Abstract

Well characterized photon number resolving detectors are a requirement for many applications ranging from quantum information and quantum metrology to the foundations of quantum mechanics. This prompts the necessity for reliable calibration techniques at the single photon level. In this paper we propose an innovative absolute calibration technique for photon number resolving detectors, using a pulsed heralded photon source based on parametric down conversion. The technique, being absolute, does not require reference standards and is independent upon the performances of the heralding detector. The method provides the results of quantum efficiency for the heralded detector as a function of detected photon numbers. Furthermore, we prove its validity by performing the calibration of a Transition Edge Sensor based detector, a real photon number resolving detector that has recently demonstrated its effectiveness in various quantum information protocols.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nature Photon. 3, 696–705 (2009) and ref.s therein.
    [CrossRef]
  2. C. Silberhorn, “Detecting quantum light,” Contemp. Phys. 48, 143–156 (2007) and ref.s therein.
    [CrossRef]
  3. J. C. Zwinkels, E. Ikonen, N. P. Fox, G. Ulm, and M. L. Rastello, “Photometry, radiometry and ’the candela’: evolution in the classical and quantum world,” Metrologia 47, R15–R32 (2010).
    [CrossRef]
  4. Y. Gao, P. M. Anisimov, C. F. Wildfeuer, J. Luine, H. Lee, and J. P. Dowling, “Super-resolution at the shot-noise limit with coherent states and photon-number-resolving detectors,” J.Opt. Soc. Am. B 27, A170–A174 (2010).
    [CrossRef]
  5. M. Genovese, “Research on hidden variable theories: A review of recent progresses,” Phys. Rep. 413, 319–396 (2005) and ref.s therein.
    [CrossRef]
  6. G. Brida, M. Genovese, and I. Ruo Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nature Photon. 4, 227–230 (2010).
    [CrossRef]
  7. T. Laenger and G. Lenhart, “Standardization of quantum key distribution and the ETSI standardization initiative ISG-QKD,” New J. Phys. 11, 055051 (2009) and ref.s therein.
    [CrossRef]
  8. J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nature Photon. 3, 687–695 (2009) and ref.s therein.
    [CrossRef]
  9. N. Gisin and R. Thew, “Quantum communication,” Nature Photon. 1, 165–171 (2007) and ref.s therein.
    [CrossRef]
  10. L. A. Jiang, E. A. Dauler, and J. T. Chang, “Photon-number-resolving detector with 10 bits of resolution,” Phys. Rev. A 75, 062325 (2007).
    [CrossRef]
  11. A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lvy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nature Photon. 2, 302–306 (2008).
    [CrossRef]
  12. D. Achilles, C. Silberhorn, C. Sliwa, K. Banaszek, and I. A. Walmsley, “Fiber-assisted detection with photon number resolution,” Opt. Lett. 28, 2387–2389 (2003).
    [CrossRef] [PubMed]
  13. M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A 68, 043814 (2003).
    [CrossRef]
  14. G. Zambra, M. Bondani, A. S. Spinelli, F. Paleari, and A. Andreoni, “Counting photoelectrons in the response of a photomultiplier tube to single picosecond light pulses,” Rev. Sci. Instrum. 75, 2762 (2004).
    [CrossRef]
  15. M. Bondani, A. Allevi, and A. Andreoni, “Light Statistics by Non-Calibrated Linear Photodetectors,” Advanced Science Letters 2, 463–468 (2009).
    [CrossRef]
  16. G. A. Morton, RCA Rev. 10, 525 (1949).
  17. M. Ramilli, A. Allevi, V. Chmill, M. Bondani, M. Caccia, and A. Andreoni, “Photon-number statistics with silicon photomultipliers,” J. Opt. Soc. Am. B 27, 852–862 (2010).
    [CrossRef]
  18. J. Kim, S. Takeuchi, Y. Yamamoto, and H. H. Hogue, “Multiphoton detection using visible light photon counter,” Appl. Phys. Lett.,  74, 902 (1999).
    [CrossRef]
  19. E. Waks, K. Inoue, W. D. Oliver, E. Diamanti, and Y. Yamamoto, “High-efficiency photon-number detection for quantum information processing,” IEEE J. Sel. Top. Quantum Electron 9, 1502–1511 (2003).
    [CrossRef]
  20. K. D. Irwin and G. C. Hilton, “Transition-Edge Sensors,” in Cryogenic Particle Detection (Topics Appl. Phys. Vol. 99), C. Enss eds., (Springer-Verlag, Berlin, 2005), pp. 63–149.
  21. A. J. Pearlman, A. Ling, E. A. Goldschmidt, C. F. Wildfeuer, J. Fan, and A. Migdall, “Enhancing image contrast using coherent states and photon number resolving detectors,” Opt. Express 18, 6033–6039 (2010).
    [CrossRef] [PubMed]
  22. T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum,” Phys. Rev. A 82, 031802 (2010).
    [CrossRef]
  23. K. Tsujino, D. Fukuda, G. Fujii, S. Inoue, M. Fujiwara, M. Takeoka, and M. Sasaki, “Sub-shot-noise-limit discrimination of on-off keyed coherent signals via a quantum receiver with a superconducting transition edge sensor,” Opt. Express 18, 8107–8114 (2010).
    [CrossRef] [PubMed]
  24. A. Migdall, “Correlated-photon metrology without absolute standards,” Phys. Today 52, 41–46 (1999) and ref.s therein.
    [CrossRef]
  25. G. Brida, M. Genovese, and M. Gramegna, “Twin-photon techniques for photo-detector calibration,” Laser Physics Lett. 3, 115–123 (2006) and ref.s therein.
    [CrossRef]
  26. S. V. Polyakov and A. L. Migdall, “Quantum radiometry,” J. Mod. Opt. 56, 1045–1052 (2009) and ref.s therein.
    [CrossRef]
  27. D. C. Burnham and D. L. Weinberg, “Observation of Simultaneity in Parametric Production of Optical Photon Pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
    [CrossRef]
  28. D. N. Klyshko, “Utilization of vacuum fluctuations as an optical brightness standard,” Sov. J. Quantum Electron. 7, 591 (1977).
    [CrossRef]
  29. P. G. Kwiat, A. M. Steinberg, R. Y. Chiao, P. H. Eberhard, and M. D. Petroff, “Absolute efficiency and time-response measurement of single-photon detectors,” Appl. Opt. 33, 1844–1853 (1994).
    [CrossRef] [PubMed]
  30. E. Dauler, A. L. Migdall, N. Boeuf, R. U. Datla, A. Muller, and A. Sergienko, “Measuring absolute infrared spectral radiance with correlated photons: new arrangements for improved uncertainty and extended IR range,” Metrologia 35, 295 (1998).
    [CrossRef]
  31. G. Brida, S. Castelletto, I. P. Degiovanni, M. Genovese, C. Novero, and M. L. Rastello, “Towards an uncertainty budget in quantum-efficiency measurements with parametric fluorescence,” Metrologia 37, 629 (2000).
    [CrossRef]
  32. J. G. Rarity, K. D. Ridley, and P. R. Tapster, “Absolute measurement of detector quantum efficiency using parametric downconversion,” Appl. Opt. 26, 4616–4619 (1987).
    [CrossRef] [PubMed]
  33. S. Castelletto, I. P. Degiovanni, and M. L. Rastello, “Evaluation of statistical noise in measurements based on correlated photons,” J. Opt. Soc. Am. B 19, 1247–1258 (2002).
    [CrossRef]
  34. A. Ghazi-Bellouati, A. Razet, J. Bastie, M. E. Himbert, I. P. Degiovanni, S. Castelletto, and M. L. Rastello, “Radiometric reference for weak radiations: comparison of methods,” Metrologia 42, 271 (2005).
    [CrossRef]
  35. A. L. Migdall, S. Castelletto, I. P. Degiovanni, and M. L. Rastello, “Intercomparison of a Correlated-Photon-Based Method to Measure Detector Quantum Efficiency,” Appl. Opt. 41, 2914–2922 (2002).
    [CrossRef] [PubMed]
  36. S.V. Polyakov and A.L. Migdall, “High accuracy verification of a correlated-photon-based method for determining photoncounting detection efficiency,” Opt. Express 15, 1390–1407 (2007).
    [CrossRef] [PubMed]
  37. J. Y. Cheung, C. J. Chunnilall, G. Porrovecchio, M. Smid, and E. Theocharous, “Low optical power reference detector implemented in the validation of two independent techniques for calibrating photon-counting detectors,” Opt. Express (submitted).
    [PubMed]
  38. G. Brida, M. Genovese, I. Ruo-Berchera, M. Chekhova, and A. Penin, “Possibility of absolute calibration of analog detectors by using parametric downconversion: a systematic study,” J. Opt. Soc. Am. B 23, 2185–2193 (2006).
    [CrossRef]
  39. G. Brida, M. Chekhova, M. Genovese, and I. Ruo-Berchera, “Analysis of the possibility of analog detectors calibration by exploiting stimulated parametric down conversion,” Opt. Express 16, 12550–12558 (2008).
    [CrossRef] [PubMed]
  40. G. Brida, I. P. Degiovanni, M. Genovese, M. L. Rastello, and I. Ruo Berchera, “Detection of multimode spatial correlation in PDC and application to the absolute calibration of a CCD camera,” Opt. Express 18, 20572–20584 (2010).
    [CrossRef] [PubMed]
  41. A. P. Worsley, H. B. Coldenstrodt-Ronge, J. S. Lundeen, P. J. Mosley, B. J. Smith, G. Puentes, N. Thomas-Peter, and I. A. Walmsley, “Absolute efficiency estimation of photon-number-resolving detectors using twin beams,” Opt. Express 17, 4397–4411 (2009).
    [CrossRef] [PubMed]
  42. D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Opt. Express 19, 870–875 (2011).
    [CrossRef] [PubMed]
  43. A.E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express 16, 3032–3040 (2008).
    [CrossRef] [PubMed]
  44. A. C. Parr, R. U. Datla, and J. L. Gardner, Optical Radiometry (Elsevier Academic Press, Amsterdam2005)
  45. C. Portesi, E. Taralli, R. Rocci, M. Rajteri, and E. Monticone, “Fabrication of Au/Ti TESs for Optical Photon Counting,” J. Low Temp. Phys. 151, 261–265 (2008).
    [CrossRef]
  46. E. Taralli, C. Portesi, L. Lolli, E. Monticone, M. Rajteri, I. Novikov, and J. Beyer, “Impedance measurements on a fast transition-edge sensor for optical and near-infrared range,” Supercond. Sci. Technol. 23, 105012 (2010).
    [CrossRef]
  47. K. D. Irwin, “An application of electrothermal feedback for high resolution cryogenic particle detection,” Appl. Phys. Lett.66, 1998 (1995).
  48. L. Lolli, E. Taralli, C. Portesi, D. Alberto, M. Rajteri, and E. Monticone, “Ti/Au Transition-Edge Sensors Coupled to Single Mode Optical Fibers Aligned by Si V-Groove,” IEEE Trans. Appl. Supercond. 21215–218 (2011).
    [CrossRef]
  49. D. Drung, C. Assmann, J. Beyer, A. Kirste, M. Peters, F. Ruede, and T. Schurig, “Highly Sensitive and Easy-to-Use SQUID Sensors,” IEEE Trans. Appl. Supercond. 17, 699–704 (2007).
    [CrossRef]
  50. S. Castelletto, I. P. Degiovanni, and M. L. Rastello, “Theoretical aspects of photon number measurement,” Metrologia 37, 613–616 (2000).
    [CrossRef]
  51. Guide to the Expression of Uncertainty in Measurement, ISO (1995).
  52. G. Brida, L. Ciavarella, I. P. Degiovanni, M. Genovese, L. Lolli, M. G. Mingolla, F. Piacentini, M. Rajteri, E. Taralli, and M. G. A. Paris, “Full quantum characterization of superconducting photon counters,” http://arxiv.org/pdf/1103.2991 .
  53. Incidentally, if one wants to provide a precise estimate of the naked TES based detector quantum efficiency η it is necessary a careful estimation of the optical transmittance τ, accounting for the coupling efficiency in the optical fiber and the optical losses in the non-linear crystal. According to the results of Ref.s [S.V. Polyakov, A.L. Migdall, Opt. Express 15, 1390 (2007); J. Y. Cheung et al., Appl. Opt. (submitted)], one could provide an estimate of this parameter with a less than 1% uncertainty.

2011 (2)

L. Lolli, E. Taralli, C. Portesi, D. Alberto, M. Rajteri, and E. Monticone, “Ti/Au Transition-Edge Sensors Coupled to Single Mode Optical Fibers Aligned by Si V-Groove,” IEEE Trans. Appl. Supercond. 21215–218 (2011).
[CrossRef]

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Opt. Express 19, 870–875 (2011).
[CrossRef] [PubMed]

2010 (9)

A. J. Pearlman, A. Ling, E. A. Goldschmidt, C. F. Wildfeuer, J. Fan, and A. Migdall, “Enhancing image contrast using coherent states and photon number resolving detectors,” Opt. Express 18, 6033–6039 (2010).
[CrossRef] [PubMed]

K. Tsujino, D. Fukuda, G. Fujii, S. Inoue, M. Fujiwara, M. Takeoka, and M. Sasaki, “Sub-shot-noise-limit discrimination of on-off keyed coherent signals via a quantum receiver with a superconducting transition edge sensor,” Opt. Express 18, 8107–8114 (2010).
[CrossRef] [PubMed]

M. Ramilli, A. Allevi, V. Chmill, M. Bondani, M. Caccia, and A. Andreoni, “Photon-number statistics with silicon photomultipliers,” J. Opt. Soc. Am. B 27, 852–862 (2010).
[CrossRef]

G. Brida, I. P. Degiovanni, M. Genovese, M. L. Rastello, and I. Ruo Berchera, “Detection of multimode spatial correlation in PDC and application to the absolute calibration of a CCD camera,” Opt. Express 18, 20572–20584 (2010).
[CrossRef] [PubMed]

E. Taralli, C. Portesi, L. Lolli, E. Monticone, M. Rajteri, I. Novikov, and J. Beyer, “Impedance measurements on a fast transition-edge sensor for optical and near-infrared range,” Supercond. Sci. Technol. 23, 105012 (2010).
[CrossRef]

J. C. Zwinkels, E. Ikonen, N. P. Fox, G. Ulm, and M. L. Rastello, “Photometry, radiometry and ’the candela’: evolution in the classical and quantum world,” Metrologia 47, R15–R32 (2010).
[CrossRef]

Y. Gao, P. M. Anisimov, C. F. Wildfeuer, J. Luine, H. Lee, and J. P. Dowling, “Super-resolution at the shot-noise limit with coherent states and photon-number-resolving detectors,” J.Opt. Soc. Am. B 27, A170–A174 (2010).
[CrossRef]

G. Brida, M. Genovese, and I. Ruo Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nature Photon. 4, 227–230 (2010).
[CrossRef]

T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum,” Phys. Rev. A 82, 031802 (2010).
[CrossRef]

2009 (6)

M. Bondani, A. Allevi, and A. Andreoni, “Light Statistics by Non-Calibrated Linear Photodetectors,” Advanced Science Letters 2, 463–468 (2009).
[CrossRef]

T. Laenger and G. Lenhart, “Standardization of quantum key distribution and the ETSI standardization initiative ISG-QKD,” New J. Phys. 11, 055051 (2009) and ref.s therein.
[CrossRef]

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nature Photon. 3, 687–695 (2009) and ref.s therein.
[CrossRef]

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nature Photon. 3, 696–705 (2009) and ref.s therein.
[CrossRef]

S. V. Polyakov and A. L. Migdall, “Quantum radiometry,” J. Mod. Opt. 56, 1045–1052 (2009) and ref.s therein.
[CrossRef]

A. P. Worsley, H. B. Coldenstrodt-Ronge, J. S. Lundeen, P. J. Mosley, B. J. Smith, G. Puentes, N. Thomas-Peter, and I. A. Walmsley, “Absolute efficiency estimation of photon-number-resolving detectors using twin beams,” Opt. Express 17, 4397–4411 (2009).
[CrossRef] [PubMed]

2008 (4)

A.E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express 16, 3032–3040 (2008).
[CrossRef] [PubMed]

G. Brida, M. Chekhova, M. Genovese, and I. Ruo-Berchera, “Analysis of the possibility of analog detectors calibration by exploiting stimulated parametric down conversion,” Opt. Express 16, 12550–12558 (2008).
[CrossRef] [PubMed]

C. Portesi, E. Taralli, R. Rocci, M. Rajteri, and E. Monticone, “Fabrication of Au/Ti TESs for Optical Photon Counting,” J. Low Temp. Phys. 151, 261–265 (2008).
[CrossRef]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lvy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nature Photon. 2, 302–306 (2008).
[CrossRef]

2007 (5)

C. Silberhorn, “Detecting quantum light,” Contemp. Phys. 48, 143–156 (2007) and ref.s therein.
[CrossRef]

N. Gisin and R. Thew, “Quantum communication,” Nature Photon. 1, 165–171 (2007) and ref.s therein.
[CrossRef]

L. A. Jiang, E. A. Dauler, and J. T. Chang, “Photon-number-resolving detector with 10 bits of resolution,” Phys. Rev. A 75, 062325 (2007).
[CrossRef]

D. Drung, C. Assmann, J. Beyer, A. Kirste, M. Peters, F. Ruede, and T. Schurig, “Highly Sensitive and Easy-to-Use SQUID Sensors,” IEEE Trans. Appl. Supercond. 17, 699–704 (2007).
[CrossRef]

S.V. Polyakov and A.L. Migdall, “High accuracy verification of a correlated-photon-based method for determining photoncounting detection efficiency,” Opt. Express 15, 1390–1407 (2007).
[CrossRef] [PubMed]

2006 (2)

2005 (2)

A. Ghazi-Bellouati, A. Razet, J. Bastie, M. E. Himbert, I. P. Degiovanni, S. Castelletto, and M. L. Rastello, “Radiometric reference for weak radiations: comparison of methods,” Metrologia 42, 271 (2005).
[CrossRef]

M. Genovese, “Research on hidden variable theories: A review of recent progresses,” Phys. Rep. 413, 319–396 (2005) and ref.s therein.
[CrossRef]

2004 (1)

G. Zambra, M. Bondani, A. S. Spinelli, F. Paleari, and A. Andreoni, “Counting photoelectrons in the response of a photomultiplier tube to single picosecond light pulses,” Rev. Sci. Instrum. 75, 2762 (2004).
[CrossRef]

2003 (3)

M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A 68, 043814 (2003).
[CrossRef]

E. Waks, K. Inoue, W. D. Oliver, E. Diamanti, and Y. Yamamoto, “High-efficiency photon-number detection for quantum information processing,” IEEE J. Sel. Top. Quantum Electron 9, 1502–1511 (2003).
[CrossRef]

D. Achilles, C. Silberhorn, C. Sliwa, K. Banaszek, and I. A. Walmsley, “Fiber-assisted detection with photon number resolution,” Opt. Lett. 28, 2387–2389 (2003).
[CrossRef] [PubMed]

2002 (2)

2000 (2)

S. Castelletto, I. P. Degiovanni, and M. L. Rastello, “Theoretical aspects of photon number measurement,” Metrologia 37, 613–616 (2000).
[CrossRef]

G. Brida, S. Castelletto, I. P. Degiovanni, M. Genovese, C. Novero, and M. L. Rastello, “Towards an uncertainty budget in quantum-efficiency measurements with parametric fluorescence,” Metrologia 37, 629 (2000).
[CrossRef]

1999 (2)

J. Kim, S. Takeuchi, Y. Yamamoto, and H. H. Hogue, “Multiphoton detection using visible light photon counter,” Appl. Phys. Lett.,  74, 902 (1999).
[CrossRef]

A. Migdall, “Correlated-photon metrology without absolute standards,” Phys. Today 52, 41–46 (1999) and ref.s therein.
[CrossRef]

1998 (1)

E. Dauler, A. L. Migdall, N. Boeuf, R. U. Datla, A. Muller, and A. Sergienko, “Measuring absolute infrared spectral radiance with correlated photons: new arrangements for improved uncertainty and extended IR range,” Metrologia 35, 295 (1998).
[CrossRef]

1994 (1)

1987 (1)

1977 (1)

D. N. Klyshko, “Utilization of vacuum fluctuations as an optical brightness standard,” Sov. J. Quantum Electron. 7, 591 (1977).
[CrossRef]

1970 (1)

D. C. Burnham and D. L. Weinberg, “Observation of Simultaneity in Parametric Production of Optical Photon Pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
[CrossRef]

1949 (1)

G. A. Morton, RCA Rev. 10, 525 (1949).

Achilles, D.

Alberto, D.

L. Lolli, E. Taralli, C. Portesi, D. Alberto, M. Rajteri, and E. Monticone, “Ti/Au Transition-Edge Sensors Coupled to Single Mode Optical Fibers Aligned by Si V-Groove,” IEEE Trans. Appl. Supercond. 21215–218 (2011).
[CrossRef]

Allevi, A.

M. Ramilli, A. Allevi, V. Chmill, M. Bondani, M. Caccia, and A. Andreoni, “Photon-number statistics with silicon photomultipliers,” J. Opt. Soc. Am. B 27, 852–862 (2010).
[CrossRef]

M. Bondani, A. Allevi, and A. Andreoni, “Light Statistics by Non-Calibrated Linear Photodetectors,” Advanced Science Letters 2, 463–468 (2009).
[CrossRef]

Amemiya, K.

Andreoni, A.

M. Ramilli, A. Allevi, V. Chmill, M. Bondani, M. Caccia, and A. Andreoni, “Photon-number statistics with silicon photomultipliers,” J. Opt. Soc. Am. B 27, 852–862 (2010).
[CrossRef]

M. Bondani, A. Allevi, and A. Andreoni, “Light Statistics by Non-Calibrated Linear Photodetectors,” Advanced Science Letters 2, 463–468 (2009).
[CrossRef]

G. Zambra, M. Bondani, A. S. Spinelli, F. Paleari, and A. Andreoni, “Counting photoelectrons in the response of a photomultiplier tube to single picosecond light pulses,” Rev. Sci. Instrum. 75, 2762 (2004).
[CrossRef]

Anisimov, P. M.

Y. Gao, P. M. Anisimov, C. F. Wildfeuer, J. Luine, H. Lee, and J. P. Dowling, “Super-resolution at the shot-noise limit with coherent states and photon-number-resolving detectors,” J.Opt. Soc. Am. B 27, A170–A174 (2010).
[CrossRef]

Assmann, C.

D. Drung, C. Assmann, J. Beyer, A. Kirste, M. Peters, F. Ruede, and T. Schurig, “Highly Sensitive and Easy-to-Use SQUID Sensors,” IEEE Trans. Appl. Supercond. 17, 699–704 (2007).
[CrossRef]

Banaszek, K.

Bastie, J.

A. Ghazi-Bellouati, A. Razet, J. Bastie, M. E. Himbert, I. P. Degiovanni, S. Castelletto, and M. L. Rastello, “Radiometric reference for weak radiations: comparison of methods,” Metrologia 42, 271 (2005).
[CrossRef]

Benkhaoul, M.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lvy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nature Photon. 2, 302–306 (2008).
[CrossRef]

Beyer, J.

E. Taralli, C. Portesi, L. Lolli, E. Monticone, M. Rajteri, I. Novikov, and J. Beyer, “Impedance measurements on a fast transition-edge sensor for optical and near-infrared range,” Supercond. Sci. Technol. 23, 105012 (2010).
[CrossRef]

D. Drung, C. Assmann, J. Beyer, A. Kirste, M. Peters, F. Ruede, and T. Schurig, “Highly Sensitive and Easy-to-Use SQUID Sensors,” IEEE Trans. Appl. Supercond. 17, 699–704 (2007).
[CrossRef]

Bitauld, D.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lvy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nature Photon. 2, 302–306 (2008).
[CrossRef]

Boeuf, N.

E. Dauler, A. L. Migdall, N. Boeuf, R. U. Datla, A. Muller, and A. Sergienko, “Measuring absolute infrared spectral radiance with correlated photons: new arrangements for improved uncertainty and extended IR range,” Metrologia 35, 295 (1998).
[CrossRef]

Bondani, M.

M. Ramilli, A. Allevi, V. Chmill, M. Bondani, M. Caccia, and A. Andreoni, “Photon-number statistics with silicon photomultipliers,” J. Opt. Soc. Am. B 27, 852–862 (2010).
[CrossRef]

M. Bondani, A. Allevi, and A. Andreoni, “Light Statistics by Non-Calibrated Linear Photodetectors,” Advanced Science Letters 2, 463–468 (2009).
[CrossRef]

G. Zambra, M. Bondani, A. S. Spinelli, F. Paleari, and A. Andreoni, “Counting photoelectrons in the response of a photomultiplier tube to single picosecond light pulses,” Rev. Sci. Instrum. 75, 2762 (2004).
[CrossRef]

Brida, G.

G. Brida, I. P. Degiovanni, M. Genovese, M. L. Rastello, and I. Ruo Berchera, “Detection of multimode spatial correlation in PDC and application to the absolute calibration of a CCD camera,” Opt. Express 18, 20572–20584 (2010).
[CrossRef] [PubMed]

G. Brida, M. Genovese, and I. Ruo Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nature Photon. 4, 227–230 (2010).
[CrossRef]

G. Brida, M. Chekhova, M. Genovese, and I. Ruo-Berchera, “Analysis of the possibility of analog detectors calibration by exploiting stimulated parametric down conversion,” Opt. Express 16, 12550–12558 (2008).
[CrossRef] [PubMed]

G. Brida, M. Genovese, I. Ruo-Berchera, M. Chekhova, and A. Penin, “Possibility of absolute calibration of analog detectors by using parametric downconversion: a systematic study,” J. Opt. Soc. Am. B 23, 2185–2193 (2006).
[CrossRef]

G. Brida, M. Genovese, and M. Gramegna, “Twin-photon techniques for photo-detector calibration,” Laser Physics Lett. 3, 115–123 (2006) and ref.s therein.
[CrossRef]

G. Brida, S. Castelletto, I. P. Degiovanni, M. Genovese, C. Novero, and M. L. Rastello, “Towards an uncertainty budget in quantum-efficiency measurements with parametric fluorescence,” Metrologia 37, 629 (2000).
[CrossRef]

Burnham, D. C.

D. C. Burnham and D. L. Weinberg, “Observation of Simultaneity in Parametric Production of Optical Photon Pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
[CrossRef]

Caccia, M.

Calkins, B.

T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum,” Phys. Rev. A 82, 031802 (2010).
[CrossRef]

Castelletto, S.

A. Ghazi-Bellouati, A. Razet, J. Bastie, M. E. Himbert, I. P. Degiovanni, S. Castelletto, and M. L. Rastello, “Radiometric reference for weak radiations: comparison of methods,” Metrologia 42, 271 (2005).
[CrossRef]

A. L. Migdall, S. Castelletto, I. P. Degiovanni, and M. L. Rastello, “Intercomparison of a Correlated-Photon-Based Method to Measure Detector Quantum Efficiency,” Appl. Opt. 41, 2914–2922 (2002).
[CrossRef] [PubMed]

S. Castelletto, I. P. Degiovanni, and M. L. Rastello, “Evaluation of statistical noise in measurements based on correlated photons,” J. Opt. Soc. Am. B 19, 1247–1258 (2002).
[CrossRef]

S. Castelletto, I. P. Degiovanni, and M. L. Rastello, “Theoretical aspects of photon number measurement,” Metrologia 37, 613–616 (2000).
[CrossRef]

G. Brida, S. Castelletto, I. P. Degiovanni, M. Genovese, C. Novero, and M. L. Rastello, “Towards an uncertainty budget in quantum-efficiency measurements with parametric fluorescence,” Metrologia 37, 629 (2000).
[CrossRef]

Chang, J. T.

L. A. Jiang, E. A. Dauler, and J. T. Chang, “Photon-number-resolving detector with 10 bits of resolution,” Phys. Rev. A 75, 062325 (2007).
[CrossRef]

Chekhova, M.

Cheung, J. Y.

J. Y. Cheung, C. J. Chunnilall, G. Porrovecchio, M. Smid, and E. Theocharous, “Low optical power reference detector implemented in the validation of two independent techniques for calibrating photon-counting detectors,” Opt. Express (submitted).
[PubMed]

Chiao, R. Y.

Chmill, V.

Chunnilall, C. J.

J. Y. Cheung, C. J. Chunnilall, G. Porrovecchio, M. Smid, and E. Theocharous, “Low optical power reference detector implemented in the validation of two independent techniques for calibrating photon-counting detectors,” Opt. Express (submitted).
[PubMed]

Clement, T. S.

T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum,” Phys. Rev. A 82, 031802 (2010).
[CrossRef]

Coldenstrodt-Ronge, H. B.

Datla, R. U.

E. Dauler, A. L. Migdall, N. Boeuf, R. U. Datla, A. Muller, and A. Sergienko, “Measuring absolute infrared spectral radiance with correlated photons: new arrangements for improved uncertainty and extended IR range,” Metrologia 35, 295 (1998).
[CrossRef]

A. C. Parr, R. U. Datla, and J. L. Gardner, Optical Radiometry (Elsevier Academic Press, Amsterdam2005)

Dauler, E.

E. Dauler, A. L. Migdall, N. Boeuf, R. U. Datla, A. Muller, and A. Sergienko, “Measuring absolute infrared spectral radiance with correlated photons: new arrangements for improved uncertainty and extended IR range,” Metrologia 35, 295 (1998).
[CrossRef]

Dauler, E. A.

L. A. Jiang, E. A. Dauler, and J. T. Chang, “Photon-number-resolving detector with 10 bits of resolution,” Phys. Rev. A 75, 062325 (2007).
[CrossRef]

Degiovanni, I. P.

G. Brida, I. P. Degiovanni, M. Genovese, M. L. Rastello, and I. Ruo Berchera, “Detection of multimode spatial correlation in PDC and application to the absolute calibration of a CCD camera,” Opt. Express 18, 20572–20584 (2010).
[CrossRef] [PubMed]

A. Ghazi-Bellouati, A. Razet, J. Bastie, M. E. Himbert, I. P. Degiovanni, S. Castelletto, and M. L. Rastello, “Radiometric reference for weak radiations: comparison of methods,” Metrologia 42, 271 (2005).
[CrossRef]

A. L. Migdall, S. Castelletto, I. P. Degiovanni, and M. L. Rastello, “Intercomparison of a Correlated-Photon-Based Method to Measure Detector Quantum Efficiency,” Appl. Opt. 41, 2914–2922 (2002).
[CrossRef] [PubMed]

S. Castelletto, I. P. Degiovanni, and M. L. Rastello, “Evaluation of statistical noise in measurements based on correlated photons,” J. Opt. Soc. Am. B 19, 1247–1258 (2002).
[CrossRef]

G. Brida, S. Castelletto, I. P. Degiovanni, M. Genovese, C. Novero, and M. L. Rastello, “Towards an uncertainty budget in quantum-efficiency measurements with parametric fluorescence,” Metrologia 37, 629 (2000).
[CrossRef]

S. Castelletto, I. P. Degiovanni, and M. L. Rastello, “Theoretical aspects of photon number measurement,” Metrologia 37, 613–616 (2000).
[CrossRef]

Diamanti, E.

E. Waks, K. Inoue, W. D. Oliver, E. Diamanti, and Y. Yamamoto, “High-efficiency photon-number detection for quantum information processing,” IEEE J. Sel. Top. Quantum Electron 9, 1502–1511 (2003).
[CrossRef]

Divochiy, A.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lvy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nature Photon. 2, 302–306 (2008).
[CrossRef]

Dowling, J. P.

Y. Gao, P. M. Anisimov, C. F. Wildfeuer, J. Luine, H. Lee, and J. P. Dowling, “Super-resolution at the shot-noise limit with coherent states and photon-number-resolving detectors,” J.Opt. Soc. Am. B 27, A170–A174 (2010).
[CrossRef]

Drung, D.

D. Drung, C. Assmann, J. Beyer, A. Kirste, M. Peters, F. Ruede, and T. Schurig, “Highly Sensitive and Easy-to-Use SQUID Sensors,” IEEE Trans. Appl. Supercond. 17, 699–704 (2007).
[CrossRef]

Eberhard, P. H.

Fan, J.

Fiore, A.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lvy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nature Photon. 2, 302–306 (2008).
[CrossRef]

Fitch, M. J.

M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A 68, 043814 (2003).
[CrossRef]

Fox, N. P.

J. C. Zwinkels, E. Ikonen, N. P. Fox, G. Ulm, and M. L. Rastello, “Photometry, radiometry and ’the candela’: evolution in the classical and quantum world,” Metrologia 47, R15–R32 (2010).
[CrossRef]

Franson, J. D.

M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A 68, 043814 (2003).
[CrossRef]

Fujii, G.

Fujino, H.

Fujiwara, M.

Fukuda, D.

Furusawa, A.

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nature Photon. 3, 687–695 (2009) and ref.s therein.
[CrossRef]

Gaggero, A.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lvy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nature Photon. 2, 302–306 (2008).
[CrossRef]

Gao, Y.

Y. Gao, P. M. Anisimov, C. F. Wildfeuer, J. Luine, H. Lee, and J. P. Dowling, “Super-resolution at the shot-noise limit with coherent states and photon-number-resolving detectors,” J.Opt. Soc. Am. B 27, A170–A174 (2010).
[CrossRef]

Gardner, J. L.

A. C. Parr, R. U. Datla, and J. L. Gardner, Optical Radiometry (Elsevier Academic Press, Amsterdam2005)

Genovese, M.

G. Brida, I. P. Degiovanni, M. Genovese, M. L. Rastello, and I. Ruo Berchera, “Detection of multimode spatial correlation in PDC and application to the absolute calibration of a CCD camera,” Opt. Express 18, 20572–20584 (2010).
[CrossRef] [PubMed]

G. Brida, M. Genovese, and I. Ruo Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nature Photon. 4, 227–230 (2010).
[CrossRef]

G. Brida, M. Chekhova, M. Genovese, and I. Ruo-Berchera, “Analysis of the possibility of analog detectors calibration by exploiting stimulated parametric down conversion,” Opt. Express 16, 12550–12558 (2008).
[CrossRef] [PubMed]

G. Brida, M. Genovese, I. Ruo-Berchera, M. Chekhova, and A. Penin, “Possibility of absolute calibration of analog detectors by using parametric downconversion: a systematic study,” J. Opt. Soc. Am. B 23, 2185–2193 (2006).
[CrossRef]

G. Brida, M. Genovese, and M. Gramegna, “Twin-photon techniques for photo-detector calibration,” Laser Physics Lett. 3, 115–123 (2006) and ref.s therein.
[CrossRef]

M. Genovese, “Research on hidden variable theories: A review of recent progresses,” Phys. Rep. 413, 319–396 (2005) and ref.s therein.
[CrossRef]

G. Brida, S. Castelletto, I. P. Degiovanni, M. Genovese, C. Novero, and M. L. Rastello, “Towards an uncertainty budget in quantum-efficiency measurements with parametric fluorescence,” Metrologia 37, 629 (2000).
[CrossRef]

Gerrits, T.

T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum,” Phys. Rev. A 82, 031802 (2010).
[CrossRef]

Ghazi-Bellouati, A.

A. Ghazi-Bellouati, A. Razet, J. Bastie, M. E. Himbert, I. P. Degiovanni, S. Castelletto, and M. L. Rastello, “Radiometric reference for weak radiations: comparison of methods,” Metrologia 42, 271 (2005).
[CrossRef]

Gisin, N.

N. Gisin and R. Thew, “Quantum communication,” Nature Photon. 1, 165–171 (2007) and ref.s therein.
[CrossRef]

Glancy, S.

T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum,” Phys. Rev. A 82, 031802 (2010).
[CrossRef]

Gol’tsman, G.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lvy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nature Photon. 2, 302–306 (2008).
[CrossRef]

Goldschmidt, E. A.

Gramegna, M.

G. Brida, M. Genovese, and M. Gramegna, “Twin-photon techniques for photo-detector calibration,” Laser Physics Lett. 3, 115–123 (2006) and ref.s therein.
[CrossRef]

Hadfield, R. H.

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nature Photon. 3, 696–705 (2009) and ref.s therein.
[CrossRef]

Hilton, G. C.

K. D. Irwin and G. C. Hilton, “Transition-Edge Sensors,” in Cryogenic Particle Detection (Topics Appl. Phys. Vol. 99), C. Enss eds., (Springer-Verlag, Berlin, 2005), pp. 63–149.

Himbert, M. E.

A. Ghazi-Bellouati, A. Razet, J. Bastie, M. E. Himbert, I. P. Degiovanni, S. Castelletto, and M. L. Rastello, “Radiometric reference for weak radiations: comparison of methods,” Metrologia 42, 271 (2005).
[CrossRef]

Hogue, H. H.

J. Kim, S. Takeuchi, Y. Yamamoto, and H. H. Hogue, “Multiphoton detection using visible light photon counter,” Appl. Phys. Lett.,  74, 902 (1999).
[CrossRef]

Ikonen, E.

J. C. Zwinkels, E. Ikonen, N. P. Fox, G. Ulm, and M. L. Rastello, “Photometry, radiometry and ’the candela’: evolution in the classical and quantum world,” Metrologia 47, R15–R32 (2010).
[CrossRef]

Inoue, K.

E. Waks, K. Inoue, W. D. Oliver, E. Diamanti, and Y. Yamamoto, “High-efficiency photon-number detection for quantum information processing,” IEEE J. Sel. Top. Quantum Electron 9, 1502–1511 (2003).
[CrossRef]

Inoue, S.

Irwin, K. D.

K. D. Irwin and G. C. Hilton, “Transition-Edge Sensors,” in Cryogenic Particle Detection (Topics Appl. Phys. Vol. 99), C. Enss eds., (Springer-Verlag, Berlin, 2005), pp. 63–149.

K. D. Irwin, “An application of electrothermal feedback for high resolution cryogenic particle detection,” Appl. Phys. Lett.66, 1998 (1995).

Ishii, H.

Itatani, T.

Jacobs, B. C.

M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A 68, 043814 (2003).
[CrossRef]

Jiang, L. A.

L. A. Jiang, E. A. Dauler, and J. T. Chang, “Photon-number-resolving detector with 10 bits of resolution,” Phys. Rev. A 75, 062325 (2007).
[CrossRef]

Kaurova, N.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lvy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nature Photon. 2, 302–306 (2008).
[CrossRef]

Kim, J.

J. Kim, S. Takeuchi, Y. Yamamoto, and H. H. Hogue, “Multiphoton detection using visible light photon counter,” Appl. Phys. Lett.,  74, 902 (1999).
[CrossRef]

Kirste, A.

D. Drung, C. Assmann, J. Beyer, A. Kirste, M. Peters, F. Ruede, and T. Schurig, “Highly Sensitive and Easy-to-Use SQUID Sensors,” IEEE Trans. Appl. Supercond. 17, 699–704 (2007).
[CrossRef]

Klyshko, D. N.

D. N. Klyshko, “Utilization of vacuum fluctuations as an optical brightness standard,” Sov. J. Quantum Electron. 7, 591 (1977).
[CrossRef]

Knill, E.

T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum,” Phys. Rev. A 82, 031802 (2010).
[CrossRef]

Korneev, A.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lvy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nature Photon. 2, 302–306 (2008).
[CrossRef]

Kwiat, P. G.

Laenger, T.

T. Laenger and G. Lenhart, “Standardization of quantum key distribution and the ETSI standardization initiative ISG-QKD,” New J. Phys. 11, 055051 (2009) and ref.s therein.
[CrossRef]

Lagoudakis, K. G.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lvy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nature Photon. 2, 302–306 (2008).
[CrossRef]

Lee, H.

Y. Gao, P. M. Anisimov, C. F. Wildfeuer, J. Luine, H. Lee, and J. P. Dowling, “Super-resolution at the shot-noise limit with coherent states and photon-number-resolving detectors,” J.Opt. Soc. Am. B 27, A170–A174 (2010).
[CrossRef]

Lenhart, G.

T. Laenger and G. Lenhart, “Standardization of quantum key distribution and the ETSI standardization initiative ISG-QKD,” New J. Phys. 11, 055051 (2009) and ref.s therein.
[CrossRef]

Leoni, R.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lvy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nature Photon. 2, 302–306 (2008).
[CrossRef]

Ling, A.

Lita, A. E.

T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum,” Phys. Rev. A 82, 031802 (2010).
[CrossRef]

Lita, A.E.

Lolli, L.

L. Lolli, E. Taralli, C. Portesi, D. Alberto, M. Rajteri, and E. Monticone, “Ti/Au Transition-Edge Sensors Coupled to Single Mode Optical Fibers Aligned by Si V-Groove,” IEEE Trans. Appl. Supercond. 21215–218 (2011).
[CrossRef]

E. Taralli, C. Portesi, L. Lolli, E. Monticone, M. Rajteri, I. Novikov, and J. Beyer, “Impedance measurements on a fast transition-edge sensor for optical and near-infrared range,” Supercond. Sci. Technol. 23, 105012 (2010).
[CrossRef]

Luine, J.

Y. Gao, P. M. Anisimov, C. F. Wildfeuer, J. Luine, H. Lee, and J. P. Dowling, “Super-resolution at the shot-noise limit with coherent states and photon-number-resolving detectors,” J.Opt. Soc. Am. B 27, A170–A174 (2010).
[CrossRef]

Lundeen, J. S.

Lvy, F.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lvy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nature Photon. 2, 302–306 (2008).
[CrossRef]

Marsili, F.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lvy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nature Photon. 2, 302–306 (2008).
[CrossRef]

Mattioli, F.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lvy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nature Photon. 2, 302–306 (2008).
[CrossRef]

Migdall, A.

Migdall, A. L.

T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum,” Phys. Rev. A 82, 031802 (2010).
[CrossRef]

S. V. Polyakov and A. L. Migdall, “Quantum radiometry,” J. Mod. Opt. 56, 1045–1052 (2009) and ref.s therein.
[CrossRef]

A. L. Migdall, S. Castelletto, I. P. Degiovanni, and M. L. Rastello, “Intercomparison of a Correlated-Photon-Based Method to Measure Detector Quantum Efficiency,” Appl. Opt. 41, 2914–2922 (2002).
[CrossRef] [PubMed]

E. Dauler, A. L. Migdall, N. Boeuf, R. U. Datla, A. Muller, and A. Sergienko, “Measuring absolute infrared spectral radiance with correlated photons: new arrangements for improved uncertainty and extended IR range,” Metrologia 35, 295 (1998).
[CrossRef]

Migdall, A.L.

Miller, A. J.

T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum,” Phys. Rev. A 82, 031802 (2010).
[CrossRef]

A.E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express 16, 3032–3040 (2008).
[CrossRef] [PubMed]

Minaeva, O.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lvy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nature Photon. 2, 302–306 (2008).
[CrossRef]

Mirin, R. P.

T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum,” Phys. Rev. A 82, 031802 (2010).
[CrossRef]

Monticone, E.

L. Lolli, E. Taralli, C. Portesi, D. Alberto, M. Rajteri, and E. Monticone, “Ti/Au Transition-Edge Sensors Coupled to Single Mode Optical Fibers Aligned by Si V-Groove,” IEEE Trans. Appl. Supercond. 21215–218 (2011).
[CrossRef]

E. Taralli, C. Portesi, L. Lolli, E. Monticone, M. Rajteri, I. Novikov, and J. Beyer, “Impedance measurements on a fast transition-edge sensor for optical and near-infrared range,” Supercond. Sci. Technol. 23, 105012 (2010).
[CrossRef]

C. Portesi, E. Taralli, R. Rocci, M. Rajteri, and E. Monticone, “Fabrication of Au/Ti TESs for Optical Photon Counting,” J. Low Temp. Phys. 151, 261–265 (2008).
[CrossRef]

Morton, G. A.

G. A. Morton, RCA Rev. 10, 525 (1949).

Mosley, P. J.

Muller, A.

E. Dauler, A. L. Migdall, N. Boeuf, R. U. Datla, A. Muller, and A. Sergienko, “Measuring absolute infrared spectral radiance with correlated photons: new arrangements for improved uncertainty and extended IR range,” Metrologia 35, 295 (1998).
[CrossRef]

Nam, S. W.

T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum,” Phys. Rev. A 82, 031802 (2010).
[CrossRef]

A.E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express 16, 3032–3040 (2008).
[CrossRef] [PubMed]

Novero, C.

G. Brida, S. Castelletto, I. P. Degiovanni, M. Genovese, C. Novero, and M. L. Rastello, “Towards an uncertainty budget in quantum-efficiency measurements with parametric fluorescence,” Metrologia 37, 629 (2000).
[CrossRef]

Novikov, I.

E. Taralli, C. Portesi, L. Lolli, E. Monticone, M. Rajteri, I. Novikov, and J. Beyer, “Impedance measurements on a fast transition-edge sensor for optical and near-infrared range,” Supercond. Sci. Technol. 23, 105012 (2010).
[CrossRef]

Numata, T.

O’Brien, J. L.

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nature Photon. 3, 687–695 (2009) and ref.s therein.
[CrossRef]

Oliver, W. D.

E. Waks, K. Inoue, W. D. Oliver, E. Diamanti, and Y. Yamamoto, “High-efficiency photon-number detection for quantum information processing,” IEEE J. Sel. Top. Quantum Electron 9, 1502–1511 (2003).
[CrossRef]

Paleari, F.

G. Zambra, M. Bondani, A. S. Spinelli, F. Paleari, and A. Andreoni, “Counting photoelectrons in the response of a photomultiplier tube to single picosecond light pulses,” Rev. Sci. Instrum. 75, 2762 (2004).
[CrossRef]

Parr, A. C.

A. C. Parr, R. U. Datla, and J. L. Gardner, Optical Radiometry (Elsevier Academic Press, Amsterdam2005)

Pearlman, A. J.

Penin, A.

Peters, M.

D. Drung, C. Assmann, J. Beyer, A. Kirste, M. Peters, F. Ruede, and T. Schurig, “Highly Sensitive and Easy-to-Use SQUID Sensors,” IEEE Trans. Appl. Supercond. 17, 699–704 (2007).
[CrossRef]

Petroff, M. D.

Pittman, T. B.

M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A 68, 043814 (2003).
[CrossRef]

Polyakov, S. V.

S. V. Polyakov and A. L. Migdall, “Quantum radiometry,” J. Mod. Opt. 56, 1045–1052 (2009) and ref.s therein.
[CrossRef]

Polyakov, S.V.

Porrovecchio, G.

J. Y. Cheung, C. J. Chunnilall, G. Porrovecchio, M. Smid, and E. Theocharous, “Low optical power reference detector implemented in the validation of two independent techniques for calibrating photon-counting detectors,” Opt. Express (submitted).
[PubMed]

Portesi, C.

L. Lolli, E. Taralli, C. Portesi, D. Alberto, M. Rajteri, and E. Monticone, “Ti/Au Transition-Edge Sensors Coupled to Single Mode Optical Fibers Aligned by Si V-Groove,” IEEE Trans. Appl. Supercond. 21215–218 (2011).
[CrossRef]

E. Taralli, C. Portesi, L. Lolli, E. Monticone, M. Rajteri, I. Novikov, and J. Beyer, “Impedance measurements on a fast transition-edge sensor for optical and near-infrared range,” Supercond. Sci. Technol. 23, 105012 (2010).
[CrossRef]

C. Portesi, E. Taralli, R. Rocci, M. Rajteri, and E. Monticone, “Fabrication of Au/Ti TESs for Optical Photon Counting,” J. Low Temp. Phys. 151, 261–265 (2008).
[CrossRef]

Puentes, G.

Rajteri, M.

L. Lolli, E. Taralli, C. Portesi, D. Alberto, M. Rajteri, and E. Monticone, “Ti/Au Transition-Edge Sensors Coupled to Single Mode Optical Fibers Aligned by Si V-Groove,” IEEE Trans. Appl. Supercond. 21215–218 (2011).
[CrossRef]

E. Taralli, C. Portesi, L. Lolli, E. Monticone, M. Rajteri, I. Novikov, and J. Beyer, “Impedance measurements on a fast transition-edge sensor for optical and near-infrared range,” Supercond. Sci. Technol. 23, 105012 (2010).
[CrossRef]

C. Portesi, E. Taralli, R. Rocci, M. Rajteri, and E. Monticone, “Fabrication of Au/Ti TESs for Optical Photon Counting,” J. Low Temp. Phys. 151, 261–265 (2008).
[CrossRef]

Ramilli, M.

Rarity, J. G.

Rastello, M. L.

J. C. Zwinkels, E. Ikonen, N. P. Fox, G. Ulm, and M. L. Rastello, “Photometry, radiometry and ’the candela’: evolution in the classical and quantum world,” Metrologia 47, R15–R32 (2010).
[CrossRef]

G. Brida, I. P. Degiovanni, M. Genovese, M. L. Rastello, and I. Ruo Berchera, “Detection of multimode spatial correlation in PDC and application to the absolute calibration of a CCD camera,” Opt. Express 18, 20572–20584 (2010).
[CrossRef] [PubMed]

A. Ghazi-Bellouati, A. Razet, J. Bastie, M. E. Himbert, I. P. Degiovanni, S. Castelletto, and M. L. Rastello, “Radiometric reference for weak radiations: comparison of methods,” Metrologia 42, 271 (2005).
[CrossRef]

A. L. Migdall, S. Castelletto, I. P. Degiovanni, and M. L. Rastello, “Intercomparison of a Correlated-Photon-Based Method to Measure Detector Quantum Efficiency,” Appl. Opt. 41, 2914–2922 (2002).
[CrossRef] [PubMed]

S. Castelletto, I. P. Degiovanni, and M. L. Rastello, “Evaluation of statistical noise in measurements based on correlated photons,” J. Opt. Soc. Am. B 19, 1247–1258 (2002).
[CrossRef]

G. Brida, S. Castelletto, I. P. Degiovanni, M. Genovese, C. Novero, and M. L. Rastello, “Towards an uncertainty budget in quantum-efficiency measurements with parametric fluorescence,” Metrologia 37, 629 (2000).
[CrossRef]

S. Castelletto, I. P. Degiovanni, and M. L. Rastello, “Theoretical aspects of photon number measurement,” Metrologia 37, 613–616 (2000).
[CrossRef]

Razet, A.

A. Ghazi-Bellouati, A. Razet, J. Bastie, M. E. Himbert, I. P. Degiovanni, S. Castelletto, and M. L. Rastello, “Radiometric reference for weak radiations: comparison of methods,” Metrologia 42, 271 (2005).
[CrossRef]

Ridley, K. D.

Rocci, R.

C. Portesi, E. Taralli, R. Rocci, M. Rajteri, and E. Monticone, “Fabrication of Au/Ti TESs for Optical Photon Counting,” J. Low Temp. Phys. 151, 261–265 (2008).
[CrossRef]

Ruede, F.

D. Drung, C. Assmann, J. Beyer, A. Kirste, M. Peters, F. Ruede, and T. Schurig, “Highly Sensitive and Easy-to-Use SQUID Sensors,” IEEE Trans. Appl. Supercond. 17, 699–704 (2007).
[CrossRef]

Ruo Berchera, I.

Ruo-Berchera, I.

Sasaki, M.

Schurig, T.

D. Drung, C. Assmann, J. Beyer, A. Kirste, M. Peters, F. Ruede, and T. Schurig, “Highly Sensitive and Easy-to-Use SQUID Sensors,” IEEE Trans. Appl. Supercond. 17, 699–704 (2007).
[CrossRef]

Seleznev, V.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lvy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nature Photon. 2, 302–306 (2008).
[CrossRef]

Sergienko, A.

E. Dauler, A. L. Migdall, N. Boeuf, R. U. Datla, A. Muller, and A. Sergienko, “Measuring absolute infrared spectral radiance with correlated photons: new arrangements for improved uncertainty and extended IR range,” Metrologia 35, 295 (1998).
[CrossRef]

Silberhorn, C.

Sliwa, C.

Smid, M.

J. Y. Cheung, C. J. Chunnilall, G. Porrovecchio, M. Smid, and E. Theocharous, “Low optical power reference detector implemented in the validation of two independent techniques for calibrating photon-counting detectors,” Opt. Express (submitted).
[PubMed]

Smith, B. J.

Spinelli, A. S.

G. Zambra, M. Bondani, A. S. Spinelli, F. Paleari, and A. Andreoni, “Counting photoelectrons in the response of a photomultiplier tube to single picosecond light pulses,” Rev. Sci. Instrum. 75, 2762 (2004).
[CrossRef]

Steinberg, A. M.

Takeoka, M.

Takeuchi, S.

J. Kim, S. Takeuchi, Y. Yamamoto, and H. H. Hogue, “Multiphoton detection using visible light photon counter,” Appl. Phys. Lett.,  74, 902 (1999).
[CrossRef]

Tapster, P. R.

Taralli, E.

L. Lolli, E. Taralli, C. Portesi, D. Alberto, M. Rajteri, and E. Monticone, “Ti/Au Transition-Edge Sensors Coupled to Single Mode Optical Fibers Aligned by Si V-Groove,” IEEE Trans. Appl. Supercond. 21215–218 (2011).
[CrossRef]

E. Taralli, C. Portesi, L. Lolli, E. Monticone, M. Rajteri, I. Novikov, and J. Beyer, “Impedance measurements on a fast transition-edge sensor for optical and near-infrared range,” Supercond. Sci. Technol. 23, 105012 (2010).
[CrossRef]

C. Portesi, E. Taralli, R. Rocci, M. Rajteri, and E. Monticone, “Fabrication of Au/Ti TESs for Optical Photon Counting,” J. Low Temp. Phys. 151, 261–265 (2008).
[CrossRef]

Theocharous, E.

J. Y. Cheung, C. J. Chunnilall, G. Porrovecchio, M. Smid, and E. Theocharous, “Low optical power reference detector implemented in the validation of two independent techniques for calibrating photon-counting detectors,” Opt. Express (submitted).
[PubMed]

Thew, R.

N. Gisin and R. Thew, “Quantum communication,” Nature Photon. 1, 165–171 (2007) and ref.s therein.
[CrossRef]

Thomas-Peter, N.

Tsuchida, H.

Tsujino, K.

Ulm, G.

J. C. Zwinkels, E. Ikonen, N. P. Fox, G. Ulm, and M. L. Rastello, “Photometry, radiometry and ’the candela’: evolution in the classical and quantum world,” Metrologia 47, R15–R32 (2010).
[CrossRef]

Vuckovic, J.

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nature Photon. 3, 687–695 (2009) and ref.s therein.
[CrossRef]

Waks, E.

E. Waks, K. Inoue, W. D. Oliver, E. Diamanti, and Y. Yamamoto, “High-efficiency photon-number detection for quantum information processing,” IEEE J. Sel. Top. Quantum Electron 9, 1502–1511 (2003).
[CrossRef]

Walmsley, I. A.

Weinberg, D. L.

D. C. Burnham and D. L. Weinberg, “Observation of Simultaneity in Parametric Production of Optical Photon Pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
[CrossRef]

Wildfeuer, C. F.

Y. Gao, P. M. Anisimov, C. F. Wildfeuer, J. Luine, H. Lee, and J. P. Dowling, “Super-resolution at the shot-noise limit with coherent states and photon-number-resolving detectors,” J.Opt. Soc. Am. B 27, A170–A174 (2010).
[CrossRef]

A. J. Pearlman, A. Ling, E. A. Goldschmidt, C. F. Wildfeuer, J. Fan, and A. Migdall, “Enhancing image contrast using coherent states and photon number resolving detectors,” Opt. Express 18, 6033–6039 (2010).
[CrossRef] [PubMed]

Worsley, A. P.

Yamamoto, Y.

E. Waks, K. Inoue, W. D. Oliver, E. Diamanti, and Y. Yamamoto, “High-efficiency photon-number detection for quantum information processing,” IEEE J. Sel. Top. Quantum Electron 9, 1502–1511 (2003).
[CrossRef]

J. Kim, S. Takeuchi, Y. Yamamoto, and H. H. Hogue, “Multiphoton detection using visible light photon counter,” Appl. Phys. Lett.,  74, 902 (1999).
[CrossRef]

Yoshizawa, A.

Zama, T.

Zambra, G.

G. Zambra, M. Bondani, A. S. Spinelli, F. Paleari, and A. Andreoni, “Counting photoelectrons in the response of a photomultiplier tube to single picosecond light pulses,” Rev. Sci. Instrum. 75, 2762 (2004).
[CrossRef]

Zwinkels, J. C.

J. C. Zwinkels, E. Ikonen, N. P. Fox, G. Ulm, and M. L. Rastello, “Photometry, radiometry and ’the candela’: evolution in the classical and quantum world,” Metrologia 47, R15–R32 (2010).
[CrossRef]

Advanced Science Letters (1)

M. Bondani, A. Allevi, and A. Andreoni, “Light Statistics by Non-Calibrated Linear Photodetectors,” Advanced Science Letters 2, 463–468 (2009).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

J. Kim, S. Takeuchi, Y. Yamamoto, and H. H. Hogue, “Multiphoton detection using visible light photon counter,” Appl. Phys. Lett.,  74, 902 (1999).
[CrossRef]

Contemp. Phys. (1)

C. Silberhorn, “Detecting quantum light,” Contemp. Phys. 48, 143–156 (2007) and ref.s therein.
[CrossRef]

IEEE J. Sel. Top. Quantum Electron (1)

E. Waks, K. Inoue, W. D. Oliver, E. Diamanti, and Y. Yamamoto, “High-efficiency photon-number detection for quantum information processing,” IEEE J. Sel. Top. Quantum Electron 9, 1502–1511 (2003).
[CrossRef]

IEEE Trans. Appl. Supercond. (2)

L. Lolli, E. Taralli, C. Portesi, D. Alberto, M. Rajteri, and E. Monticone, “Ti/Au Transition-Edge Sensors Coupled to Single Mode Optical Fibers Aligned by Si V-Groove,” IEEE Trans. Appl. Supercond. 21215–218 (2011).
[CrossRef]

D. Drung, C. Assmann, J. Beyer, A. Kirste, M. Peters, F. Ruede, and T. Schurig, “Highly Sensitive and Easy-to-Use SQUID Sensors,” IEEE Trans. Appl. Supercond. 17, 699–704 (2007).
[CrossRef]

J. Low Temp. Phys. (1)

C. Portesi, E. Taralli, R. Rocci, M. Rajteri, and E. Monticone, “Fabrication of Au/Ti TESs for Optical Photon Counting,” J. Low Temp. Phys. 151, 261–265 (2008).
[CrossRef]

J. Mod. Opt. (1)

S. V. Polyakov and A. L. Migdall, “Quantum radiometry,” J. Mod. Opt. 56, 1045–1052 (2009) and ref.s therein.
[CrossRef]

J. Opt. Soc. Am. B (3)

J.Opt. Soc. Am. B (1)

Y. Gao, P. M. Anisimov, C. F. Wildfeuer, J. Luine, H. Lee, and J. P. Dowling, “Super-resolution at the shot-noise limit with coherent states and photon-number-resolving detectors,” J.Opt. Soc. Am. B 27, A170–A174 (2010).
[CrossRef]

Laser Physics Lett. (1)

G. Brida, M. Genovese, and M. Gramegna, “Twin-photon techniques for photo-detector calibration,” Laser Physics Lett. 3, 115–123 (2006) and ref.s therein.
[CrossRef]

Metrologia (5)

J. C. Zwinkels, E. Ikonen, N. P. Fox, G. Ulm, and M. L. Rastello, “Photometry, radiometry and ’the candela’: evolution in the classical and quantum world,” Metrologia 47, R15–R32 (2010).
[CrossRef]

S. Castelletto, I. P. Degiovanni, and M. L. Rastello, “Theoretical aspects of photon number measurement,” Metrologia 37, 613–616 (2000).
[CrossRef]

E. Dauler, A. L. Migdall, N. Boeuf, R. U. Datla, A. Muller, and A. Sergienko, “Measuring absolute infrared spectral radiance with correlated photons: new arrangements for improved uncertainty and extended IR range,” Metrologia 35, 295 (1998).
[CrossRef]

G. Brida, S. Castelletto, I. P. Degiovanni, M. Genovese, C. Novero, and M. L. Rastello, “Towards an uncertainty budget in quantum-efficiency measurements with parametric fluorescence,” Metrologia 37, 629 (2000).
[CrossRef]

A. Ghazi-Bellouati, A. Razet, J. Bastie, M. E. Himbert, I. P. Degiovanni, S. Castelletto, and M. L. Rastello, “Radiometric reference for weak radiations: comparison of methods,” Metrologia 42, 271 (2005).
[CrossRef]

Nature Photon. (5)

G. Brida, M. Genovese, and I. Ruo Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nature Photon. 4, 227–230 (2010).
[CrossRef]

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nature Photon. 3, 687–695 (2009) and ref.s therein.
[CrossRef]

N. Gisin and R. Thew, “Quantum communication,” Nature Photon. 1, 165–171 (2007) and ref.s therein.
[CrossRef]

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nature Photon. 3, 696–705 (2009) and ref.s therein.
[CrossRef]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lvy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nature Photon. 2, 302–306 (2008).
[CrossRef]

New J. Phys. (1)

T. Laenger and G. Lenhart, “Standardization of quantum key distribution and the ETSI standardization initiative ISG-QKD,” New J. Phys. 11, 055051 (2009) and ref.s therein.
[CrossRef]

Opt. Express (8)

G. Brida, I. P. Degiovanni, M. Genovese, M. L. Rastello, and I. Ruo Berchera, “Detection of multimode spatial correlation in PDC and application to the absolute calibration of a CCD camera,” Opt. Express 18, 20572–20584 (2010).
[CrossRef] [PubMed]

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Opt. Express 19, 870–875 (2011).
[CrossRef] [PubMed]

S.V. Polyakov and A.L. Migdall, “High accuracy verification of a correlated-photon-based method for determining photoncounting detection efficiency,” Opt. Express 15, 1390–1407 (2007).
[CrossRef] [PubMed]

A.E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express 16, 3032–3040 (2008).
[CrossRef] [PubMed]

G. Brida, M. Chekhova, M. Genovese, and I. Ruo-Berchera, “Analysis of the possibility of analog detectors calibration by exploiting stimulated parametric down conversion,” Opt. Express 16, 12550–12558 (2008).
[CrossRef] [PubMed]

A. P. Worsley, H. B. Coldenstrodt-Ronge, J. S. Lundeen, P. J. Mosley, B. J. Smith, G. Puentes, N. Thomas-Peter, and I. A. Walmsley, “Absolute efficiency estimation of photon-number-resolving detectors using twin beams,” Opt. Express 17, 4397–4411 (2009).
[CrossRef] [PubMed]

A. J. Pearlman, A. Ling, E. A. Goldschmidt, C. F. Wildfeuer, J. Fan, and A. Migdall, “Enhancing image contrast using coherent states and photon number resolving detectors,” Opt. Express 18, 6033–6039 (2010).
[CrossRef] [PubMed]

K. Tsujino, D. Fukuda, G. Fujii, S. Inoue, M. Fujiwara, M. Takeoka, and M. Sasaki, “Sub-shot-noise-limit discrimination of on-off keyed coherent signals via a quantum receiver with a superconducting transition edge sensor,” Opt. Express 18, 8107–8114 (2010).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rep. (1)

M. Genovese, “Research on hidden variable theories: A review of recent progresses,” Phys. Rep. 413, 319–396 (2005) and ref.s therein.
[CrossRef]

Phys. Rev. A (3)

L. A. Jiang, E. A. Dauler, and J. T. Chang, “Photon-number-resolving detector with 10 bits of resolution,” Phys. Rev. A 75, 062325 (2007).
[CrossRef]

M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A 68, 043814 (2003).
[CrossRef]

T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum,” Phys. Rev. A 82, 031802 (2010).
[CrossRef]

Phys. Rev. Lett. (1)

D. C. Burnham and D. L. Weinberg, “Observation of Simultaneity in Parametric Production of Optical Photon Pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
[CrossRef]

Phys. Today (1)

A. Migdall, “Correlated-photon metrology without absolute standards,” Phys. Today 52, 41–46 (1999) and ref.s therein.
[CrossRef]

RCA Rev. (1)

G. A. Morton, RCA Rev. 10, 525 (1949).

Rev. Sci. Instrum. (1)

G. Zambra, M. Bondani, A. S. Spinelli, F. Paleari, and A. Andreoni, “Counting photoelectrons in the response of a photomultiplier tube to single picosecond light pulses,” Rev. Sci. Instrum. 75, 2762 (2004).
[CrossRef]

Sov. J. Quantum Electron. (1)

D. N. Klyshko, “Utilization of vacuum fluctuations as an optical brightness standard,” Sov. J. Quantum Electron. 7, 591 (1977).
[CrossRef]

Supercond. Sci. Technol. (1)

E. Taralli, C. Portesi, L. Lolli, E. Monticone, M. Rajteri, I. Novikov, and J. Beyer, “Impedance measurements on a fast transition-edge sensor for optical and near-infrared range,” Supercond. Sci. Technol. 23, 105012 (2010).
[CrossRef]

Other (7)

K. D. Irwin, “An application of electrothermal feedback for high resolution cryogenic particle detection,” Appl. Phys. Lett.66, 1998 (1995).

J. Y. Cheung, C. J. Chunnilall, G. Porrovecchio, M. Smid, and E. Theocharous, “Low optical power reference detector implemented in the validation of two independent techniques for calibrating photon-counting detectors,” Opt. Express (submitted).
[PubMed]

A. C. Parr, R. U. Datla, and J. L. Gardner, Optical Radiometry (Elsevier Academic Press, Amsterdam2005)

Guide to the Expression of Uncertainty in Measurement, ISO (1995).

G. Brida, L. Ciavarella, I. P. Degiovanni, M. Genovese, L. Lolli, M. G. Mingolla, F. Piacentini, M. Rajteri, E. Taralli, and M. G. A. Paris, “Full quantum characterization of superconducting photon counters,” http://arxiv.org/pdf/1103.2991 .

Incidentally, if one wants to provide a precise estimate of the naked TES based detector quantum efficiency η it is necessary a careful estimation of the optical transmittance τ, accounting for the coupling efficiency in the optical fiber and the optical losses in the non-linear crystal. According to the results of Ref.s [S.V. Polyakov, A.L. Migdall, Opt. Express 15, 1390 (2007); J. Y. Cheung et al., Appl. Opt. (submitted)], one could provide an estimate of this parameter with a less than 1% uncertainty.

K. D. Irwin and G. C. Hilton, “Transition-Edge Sensors,” in Cryogenic Particle Detection (Topics Appl. Phys. Vol. 99), C. Enss eds., (Springer-Verlag, Berlin, 2005), pp. 63–149.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Experimental setup: the heralded single photon sources based on non-collinear degenerate PDC pumped by 406 nm pulsed laser. The heralding signal from DET1 announces the presence of the conjugated photon that is coupled in the single mode optical fibre and sent towards the TES based detector (DET2, identified by the dotted line) starting from the fibre end (b).

Fig. 2
Fig. 2

Experimental data: oscilloscope screen–shot with traces of the TES detected events. The group of traces on the left (right) are obtained in the presence (absence) of heralding signals. Insets (a) and (b) present the histogram of the amplitudes of the pulses in the presence and in the absence of heralding photons, together with their gaussian fits.

Tables (1)

Tables Icon

Table 1 Uncertainty contributions in the measurement of γ0, γ1 and γ2. The uncertainty contributions are calculated according to the well known gaussian propagation of uncertainty formula [51], where the correlations are accounted for.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P ( 0 ) = ξ [ ( 1 γ ) 𝒫 ( 0 ) ] + ( 1 ξ ) 𝒫 ( 0 ) ,
P ( i ) = ξ [ ( 1 γ ) 𝒫 ( i ) + γ 𝒫 ( i 1 ) ] + ( 1 ξ ) 𝒫 ( i ) ,
γ 0 𝒫 ( 0 ) P ( 0 ) ξ 𝒫 ( 0 ) ,
γ i = P ( i ) 𝒫 ( i ) ξ ( 𝒫 ( i 1 ) 𝒫 ( i ) ) .

Metrics