Abstract

The nonlinear absorptivity of FOTURAN glass to ultrashort laser pulses is evaluated by experimental measurement and thermal conduction model at different parameters including energy and repetition rate of the laser pulse, translation speed and thermal properties of the sample. The mechanical strength of an embedded laser-melted sample and an overlapped weld sample is determined by a three-point-bending test and a shear test, respectively. The results are related to the average absorbed laser power Wab. We found the mechanical strength of an overlapped weld joint to be as high as that of the base material for low Wab, if the sample pair is pre-bonded to provide optical contact.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [CrossRef] [PubMed]
  2. M. Watanabe, H. Sun, S. Juodkazis, T. Takahashi, S. Matsuo, Y. Suzuki, J. Nishii, and H. Misawa, “Three-dimensional optical data storage in vitreous silica,” Jpn. J. Appl. Phys. 37(Part 2, No. 12B), L1527–L1530 (1998).
    [CrossRef]
  3. T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44(22), L687–L689 (2005).
    [CrossRef]
  4. I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser. Micro/Nanoeng 2, 57–63 (2007).
  5. J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficient, and energy density,” IEEE J. Quantum Electron. 35(8), 1156–1167 (1999).
    [CrossRef]
  6. C. L. Arnold, A. Heisterkamp, W. Ertmer, and H. Lubatschowski, “Computational model for nonlinear plasma formation in high NA micromachining of transparent materials and biological cells,” Opt. Express 15(16), 10303–10317 (2007).
    [CrossRef] [PubMed]
  7. I. Miyamoto, A. Horn, and J. Gottmann, “Local melting of glass material and its application to direct fusion welding by ps-laser pulses,” J. Laser. Micro/Nanoeng 2, 7–14 (2007).
  8. I. Miyamoto, K. Cvecek, and M. Schmidt, “Evaluation of nonlinear absorptivity in internal modification of bulk glass by ultrashort laser pulses,” Opt. Express 19(11), 10714–10727 (2011).
    [CrossRef] [PubMed]
  9. K. Hirao, Y. Shimotsuma, J. Qiu, and K. Miura, “Femtosecond laser induced phenomena in gasses and photonic device application,” Mater. Res. Soc. Symp. Proc., 13–23 (2005).
  10. N. Borrelli, J. Helfinstine, J. Price, J. Schroeder, A. Atreltsov, and J. Westbrook, “Glass strengthening with an ultrafast laser,” in Proceedings of the Int. Cong. Appl. Laser and Electro Optics (ICALEO) (2008), pp.185–189.
  11. Y. Bellouard, T. Colomb, C. Depeursinge, M. Dugan, A. A. Said, and P. Bado, “Nanoindentation and birefringence measurements on fused silica specimen exposed to low-energy femtosecond pulses,” Opt. Express 14(18), 8360–8366 (2006).
    [CrossRef] [PubMed]
  12. P. Kongsuwan, H. Wang, S. Vukelic, and Y. L. Yao, “Characterization of morphology and mechanical properties of glass interior irradiated by femtosecond laser,” J. Manuf. Sci. Eng. 132(4), 041009 (2010).
    [CrossRef]
  13. T. Arai, N. Asano, A. Minami, and H. Kusano, “Inside process of glass with nanosecond pulsed laser,” in Proceedings of the Int. Cong. Appl. Laser and Electro Optics (ICALEO) (2008), pp.408–414.
  14. K. Cvecek, I. Miyamoto, J. Strauss, M. Wolf, T. Frick, and M. Schmidt, “Sample preparation method for glass welding by ultrashort laser pulses yields higher seam strength,” Appl. Opt. 50(13), 1941–1944 (2011).
    [CrossRef] [PubMed]
  15. V. Greco, F. Marchesini, and G. Molesini, “Optical contact and van der Waals interactions: the role of the surface topography in determining the bonding strength of thick glass plates,” J. Opt. A, Pure Appl. Opt. 3(1), 85–88 (2001).
    [CrossRef]
  16. B. Fisette and M. Meunier, “Three-dimensional microfabrication inside photosensitive glasses by femtosecond laser,” J. Laser. Micro/Nanoeng 1, 7–11 (2006).
  17. Y. Cheng, K. Sugioka, M. Masuda, K. Toyoda, M. Kawachi, K. Shihoyama, and K. Midorikawa, “3D microstructuring inside Foturan glass by femtosecond laser,” RIKEN Review 50, 101–106 (2003).
  18. H. Helvajian, P. D. Fuqua, W. W. Hansen, and S. Janson, “Nanosatellites and MEMS fabrication by laser microprocessing,” in Proceedings of the 1st Int. Symp. On Laser Precision Microfabrication- LPM2000 (2000), pp. 319–326.
  19. http://www.mikroglas.com/index.php?PAGE_ID=544# .
  20. K. Nahen and A. Vogel, “Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses – Part II: Transmission, scattering, and reflection,” J. Sel. Topics Quant. El. 2(4), 861–871 (1996).
    [CrossRef]
  21. I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, I. Mingareev, F. Yoshino, M. Schmidt, P. Bechtold, Y. Okamoto, Y. Uno, and T. Herrmann, “Novel fusion welding technology of glass using ultrashort pulse lasers,” in the Proceedings of the Int. Cong. Appl. Laser and Electro Optics (ICALEO) (2008).
  22. C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
    [CrossRef]
  23. http://labaccessories.mellesgriot.com/pdfs/Cleaning_Methods.pdf .
  24. W. P. Maszara, G. Goetz, A. Caviglia, and J. B. McKitterick, “Bonding of silicon wafer for silicon-on-insulator,” J. Appl. Phys. 64(10), 4943–4950 (1988).
    [CrossRef]
  25. S. S. Kachkin and Y. V. Listsyan, “Optical-contact bonding strength of glass components,” Sov. J. Opt. Technol. 47, 159–161 (1980).

2011 (2)

2010 (1)

P. Kongsuwan, H. Wang, S. Vukelic, and Y. L. Yao, “Characterization of morphology and mechanical properties of glass interior irradiated by femtosecond laser,” J. Manuf. Sci. Eng. 132(4), 041009 (2010).
[CrossRef]

2007 (3)

C. L. Arnold, A. Heisterkamp, W. Ertmer, and H. Lubatschowski, “Computational model for nonlinear plasma formation in high NA micromachining of transparent materials and biological cells,” Opt. Express 15(16), 10303–10317 (2007).
[CrossRef] [PubMed]

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser. Micro/Nanoeng 2, 57–63 (2007).

I. Miyamoto, A. Horn, and J. Gottmann, “Local melting of glass material and its application to direct fusion welding by ps-laser pulses,” J. Laser. Micro/Nanoeng 2, 7–14 (2007).

2006 (2)

2005 (2)

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[CrossRef]

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44(22), L687–L689 (2005).
[CrossRef]

2003 (1)

Y. Cheng, K. Sugioka, M. Masuda, K. Toyoda, M. Kawachi, K. Shihoyama, and K. Midorikawa, “3D microstructuring inside Foturan glass by femtosecond laser,” RIKEN Review 50, 101–106 (2003).

2001 (1)

V. Greco, F. Marchesini, and G. Molesini, “Optical contact and van der Waals interactions: the role of the surface topography in determining the bonding strength of thick glass plates,” J. Opt. A, Pure Appl. Opt. 3(1), 85–88 (2001).
[CrossRef]

1999 (1)

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficient, and energy density,” IEEE J. Quantum Electron. 35(8), 1156–1167 (1999).
[CrossRef]

1998 (1)

M. Watanabe, H. Sun, S. Juodkazis, T. Takahashi, S. Matsuo, Y. Suzuki, J. Nishii, and H. Misawa, “Three-dimensional optical data storage in vitreous silica,” Jpn. J. Appl. Phys. 37(Part 2, No. 12B), L1527–L1530 (1998).
[CrossRef]

1996 (2)

K. Nahen and A. Vogel, “Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses – Part II: Transmission, scattering, and reflection,” J. Sel. Topics Quant. El. 2(4), 861–871 (1996).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

1988 (1)

W. P. Maszara, G. Goetz, A. Caviglia, and J. B. McKitterick, “Bonding of silicon wafer for silicon-on-insulator,” J. Appl. Phys. 64(10), 4943–4950 (1988).
[CrossRef]

1980 (1)

S. S. Kachkin and Y. V. Listsyan, “Optical-contact bonding strength of glass components,” Sov. J. Opt. Technol. 47, 159–161 (1980).

Arnold, C. L.

Bado, P.

Bellouard, Y.

Bhardwaj, V. R.

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[CrossRef]

Caviglia, A.

W. P. Maszara, G. Goetz, A. Caviglia, and J. B. McKitterick, “Bonding of silicon wafer for silicon-on-insulator,” J. Appl. Phys. 64(10), 4943–4950 (1988).
[CrossRef]

Cheng, Y.

Y. Cheng, K. Sugioka, M. Masuda, K. Toyoda, M. Kawachi, K. Shihoyama, and K. Midorikawa, “3D microstructuring inside Foturan glass by femtosecond laser,” RIKEN Review 50, 101–106 (2003).

Colomb, T.

Corkum, P. B.

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[CrossRef]

Cvecek, K.

Davis, K. M.

Depeursinge, C.

Dugan, M.

Ertmer, W.

Fisette, B.

B. Fisette and M. Meunier, “Three-dimensional microfabrication inside photosensitive glasses by femtosecond laser,” J. Laser. Micro/Nanoeng 1, 7–11 (2006).

Frick, T.

Goetz, G.

W. P. Maszara, G. Goetz, A. Caviglia, and J. B. McKitterick, “Bonding of silicon wafer for silicon-on-insulator,” J. Appl. Phys. 64(10), 4943–4950 (1988).
[CrossRef]

Gottmann, J.

I. Miyamoto, A. Horn, and J. Gottmann, “Local melting of glass material and its application to direct fusion welding by ps-laser pulses,” J. Laser. Micro/Nanoeng 2, 7–14 (2007).

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser. Micro/Nanoeng 2, 57–63 (2007).

Greco, V.

V. Greco, F. Marchesini, and G. Molesini, “Optical contact and van der Waals interactions: the role of the surface topography in determining the bonding strength of thick glass plates,” J. Opt. A, Pure Appl. Opt. 3(1), 85–88 (2001).
[CrossRef]

Heisterkamp, A.

Hirao, K.

Hnatovsky, C.

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[CrossRef]

Horn, A.

I. Miyamoto, A. Horn, and J. Gottmann, “Local melting of glass material and its application to direct fusion welding by ps-laser pulses,” J. Laser. Micro/Nanoeng 2, 7–14 (2007).

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser. Micro/Nanoeng 2, 57–63 (2007).

Itoh, K.

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44(22), L687–L689 (2005).
[CrossRef]

Juodkazis, S.

M. Watanabe, H. Sun, S. Juodkazis, T. Takahashi, S. Matsuo, Y. Suzuki, J. Nishii, and H. Misawa, “Three-dimensional optical data storage in vitreous silica,” Jpn. J. Appl. Phys. 37(Part 2, No. 12B), L1527–L1530 (1998).
[CrossRef]

Kachkin, S. S.

S. S. Kachkin and Y. V. Listsyan, “Optical-contact bonding strength of glass components,” Sov. J. Opt. Technol. 47, 159–161 (1980).

Kawachi, M.

Y. Cheng, K. Sugioka, M. Masuda, K. Toyoda, M. Kawachi, K. Shihoyama, and K. Midorikawa, “3D microstructuring inside Foturan glass by femtosecond laser,” RIKEN Review 50, 101–106 (2003).

Kongsuwan, P.

P. Kongsuwan, H. Wang, S. Vukelic, and Y. L. Yao, “Characterization of morphology and mechanical properties of glass interior irradiated by femtosecond laser,” J. Manuf. Sci. Eng. 132(4), 041009 (2010).
[CrossRef]

Listsyan, Y. V.

S. S. Kachkin and Y. V. Listsyan, “Optical-contact bonding strength of glass components,” Sov. J. Opt. Technol. 47, 159–161 (1980).

Lubatschowski, H.

Marchesini, F.

V. Greco, F. Marchesini, and G. Molesini, “Optical contact and van der Waals interactions: the role of the surface topography in determining the bonding strength of thick glass plates,” J. Opt. A, Pure Appl. Opt. 3(1), 85–88 (2001).
[CrossRef]

Masuda, M.

Y. Cheng, K. Sugioka, M. Masuda, K. Toyoda, M. Kawachi, K. Shihoyama, and K. Midorikawa, “3D microstructuring inside Foturan glass by femtosecond laser,” RIKEN Review 50, 101–106 (2003).

Maszara, W. P.

W. P. Maszara, G. Goetz, A. Caviglia, and J. B. McKitterick, “Bonding of silicon wafer for silicon-on-insulator,” J. Appl. Phys. 64(10), 4943–4950 (1988).
[CrossRef]

Matsuo, S.

M. Watanabe, H. Sun, S. Juodkazis, T. Takahashi, S. Matsuo, Y. Suzuki, J. Nishii, and H. Misawa, “Three-dimensional optical data storage in vitreous silica,” Jpn. J. Appl. Phys. 37(Part 2, No. 12B), L1527–L1530 (1998).
[CrossRef]

McKitterick, J. B.

W. P. Maszara, G. Goetz, A. Caviglia, and J. B. McKitterick, “Bonding of silicon wafer for silicon-on-insulator,” J. Appl. Phys. 64(10), 4943–4950 (1988).
[CrossRef]

Meunier, M.

B. Fisette and M. Meunier, “Three-dimensional microfabrication inside photosensitive glasses by femtosecond laser,” J. Laser. Micro/Nanoeng 1, 7–11 (2006).

Midorikawa, K.

Y. Cheng, K. Sugioka, M. Masuda, K. Toyoda, M. Kawachi, K. Shihoyama, and K. Midorikawa, “3D microstructuring inside Foturan glass by femtosecond laser,” RIKEN Review 50, 101–106 (2003).

Misawa, H.

M. Watanabe, H. Sun, S. Juodkazis, T. Takahashi, S. Matsuo, Y. Suzuki, J. Nishii, and H. Misawa, “Three-dimensional optical data storage in vitreous silica,” Jpn. J. Appl. Phys. 37(Part 2, No. 12B), L1527–L1530 (1998).
[CrossRef]

Miura, K.

Miyamoto, I.

K. Cvecek, I. Miyamoto, J. Strauss, M. Wolf, T. Frick, and M. Schmidt, “Sample preparation method for glass welding by ultrashort laser pulses yields higher seam strength,” Appl. Opt. 50(13), 1941–1944 (2011).
[CrossRef] [PubMed]

I. Miyamoto, K. Cvecek, and M. Schmidt, “Evaluation of nonlinear absorptivity in internal modification of bulk glass by ultrashort laser pulses,” Opt. Express 19(11), 10714–10727 (2011).
[CrossRef] [PubMed]

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser. Micro/Nanoeng 2, 57–63 (2007).

I. Miyamoto, A. Horn, and J. Gottmann, “Local melting of glass material and its application to direct fusion welding by ps-laser pulses,” J. Laser. Micro/Nanoeng 2, 7–14 (2007).

Molesini, G.

V. Greco, F. Marchesini, and G. Molesini, “Optical contact and van der Waals interactions: the role of the surface topography in determining the bonding strength of thick glass plates,” J. Opt. A, Pure Appl. Opt. 3(1), 85–88 (2001).
[CrossRef]

Nahen, K.

K. Nahen and A. Vogel, “Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses – Part II: Transmission, scattering, and reflection,” J. Sel. Topics Quant. El. 2(4), 861–871 (1996).
[CrossRef]

Nishii, J.

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44(22), L687–L689 (2005).
[CrossRef]

M. Watanabe, H. Sun, S. Juodkazis, T. Takahashi, S. Matsuo, Y. Suzuki, J. Nishii, and H. Misawa, “Three-dimensional optical data storage in vitreous silica,” Jpn. J. Appl. Phys. 37(Part 2, No. 12B), L1527–L1530 (1998).
[CrossRef]

Noack, J.

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficient, and energy density,” IEEE J. Quantum Electron. 35(8), 1156–1167 (1999).
[CrossRef]

Rajeev, P. P.

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[CrossRef]

Rayner, D. M.

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[CrossRef]

Said, A. A.

Schmidt, M.

Shihoyama, K.

Y. Cheng, K. Sugioka, M. Masuda, K. Toyoda, M. Kawachi, K. Shihoyama, and K. Midorikawa, “3D microstructuring inside Foturan glass by femtosecond laser,” RIKEN Review 50, 101–106 (2003).

Simova, E.

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[CrossRef]

Strauss, J.

Sugimoto, N.

Sugioka, K.

Y. Cheng, K. Sugioka, M. Masuda, K. Toyoda, M. Kawachi, K. Shihoyama, and K. Midorikawa, “3D microstructuring inside Foturan glass by femtosecond laser,” RIKEN Review 50, 101–106 (2003).

Sun, H.

M. Watanabe, H. Sun, S. Juodkazis, T. Takahashi, S. Matsuo, Y. Suzuki, J. Nishii, and H. Misawa, “Three-dimensional optical data storage in vitreous silica,” Jpn. J. Appl. Phys. 37(Part 2, No. 12B), L1527–L1530 (1998).
[CrossRef]

Suzuki, Y.

M. Watanabe, H. Sun, S. Juodkazis, T. Takahashi, S. Matsuo, Y. Suzuki, J. Nishii, and H. Misawa, “Three-dimensional optical data storage in vitreous silica,” Jpn. J. Appl. Phys. 37(Part 2, No. 12B), L1527–L1530 (1998).
[CrossRef]

Takahashi, T.

M. Watanabe, H. Sun, S. Juodkazis, T. Takahashi, S. Matsuo, Y. Suzuki, J. Nishii, and H. Misawa, “Three-dimensional optical data storage in vitreous silica,” Jpn. J. Appl. Phys. 37(Part 2, No. 12B), L1527–L1530 (1998).
[CrossRef]

Tamaki, T.

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44(22), L687–L689 (2005).
[CrossRef]

Taylor, R. S.

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[CrossRef]

Toyoda, K.

Y. Cheng, K. Sugioka, M. Masuda, K. Toyoda, M. Kawachi, K. Shihoyama, and K. Midorikawa, “3D microstructuring inside Foturan glass by femtosecond laser,” RIKEN Review 50, 101–106 (2003).

Vogel, A.

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficient, and energy density,” IEEE J. Quantum Electron. 35(8), 1156–1167 (1999).
[CrossRef]

K. Nahen and A. Vogel, “Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses – Part II: Transmission, scattering, and reflection,” J. Sel. Topics Quant. El. 2(4), 861–871 (1996).
[CrossRef]

Vukelic, S.

P. Kongsuwan, H. Wang, S. Vukelic, and Y. L. Yao, “Characterization of morphology and mechanical properties of glass interior irradiated by femtosecond laser,” J. Manuf. Sci. Eng. 132(4), 041009 (2010).
[CrossRef]

Wang, H.

P. Kongsuwan, H. Wang, S. Vukelic, and Y. L. Yao, “Characterization of morphology and mechanical properties of glass interior irradiated by femtosecond laser,” J. Manuf. Sci. Eng. 132(4), 041009 (2010).
[CrossRef]

Watanabe, M.

M. Watanabe, H. Sun, S. Juodkazis, T. Takahashi, S. Matsuo, Y. Suzuki, J. Nishii, and H. Misawa, “Three-dimensional optical data storage in vitreous silica,” Jpn. J. Appl. Phys. 37(Part 2, No. 12B), L1527–L1530 (1998).
[CrossRef]

Watanabe, W.

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44(22), L687–L689 (2005).
[CrossRef]

Wolf, M.

Wortmann, D.

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser. Micro/Nanoeng 2, 57–63 (2007).

Yao, Y. L.

P. Kongsuwan, H. Wang, S. Vukelic, and Y. L. Yao, “Characterization of morphology and mechanical properties of glass interior irradiated by femtosecond laser,” J. Manuf. Sci. Eng. 132(4), 041009 (2010).
[CrossRef]

Yoshino, F.

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser. Micro/Nanoeng 2, 57–63 (2007).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficient, and energy density,” IEEE J. Quantum Electron. 35(8), 1156–1167 (1999).
[CrossRef]

J. Appl. Phys. (1)

W. P. Maszara, G. Goetz, A. Caviglia, and J. B. McKitterick, “Bonding of silicon wafer for silicon-on-insulator,” J. Appl. Phys. 64(10), 4943–4950 (1988).
[CrossRef]

J. Laser. Micro/Nanoeng (3)

I. Miyamoto, A. Horn, and J. Gottmann, “Local melting of glass material and its application to direct fusion welding by ps-laser pulses,” J. Laser. Micro/Nanoeng 2, 7–14 (2007).

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser. Micro/Nanoeng 2, 57–63 (2007).

B. Fisette and M. Meunier, “Three-dimensional microfabrication inside photosensitive glasses by femtosecond laser,” J. Laser. Micro/Nanoeng 1, 7–11 (2006).

J. Manuf. Sci. Eng. (1)

P. Kongsuwan, H. Wang, S. Vukelic, and Y. L. Yao, “Characterization of morphology and mechanical properties of glass interior irradiated by femtosecond laser,” J. Manuf. Sci. Eng. 132(4), 041009 (2010).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

V. Greco, F. Marchesini, and G. Molesini, “Optical contact and van der Waals interactions: the role of the surface topography in determining the bonding strength of thick glass plates,” J. Opt. A, Pure Appl. Opt. 3(1), 85–88 (2001).
[CrossRef]

J. Sel. Topics Quant. El. (1)

K. Nahen and A. Vogel, “Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses – Part II: Transmission, scattering, and reflection,” J. Sel. Topics Quant. El. 2(4), 861–871 (1996).
[CrossRef]

Jpn. J. Appl. Phys. (2)

M. Watanabe, H. Sun, S. Juodkazis, T. Takahashi, S. Matsuo, Y. Suzuki, J. Nishii, and H. Misawa, “Three-dimensional optical data storage in vitreous silica,” Jpn. J. Appl. Phys. 37(Part 2, No. 12B), L1527–L1530 (1998).
[CrossRef]

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44(22), L687–L689 (2005).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

RIKEN Review (1)

Y. Cheng, K. Sugioka, M. Masuda, K. Toyoda, M. Kawachi, K. Shihoyama, and K. Midorikawa, “3D microstructuring inside Foturan glass by femtosecond laser,” RIKEN Review 50, 101–106 (2003).

Sov. J. Opt. Technol. (1)

S. S. Kachkin and Y. V. Listsyan, “Optical-contact bonding strength of glass components,” Sov. J. Opt. Technol. 47, 159–161 (1980).

Other (7)

T. Arai, N. Asano, A. Minami, and H. Kusano, “Inside process of glass with nanosecond pulsed laser,” in Proceedings of the Int. Cong. Appl. Laser and Electro Optics (ICALEO) (2008), pp.408–414.

H. Helvajian, P. D. Fuqua, W. W. Hansen, and S. Janson, “Nanosatellites and MEMS fabrication by laser microprocessing,” in Proceedings of the 1st Int. Symp. On Laser Precision Microfabrication- LPM2000 (2000), pp. 319–326.

http://www.mikroglas.com/index.php?PAGE_ID=544# .

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, I. Mingareev, F. Yoshino, M. Schmidt, P. Bechtold, Y. Okamoto, Y. Uno, and T. Herrmann, “Novel fusion welding technology of glass using ultrashort pulse lasers,” in the Proceedings of the Int. Cong. Appl. Laser and Electro Optics (ICALEO) (2008).

http://labaccessories.mellesgriot.com/pdfs/Cleaning_Methods.pdf .

K. Hirao, Y. Shimotsuma, J. Qiu, and K. Miura, “Femtosecond laser induced phenomena in gasses and photonic device application,” Mater. Res. Soc. Symp. Proc., 13–23 (2005).

N. Borrelli, J. Helfinstine, J. Price, J. Schroeder, A. Atreltsov, and J. Westbrook, “Glass strengthening with an ultrafast laser,” in Proceedings of the Int. Cong. Appl. Laser and Electro Optics (ICALEO) (2008), pp.185–189.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Experimental and simulated nonlinear absorptivity of FOTURAN glass at a translation speed of 20mm/s at different pulse repetition rates with a focus position zh from the top surface of 640µm (NA0.55, τ = 10ps, average laser power 3W). The cross-sections of the sample are shown in Fig. 2.

Fig. 2
Fig. 2

Cross-sections at different pulse repetition rates f at a constant average laser power of 3W in FOTURAN glass. (NA0.55, v=20mm/s, τ=10ps, zh=640µm).

Fig. 3
Fig. 3

(a) Cross-section of FOTURAN glass (f=500kHz, Q0=5µJ, v=20mm/s, zh=250µm), (b) Simulated isothermal lines for m=0.5, 1.0 and 2.0 (characteristic temperatures: assumed to be Tout = 900þC and Tin = 3,000þC), (c) Intensity distribution w(z) for different values of m.

Fig. 4
Fig. 4

Relationship between characteristic temperature of the outer structure Tout and the nonlinear absorptivity ACal (f = 500kHz, Q0 = 5µJ, v = 20mm/s, m = 2).

Fig. 5
Fig. 5

Nonlinear absorptivity of FOTURAN glass (zh=640µm) plotted vs. (a) average laser power in comparison with D263 (f = 1MHz, v = 20mm/s), and (b) translation speed (at average laser power of 3W, f=1MHz).

Fig. 6
Fig. 6

Cross-sectional area S in the isothermal line of Tout for FOTRUAN glass and D263 at pulse duration of 10ps and 400fs at translation speed of v=20mm/s.

Fig. 7
Fig. 7

Mechanical strength of internally melted single FOTURAN sample determined by a three-point-bending test at different f and v at a constant average laser power of 2.5W. A thick dotted line shows the average strength of the base material.

Fig. 8
Fig. 8

Mechanical strength of internally melted single glass sample and overlap-welded joint plotted vs. average absorbed laser power Wab. The result of overlap welding joint of D263 [14] is also plotted.

Fig. 9
Fig. 9

Shear force to break optical contact FOC plotted vs. contact area SOC. The optical contact force per unit area σOC is also plotted.

Fig. 10
Fig. 10

Effect of (a) translation speed at f=1MHz and (b) pulse repetition rate at v = 20mm/s on the rupture strength and weld area of the overlap-weld samples. (L=10mm, length of weld path = 8~9mm)

Fig. 11
Fig. 11

SEM photographs of ruptured face of overlap welded sample and strength of the weld joint at 3W at f = 1MHz.

Tables (1)

Tables Icon

Table 1 Thermal and physical properties of FOTURAN [19] and borosilicate glass D263 [8]

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

A Ex =1 Q t Q 0 1 ( 1R ) 2
T(x,y,x)= 1 4πK 0 l w(z') s exp{ v 2α ( x+s ) }dz' + T 0
w(z)=a z m +b, 0<z<l
A Cal = 1 f Q 0 0 l w(z)dz,
σ W = F RUP F OC S W .

Metrics