon, J. P.

Gruner-Nielsen, L.

C. Peucheret, M. Lorenzen, J. Seoane, D. Noordegraaf, C. V. Nielsen, L. Gruner-Nielsen, and K. Rottwitt, “Amplitude regeneration of RZ-DPSK signals in single-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett. 21(13), 872–874 (2009).
[CrossRef]

Hansryd, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[CrossRef]

Hasama, T.

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, K. Oyamada, and K. Oyamada, “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Top. Quantum Electron. 17(2), 446–457 (2011).
[CrossRef]

Hedekvist, P.-O.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[CrossRef]

Inoue, T.

T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser Photon. Rev. 2(1-2), 83–99 (2008).
[CrossRef]

Ishikawa, H.

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, K. Oyamada, and K. Oyamada, “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Top. Quantum Electron. 17(2), 446–457 (2011).
[CrossRef]

Joindot, M.

Q. T. Le, L. Bramerie, H. T. Nguyen, M. Gay, S. Lobo, M. Joindot, J.-L. Oudar, and J.-C. Simon, “Saturable-absorber-based phase-preserving amplitude regeneration of RZ DPSK signals,” IEEE Photon. Technol. Lett. 22(12), 887–889 (2010).
[CrossRef]

Karlsson, M.

Kurosu, T.

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, K. Oyamada, and K. Oyamada, “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Top. Quantum Electron. 17(2), 446–457 (2011).
[CrossRef]

Kurumida, J.

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, K. Oyamada, and K. Oyamada, “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Top. Quantum Electron. 17(2), 446–457 (2011).
[CrossRef]

M. Gao, J. Kurumida, and S. Namiki, “43-Gbit/s operation of wavelength-tunable optical parametric regenerator,” IEEE Photon. Technol. Lett. 23(11), 718–720 (2011).
[CrossRef]

M. Gao, J. Kurumida, and S. Namiki, “Wavelength-tunable optical parametric regenerator,” Opt. Lett. 35(20), 3468–3470 (2010).
[CrossRef] [PubMed]

Le, Q. T.

Q. T. Le, L. Bramerie, H. T. Nguyen, M. Gay, S. Lobo, M. Joindot, J.-L. Oudar, and J.-C. Simon, “Saturable-absorber-based phase-preserving amplitude regeneration of RZ DPSK signals,” IEEE Photon. Technol. Lett. 22(12), 887–889 (2010).
[CrossRef]

Li, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[CrossRef]

Lobo, S.

Q. T. Le, L. Bramerie, H. T. Nguyen, M. Gay, S. Lobo, M. Joindot, J.-L. Oudar, and J.-C. Simon, “Saturable-absorber-based phase-preserving amplitude regeneration of RZ DPSK signals,” IEEE Photon. Technol. Lett. 22(12), 887–889 (2010).
[CrossRef]

Lorenzen, M.

C. Peucheret, M. Lorenzen, J. Seoane, D. Noordegraaf, C. V. Nielsen, L. Gruner-Nielsen, and K. Rottwitt, “Amplitude regeneration of RZ-DPSK signals in single-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett. 21(13), 872–874 (2009).
[CrossRef]

Matsumoto, M.

Mollenauer, L. F.

Nakamura, M.

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, K. Oyamada, and K. Oyamada, “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Top. Quantum Electron. 17(2), 446–457 (2011).
[CrossRef]

Nakatogawa, T.

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, K. Oyamada, and K. Oyamada, “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Top. Quantum Electron. 17(2), 446–457 (2011).
[CrossRef]

Namiki, S.

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, K. Oyamada, and K. Oyamada, “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Top. Quantum Electron. 17(2), 446–457 (2011).
[CrossRef]

M. Gao, J. Kurumida, and S. Namiki, “43-Gbit/s operation of wavelength-tunable optical parametric regenerator,” IEEE Photon. Technol. Lett. 23(11), 718–720 (2011).
[CrossRef]

M. Gao, J. Kurumida, and S. Namiki, “Wavelength-tunable optical parametric regenerator,” Opt. Lett. 35(20), 3468–3470 (2010).
[CrossRef] [PubMed]

T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser Photon. Rev. 2(1-2), 83–99 (2008).
[CrossRef]

Nguyen, H. T.

Q. T. Le, L. Bramerie, H. T. Nguyen, M. Gay, S. Lobo, M. Joindot, J.-L. Oudar, and J.-C. Simon, “Saturable-absorber-based phase-preserving amplitude regeneration of RZ DPSK signals,” IEEE Photon. Technol. Lett. 22(12), 887–889 (2010).
[CrossRef]

Nielsen, C. V.

C. Peucheret, M. Lorenzen, J. Seoane, D. Noordegraaf, C. V. Nielsen, L. Gruner-Nielsen, and K. Rottwitt, “Amplitude regeneration of RZ-DPSK signals in single-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett. 21(13), 872–874 (2009).
[CrossRef]

Noordegraaf, D.

C. Peucheret, M. Lorenzen, J. Seoane, D. Noordegraaf, C. V. Nielsen, L. Gruner-Nielsen, and K. Rottwitt, “Amplitude regeneration of RZ-DPSK signals in single-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett. 21(13), 872–874 (2009).
[CrossRef]

Oda, S.

Oudar, J.-L.

Q. T. Le, L. Bramerie, H. T. Nguyen, M. Gay, S. Lobo, M. Joindot, J.-L. Oudar, and J.-C. Simon, “Saturable-absorber-based phase-preserving amplitude regeneration of RZ DPSK signals,” IEEE Photon. Technol. Lett. 22(12), 887–889 (2010).
[CrossRef]

Oyamada, K.

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, K. Oyamada, and K. Oyamada, “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Top. Quantum Electron. 17(2), 446–457 (2011).
[CrossRef]

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, K. Oyamada, and K. Oyamada, “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Top. Quantum Electron. 17(2), 446–457 (2011).
[CrossRef]

Peucheret, C.

C. Peucheret, M. Lorenzen, J. Seoane, D. Noordegraaf, C. V. Nielsen, L. Gruner-Nielsen, and K. Rottwitt, “Amplitude regeneration of RZ-DPSK signals in single-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett. 21(13), 872–874 (2009).
[CrossRef]

Rottwitt, K.

C. Peucheret, M. Lorenzen, J. Seoane, D. Noordegraaf, C. V. Nielsen, L. Gruner-Nielsen, and K. Rottwitt, “Amplitude regeneration of RZ-DPSK signals in single-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett. 21(13), 872–874 (2009).
[CrossRef]

Saleh, A. A. M.

Sanuki, K.

Seoane, J.

C. Peucheret, M. Lorenzen, J. Seoane, D. Noordegraaf, C. V. Nielsen, L. Gruner-Nielsen, and K. Rottwitt, “Amplitude regeneration of RZ-DPSK signals in single-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett. 21(13), 872–874 (2009).
[CrossRef]

Simmons, J. M.

Simon, J.-C.

Q. T. Le, L. Bramerie, H. T. Nguyen, M. Gay, S. Lobo, M. Joindot, J.-L. Oudar, and J.-C. Simon, “Saturable-absorber-based phase-preserving amplitude regeneration of RZ DPSK signals,” IEEE Photon. Technol. Lett. 22(12), 887–889 (2010).
[CrossRef]

Sköld, M.

Sunnerud, H.

Tanizawa, K.

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, K. Oyamada, and K. Oyamada, “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Top. Quantum Electron. 17(2), 446–457 (2011).
[CrossRef]

Westlund, M.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[CrossRef]

Yang, J.

IEEE J. Sel. Top. Quantum Electron. (2)

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, K. Oyamada, and K. Oyamada, “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Top. Quantum Electron. 17(2), 446–457 (2011).
[CrossRef]

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

C. Peucheret, M. Lorenzen, J. Seoane, D. Noordegraaf, C. V. Nielsen, L. Gruner-Nielsen, and K. Rottwitt, “Amplitude regeneration of RZ-DPSK signals in single-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett. 21(13), 872–874 (2009).
[CrossRef]

Q. T. Le, L. Bramerie, H. T. Nguyen, M. Gay, S. Lobo, M. Joindot, J.-L. Oudar, and J.-C. Simon, “Saturable-absorber-based phase-preserving amplitude regeneration of RZ DPSK signals,” IEEE Photon. Technol. Lett. 22(12), 887–889 (2010).
[CrossRef]

M. Gao, J. Kurumida, and S. Namiki, “43-Gbit/s operation of wavelength-tunable optical parametric regenerator,” IEEE Photon. Technol. Lett. 23(11), 718–720 (2011).
[CrossRef]

J. Lightwave Technol. (1)

Laser Photon. Rev. (1)

T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser Photon. Rev. 2(1-2), 83–99 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Other (3)

M. Takahashi, M. Tadakuma, J. Hiroishi, and T. Yagi, “5.7dB SBS suppression with a HNLF (module) comprised of 3 HNLFs having different GeO2 concentration,” in Proc. Eur. Conf. Optical Communication (ECOC 2007), Paper P014, 2007.

M. Gao, J. Kurumida, and S. Namiki, “Cascaded optical parametric amplitude thresholder and limiter,” in Proc. Opto-Electronics and Communications Conference (OECC 2011), Paper 7C4_4, 2011.

S. Namiki, T. Hasama, and H. Ishikawa, “Optical signal processing for energy-efficient dynamic optical path network,” in Proc. Eur. Conf. Optical Communication (ECOC 2010), Paper Mo.2.A.4, 2010.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Calculated gain spectra of single-pump parametric amplifier with γPpL of 5.1, λ0 of 1542 nm and pump wavelengths λp of 1544, 1545, 1546, 1548, 1550, 1552, 1554 and 1556 nm from a shorter wavelength peak.

Fig. 2
Fig. 2

Calculated maximum gain wavelengths (λS and λL) versus pump wavelength (λp) in the anomalous dispersion regime with γPpL of 5.0, 6.3 and 7.4 from inner curves.

Fig. 3
Fig. 3

The conceptual block diagram of the pulsed-pump T-OPR. EDFA: erbium-doped fiber amplifier, OBPF: tunable optical bandpass filter, PC: polarization controller, HNLF: highly nonlinear fiber, VOA: variable optical attenuator.

Fig. 4
Fig. 4

Experimental setup of the pulsed-pump T-OPR for 43-Gbit/s RZ-DPSK.

Fig. 5
Fig. 5

(a) BER characteristics and (b) the corresponding waveforms of 43-Gb/s RZ-DPSK signal at 1535nm with varying ASE-degradation: OSNR=32.5 dB (pentagram), 22.7 dB (diamonds), 17.3 dB (squares), 15.9 dB (triangles) and 12.8 dB (circles).

Fig. 6
Fig. 6

Measured pump ASE spectra (0.1-nm RBW) with varying average pump power, 21.8 dBm (red), 22.8 dBm (green) and 23.5 dBm (blue).

Fig. 7
Fig. 7

The measured average power transfer function of input 43-Gb/s RZ-DPSK signal at 1535nm and regenerated idler at 1561nm with average pump power of 21.8dBm (circles), 22.8dBm (squares) and 23.5dBm (diamonds) at 1548nm.

Fig. 8
Fig. 8

(a) BER characteristics and (b) the corresponding waveforms for different pump powers. Back-to-back signal (pentagram); degraded signal (triangles) at 1535nm and regenerated idler at 1561nm with pump power of 21.8 dBm (circles), 22.8 dBm (squares) and 23.5 dBm (diamonds) at 1548 nm.

Fig. 9
Fig. 9

Measured pump ASE spectra (0.1-nm RBW) with varying pump wavelengths of 1544, 1548 and 1554 nm from a shorter wavelength peak.

Fig. 10
Fig. 10

Measured MGWs vs. pump wavelength (diamonds) along with the theoretical calculation (dotted curves). The squares show corresponding input probe wavelengths and output idler wavelength of 1561nm.

Fig. 11
Fig. 11

Measured average power transfer functions of 43-Gb/s RZ-DPSK signal and regenerated idler at 1561 nm. Signal wavelengths were 1527 nm (red), 1535 nm (green), and 1548 nm (blue) and average pump power was 22.8 dBm.

Fig. 12
Fig. 12

BER characteristics for various RZ-DPSK signal wavelengths of (a) 1527 nm, (b) 1535 nm, (c) 1547 nm. Back-to-back signal (pentagram), degraded signal (triangles) and regenerated idler at 1561nm (squares) with an average pump power of 22.8 dBm.

Fig. 13
Fig. 13

(a) Waveform before demodulation of degraded signal at 1527 nm, (b) eye diagram after demodulation of degraded signal at 1527 nm, (c) waveform before demodulation of regenerated idler at 1561 nm, (d) eye diagram after demodulation of regenerated idler at 1561 nm, for 43-Gb/s RZ-DPSK signal.

Fig. A1
Fig. A1

Direct-detection receivers for (a) DPSK signal and (b) DQPSK signal.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

G max (1/4 )exp(2γ P p L)
λ S,L = λ p λ 0 γ P p πcS( λ p λ 0 )
I(t)=2RRe[ A ˜ (t) A ˜ * (tT) ]=2RA(A+δA)cos(δ φ s +δ φ n ) { 2R A 2 ( 1+ δA A )( 1 δ φ n 2 2 ) with δ φ s =0 2R A 2 ( 1+ δA A )( 1 δ φ n 2 2 ) with δ φ s =π
I I ( t )=RRe[ A ˜ (t) A ˜ * (tT)exp(j/4 ) ]=RA( A+δA )cos( δφ s + δφ n + π 4 ) { RA 2 ( 1+ δA A )cos( δφ n + π 4 ) 2 2 RA 2 ( 1+ δA A )( 1 δφ n 2 2 δφ n ) with δφ s =0 -RA 2 ( 1+ δA A )sin( δφ n + π 4 ) 2 2 RA 2 ( 1+ δA A )( 1 δφ n 2 2 + δφ n ) with δφ s = π 2 -RA 2 ( 1+ δA A )cos( δφ n + π 4 ) 2 2 RA 2 ( 1+ δA A )( 1 δφ n 2 2 δφ n ) with δφ s =π RA 2 ( 1+ δA A )sin( δφ n + π 4 ) 2 2 RA 2 ( 1+ δA A )( 1 δφ n 2 2 + δφ n ) with δφ s = 2
I Q ( t )=RRe[ A ˜ (t) A ˜ * (tT)exp( j /4 ) ]=RA( A+δA )cos( δφ s + δφ n π 4 ) { RA 2 ( 1+ δA A )cos( δφ n π 4 ) 2 2 RA 2 ( 1+ δA A )( 1 δφ n 2 2 + δφ n ) with δφ s =0 -RA 2 ( 1+ δA A )sin( δφ n π 4 ) 2 2 RA 2 ( 1+ δA A )( 1 δφ n 2 2 δφ n ) with δφ s = π 2 -RA 2 ( 1+ δA A )cos( δφ n π 4 ) 2 2 RA 2 ( 1+ δA A )( 1 δφ n 2 2 + δφ n ) with δφ s =π RA 2 ( 1+ δA A )sin( δφ n π 4 ) 2 2 RA 2 ( 1+ δA A )( 1 δφ n 2 2 δφ n ) with δφ s = 2

Metrics