Abstract

We report easy-to-implement techniques to improve the reflectivity of LiNbO3 photonic crystals within the photonic bandgap. Firstly, we show that widening the channel waveguides confines the optical modes in the vertical direction, which leads to the development of the first 2D-PhCs on Ti-indiffused LiNbO3 waveguides. We also report the first optical characterization of PhCs implemented on ridge LiNbO3 waveguides. The reflectivity is measured using a swept-source optical coherence tomography (OCT) system, together with the transmission spectrum. Finally we report 3D-PhCs LiNbO3 fabricated by Focused Ion Beam milling on the side of ridge waveguides.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75(7), 932 (1999).
    [CrossRef]
  2. Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87(22), 221105 (2005).
    [CrossRef]
  3. N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84(19), 4345–4348 (2000).
    [CrossRef] [PubMed]
  4. M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, R. Salut, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89(24), 241110 (2006).
    [CrossRef]
  5. N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett. 96(13), 131103 (2010).
    [CrossRef]
  6. M. P. Bernal, J. Amet, J. Safioui, F. Devaux, M. Chauvet, J. Salvi, and F. Baida, “Pyroelectric control of the superprism effect in a lithium niobate photonic crystal in slow light configuration,” Appl. Phys. Lett. 98(7), 071101 (2011).
    [CrossRef]
  7. G. W. Burr, S. Diziain, and M.-P. Bernal, “The impact of finite-depth cylindrical and conical holes in lithium niobate photonic crystals,” Opt. Express 16(9), 6302–6316 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-9-6302 .
    [CrossRef] [PubMed]
  8. R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97(13), 131109 (2010).
    [CrossRef]
  9. G. Si, E. J. Teo, A. A. Bettiol, J. Teng, and A. J. Danner, “Suspended slab and photonic crystal waveguides in lithium niobate,” J. Vac. Sci. Technol. B 28(2), 316–320 (2010).
    [CrossRef]
  10. D. Marcuse, “Solution of the vector wave equation for general dielectric waveguides by the Galerkin method,” IEEE J. Quantum Electron. 28(2), 459–465 (1992).
    [CrossRef]
  11. F. Lacour, N. Courjal, M. P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27(8), 1421–1425 (2005).
    [CrossRef]
  12. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, “Photonic crystals: molding the flow of light,” (Princeton University Press, 1995)
  13. N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
    [CrossRef]

2011 (2)

M. P. Bernal, J. Amet, J. Safioui, F. Devaux, M. Chauvet, J. Salvi, and F. Baida, “Pyroelectric control of the superprism effect in a lithium niobate photonic crystal in slow light configuration,” Appl. Phys. Lett. 98(7), 071101 (2011).
[CrossRef]

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[CrossRef]

2010 (3)

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett. 96(13), 131103 (2010).
[CrossRef]

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97(13), 131109 (2010).
[CrossRef]

G. Si, E. J. Teo, A. A. Bettiol, J. Teng, and A. J. Danner, “Suspended slab and photonic crystal waveguides in lithium niobate,” J. Vac. Sci. Technol. B 28(2), 316–320 (2010).
[CrossRef]

2008 (1)

2006 (1)

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, R. Salut, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89(24), 241110 (2006).
[CrossRef]

2005 (2)

Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87(22), 221105 (2005).
[CrossRef]

F. Lacour, N. Courjal, M. P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27(8), 1421–1425 (2005).
[CrossRef]

2000 (1)

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84(19), 4345–4348 (2000).
[CrossRef] [PubMed]

1999 (1)

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75(7), 932 (1999).
[CrossRef]

1992 (1)

D. Marcuse, “Solution of the vector wave equation for general dielectric waveguides by the Galerkin method,” IEEE J. Quantum Electron. 28(2), 459–465 (1992).
[CrossRef]

Amet, J.

M. P. Bernal, J. Amet, J. Safioui, F. Devaux, M. Chauvet, J. Salvi, and F. Baida, “Pyroelectric control of the superprism effect in a lithium niobate photonic crystal in slow light configuration,” Appl. Phys. Lett. 98(7), 071101 (2011).
[CrossRef]

Baida, F.

M. P. Bernal, J. Amet, J. Safioui, F. Devaux, M. Chauvet, J. Salvi, and F. Baida, “Pyroelectric control of the superprism effect in a lithium niobate photonic crystal in slow light configuration,” Appl. Phys. Lett. 98(7), 071101 (2011).
[CrossRef]

Baida, F. I.

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, R. Salut, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89(24), 241110 (2006).
[CrossRef]

Bainier, C.

F. Lacour, N. Courjal, M. P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27(8), 1421–1425 (2005).
[CrossRef]

Benchabane, S.

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett. 96(13), 131103 (2010).
[CrossRef]

Bernal, M. P.

M. P. Bernal, J. Amet, J. Safioui, F. Devaux, M. Chauvet, J. Salvi, and F. Baida, “Pyroelectric control of the superprism effect in a lithium niobate photonic crystal in slow light configuration,” Appl. Phys. Lett. 98(7), 071101 (2011).
[CrossRef]

F. Lacour, N. Courjal, M. P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27(8), 1421–1425 (2005).
[CrossRef]

Bernal, M.-P.

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[CrossRef]

G. W. Burr, S. Diziain, and M.-P. Bernal, “The impact of finite-depth cylindrical and conical holes in lithium niobate photonic crystals,” Opt. Express 16(9), 6302–6316 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-9-6302 .
[CrossRef] [PubMed]

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, R. Salut, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89(24), 241110 (2006).
[CrossRef]

Bettiol, A. A.

G. Si, E. J. Teo, A. A. Bettiol, J. Teng, and A. J. Danner, “Suspended slab and photonic crystal waveguides in lithium niobate,” J. Vac. Sci. Technol. B 28(2), 316–320 (2010).
[CrossRef]

Broderick, N. G. R.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84(19), 4345–4348 (2000).
[CrossRef] [PubMed]

Burr, G. W.

Chauvet, M.

M. P. Bernal, J. Amet, J. Safioui, F. Devaux, M. Chauvet, J. Salvi, and F. Baida, “Pyroelectric control of the superprism effect in a lithium niobate photonic crystal in slow light configuration,” Appl. Phys. Lett. 98(7), 071101 (2011).
[CrossRef]

Chen, R. T.

Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87(22), 221105 (2005).
[CrossRef]

Chen, X.

Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87(22), 221105 (2005).
[CrossRef]

Courjal, N.

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[CrossRef]

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett. 96(13), 131103 (2010).
[CrossRef]

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, R. Salut, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89(24), 241110 (2006).
[CrossRef]

F. Lacour, N. Courjal, M. P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27(8), 1421–1425 (2005).
[CrossRef]

Dahdah, J.

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett. 96(13), 131103 (2010).
[CrossRef]

Danner, A. J.

G. Si, E. J. Teo, A. A. Bettiol, J. Teng, and A. J. Danner, “Suspended slab and photonic crystal waveguides in lithium niobate,” J. Vac. Sci. Technol. B 28(2), 316–320 (2010).
[CrossRef]

Devaux, F.

M. P. Bernal, J. Amet, J. Safioui, F. Devaux, M. Chauvet, J. Salvi, and F. Baida, “Pyroelectric control of the superprism effect in a lithium niobate photonic crystal in slow light configuration,” Appl. Phys. Lett. 98(7), 071101 (2011).
[CrossRef]

Diziain, S.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97(13), 131109 (2010).
[CrossRef]

G. W. Burr, S. Diziain, and M.-P. Bernal, “The impact of finite-depth cylindrical and conical holes in lithium niobate photonic crystals,” Opt. Express 16(9), 6302–6316 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-9-6302 .
[CrossRef] [PubMed]

Etrich, C.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97(13), 131109 (2010).
[CrossRef]

Geiss, R.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97(13), 131109 (2010).
[CrossRef]

Gruson, Y.

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett. 96(13), 131103 (2010).
[CrossRef]

Gu, L.

Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87(22), 221105 (2005).
[CrossRef]

Guichardaz, B.

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[CrossRef]

Hanna, D. C.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84(19), 4345–4348 (2000).
[CrossRef] [PubMed]

Hartung, H.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97(13), 131109 (2010).
[CrossRef]

Iliew, R.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97(13), 131109 (2010).
[CrossRef]

Janunts, N.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97(13), 131109 (2010).
[CrossRef]

Jiang, W.

Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87(22), 221105 (2005).
[CrossRef]

Jiang, Y.

Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87(22), 221105 (2005).
[CrossRef]

Kawagishi, Y.

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75(7), 932 (1999).
[CrossRef]

Kley, E.-B.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97(13), 131109 (2010).
[CrossRef]

Lacour, F.

F. Lacour, N. Courjal, M. P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27(8), 1421–1425 (2005).
[CrossRef]

Laude, V.

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett. 96(13), 131103 (2010).
[CrossRef]

Lederer, F.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97(13), 131109 (2010).
[CrossRef]

Lu, H.-H.

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[CrossRef]

Marcuse, D.

D. Marcuse, “Solution of the vector wave equation for general dielectric waveguides by the Galerkin method,” IEEE J. Quantum Electron. 28(2), 459–465 (1992).
[CrossRef]

Nakayama, K.

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75(7), 932 (1999).
[CrossRef]

Offerhaus, H. L.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84(19), 4345–4348 (2000).
[CrossRef] [PubMed]

Ozaki, M.

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75(7), 932 (1999).
[CrossRef]

Pertsch, T.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97(13), 131109 (2010).
[CrossRef]

Rauch, J.-Y.

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[CrossRef]

Richardson, D. J.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84(19), 4345–4348 (2000).
[CrossRef] [PubMed]

Ross, G. W.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84(19), 4345–4348 (2000).
[CrossRef] [PubMed]

Roussey, M.

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, R. Salut, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89(24), 241110 (2006).
[CrossRef]

Sabac, A.

F. Lacour, N. Courjal, M. P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27(8), 1421–1425 (2005).
[CrossRef]

Sadani, B.

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[CrossRef]

Safioui, J.

M. P. Bernal, J. Amet, J. Safioui, F. Devaux, M. Chauvet, J. Salvi, and F. Baida, “Pyroelectric control of the superprism effect in a lithium niobate photonic crystal in slow light configuration,” Appl. Phys. Lett. 98(7), 071101 (2011).
[CrossRef]

Salut, R.

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, R. Salut, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89(24), 241110 (2006).
[CrossRef]

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, R. Salut, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89(24), 241110 (2006).
[CrossRef]

Salvi, J.

M. P. Bernal, J. Amet, J. Safioui, F. Devaux, M. Chauvet, J. Salvi, and F. Baida, “Pyroelectric control of the superprism effect in a lithium niobate photonic crystal in slow light configuration,” Appl. Phys. Lett. 98(7), 071101 (2011).
[CrossRef]

Schrempel, F.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97(13), 131109 (2010).
[CrossRef]

Shimoda, Y.

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75(7), 932 (1999).
[CrossRef]

Si, G.

G. Si, E. J. Teo, A. A. Bettiol, J. Teng, and A. J. Danner, “Suspended slab and photonic crystal waveguides in lithium niobate,” J. Vac. Sci. Technol. B 28(2), 316–320 (2010).
[CrossRef]

Spajer, M.

F. Lacour, N. Courjal, M. P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27(8), 1421–1425 (2005).
[CrossRef]

Teng, J.

G. Si, E. J. Teo, A. A. Bettiol, J. Teng, and A. J. Danner, “Suspended slab and photonic crystal waveguides in lithium niobate,” J. Vac. Sci. Technol. B 28(2), 316–320 (2010).
[CrossRef]

Teo, E. J.

G. Si, E. J. Teo, A. A. Bettiol, J. Teng, and A. J. Danner, “Suspended slab and photonic crystal waveguides in lithium niobate,” J. Vac. Sci. Technol. B 28(2), 316–320 (2010).
[CrossRef]

Ulliac, G.

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[CrossRef]

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett. 96(13), 131103 (2010).
[CrossRef]

Van Labeke, D.

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, R. Salut, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89(24), 241110 (2006).
[CrossRef]

Yoshino, K.

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75(7), 932 (1999).
[CrossRef]

Appl. Phys. Lett. (6)

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, R. Salut, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89(24), 241110 (2006).
[CrossRef]

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett. 96(13), 131103 (2010).
[CrossRef]

M. P. Bernal, J. Amet, J. Safioui, F. Devaux, M. Chauvet, J. Salvi, and F. Baida, “Pyroelectric control of the superprism effect in a lithium niobate photonic crystal in slow light configuration,” Appl. Phys. Lett. 98(7), 071101 (2011).
[CrossRef]

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. 97(13), 131109 (2010).
[CrossRef]

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75(7), 932 (1999).
[CrossRef]

Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87(22), 221105 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Marcuse, “Solution of the vector wave equation for general dielectric waveguides by the Galerkin method,” IEEE J. Quantum Electron. 28(2), 459–465 (1992).
[CrossRef]

J. Phys. D Appl. Phys. (1)

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[CrossRef]

J. Vac. Sci. Technol. B (1)

G. Si, E. J. Teo, A. A. Bettiol, J. Teng, and A. J. Danner, “Suspended slab and photonic crystal waveguides in lithium niobate,” J. Vac. Sci. Technol. B 28(2), 316–320 (2010).
[CrossRef]

Opt. Express (1)

Opt. Mater. (1)

F. Lacour, N. Courjal, M. P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27(8), 1421–1425 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84(19), 4345–4348 (2000).
[CrossRef] [PubMed]

Other (1)

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, “Photonic crystals: molding the flow of light,” (Princeton University Press, 1995)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

LiNbO3 PhC written on a 12 µm width APE waveguide. (a) SEM view of the PhC structure. (b) Transmission spectrum through the PhC. Black line: 2D-FDTD numerical calculation. Red line: experimental measurement (TE wave). Results obtained by normalizing the optical intensity transmitted through the nanostructured waveguide with the intensity through a single waveguide made in the same technological conditions without any PhC.

Fig. 2
Fig. 2

LiNbO3 PhC written on a 12 µm width Ti-indiffused waveguide. (a) SEM view. (b) Measured optical transmission through the PhC. Dashed red line: spectral transmission of the TM wave, solid black line: spectral transmission of the TE wave. Results obtained by normalizing the optical intensity light transmitted through the nanostructured waveguide with the intensity through a single waveguide made in the same conditions without any PhC. The linear polarization of the incident light is achieved using a fibered optical polarizer that works over the [1300-1600 nm] wavelength range.

Fig. 3
Fig. 3

Fourier transform of the reflected spectral density: impulse response correlation of the reflected light on the PhC written on an APE waveguide. Inset: schematic view of the device, and overview of the FP effects within the waveguide.

Fig. 4
Fig. 4

PhC written on the Ti-indiffused waveguide: impulse response correlation of the reflected TE (pink line) and TM (black line) optical waves. Inset: schematic view of the device, and overview of the FP effects within the waveguide.

Fig. 5
Fig. 5

Influence of the waveguide width on the transmitted spectrum. Numerical simulations (2D-FDTD) are performed for a 9x10 triangular lattice PhC of holes with a period of 690 nm and with holes’ diameter of D = 552 nm. The cavity is made up with a single hole defect cavity at the center of the PhC.

Fig. 6
Fig. 6

PhC written on a ridge waveguide (a) SEM view. (b) Normalized spectral transmission response through the PhC.

Fig. 7
Fig. 7

PhC written on the ridge waveguide. Impulse response correlation of the reflected light. Inset: schematic view of the device, and overview of the FP effects within the waveguide.

Fig. 8
Fig. 8

SEM views of Bragg gratings patterned by FIB milling on LiNbO3 optical waveguides. (a) The FIB milling is made on the top of the waveguide. (b) The FIB milling is applied on the edge of a 4 µm-width ridge.

Fig. 9
Fig. 9

SEM view of a 3D LiNbO3 PhC performed on a 4µm width ridge.

Tables (1)

Tables Icon

Table 1 Comparison of the optical modes of LiNbO3 waveguides at 1.5 µm wavelength (X-cut Y propagating waveguides, TE polarization). The effective index, lateral FWHM, vertical FWHM and distance between core and surface are the results of numerical calculations that were performed using the Galerkin method [10]. The reflectivity is measured from the experimental transmission response.

Metrics