Abstract

We demonstrate fabrication of Au nanorod aggregates microstructures by means of a femtosecond near-infrared laser. The laser light was tightly focused into colloidal Au nanorods dispersed in photopolymerizable metyl-methacrylate (MMA) compound to induce two-photon polymerization (TPP). TPP of MMA glued the nanorods together to form solid microstrucures of aggregates. The laser light excited a local surface plasmon, resulting in confinement of TPP in the vicinity of nanorods. Concurrenly occurring optical accumulation of nanorods created a unique mechanism for the formation of nanorod aggregates into desired microstructures. This technique would be a clue for a novel micro/nanofabrication method for plasmonic materials and devices.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. (Deerfield Beach Fla.) 21(48), 4880–4910 (2009).
    [CrossRef]
  2. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
    [CrossRef] [PubMed]
  3. K. Liu, Z. Nie, N. Zhao, W. Li, M. Rubinstein, and E. Kumacheva, “Step-growth polymerization of inorganic nanoparticles,” Science 329(5988), 197–200 (2010).
    [CrossRef] [PubMed]
  4. S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67(20), 205402 (2003).
    [CrossRef]
  5. S. Kawata, A. Ono, and P. Verma, “Subwavelength colour imaging with a metallic nanolens,” Nat. Photonics 2(7), 438–442 (2008).
    [CrossRef]
  6. A. I. Kuznetsov, R. Kiyan, and B. N. Chichkov, “Laser fabrication of 2D and 3D metal nanoparticle structures and arrays,” Opt. Express 18(20), 21198–21203 (2010).
    [CrossRef] [PubMed]
  7. B. Nikoobakht, Z. L. Wang, and M. A. El-Sayed, “Self-assembly of gold nanorods,” J. Phys. Chem. B 104(36), 8635–8640 (2000).
    [CrossRef]
  8. S. Ito, H. Yoshikawa, and H. Masuhara, “Laser manipulation and fixation of single gold nanoparticles in solution at room temperature,” Appl. Phys. Lett. 80(3), 482–484 (2002).
    [CrossRef]
  9. M. J. Guffey and N. F. Scherer, “All-optical patterning of Au nanoparticles on surfaces using optical traps,” Nano Lett. 10(11), 4302–4308 (2010).
    [CrossRef] [PubMed]
  10. A. S. Urban, A. A. Lutich, F. D. Stefani, and J. Feldmann, “Laser printing single gold nanoparticles,” Nano Lett. 10(12), 4794–4798 (2010).
    [CrossRef] [PubMed]
  11. A. M. Hung, C. M. Micheel, L. D. Bozano, L. W. Osterbur, G. M. Wallraff, and J. N. Cha, “Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami,” Nat. Nanotechnol. 5(2), 121–126 (2010).
    [CrossRef] [PubMed]
  12. J. Sharma, R. Chhabra, Y. Liu, Y. Ke, and H. Yan, “DNA-templated self-assembly of two-dimensional and periodical gold nanoparticle arrays,” Angew. Chem. Int. Ed. Engl. 45(5), 730–735 (2006).
    [CrossRef] [PubMed]
  13. S. Nakanishi, H. Yoshikawa, S. Shoji, Z. Sekkat, and S. Kawata, “Size dependence of transition temperature in polymer nanowires,” J. Phys. Chem. B 112(12), 3586–3589 (2008).
    [CrossRef] [PubMed]
  14. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
    [CrossRef] [PubMed]
  15. W. S. Kuo, C. H. Lien, K. C. Cho, C. Y. Chang, C. Y. Lin, L. L. H. Huang, P. J. Campagnola, C. Y. Dong, and S. J. Chen, “Multiphoton fabrication of freeform polymer microstructures with gold nanorods,” Opt. Express 18(26), 27550–27559 (2010).
    [CrossRef] [PubMed]
  16. C. H. Lien, W. S. Kuo, K. C. Cho, C. Y. Lin, Y. D. Su, L. L. H. Huang, P. J. Campagnola, C. Y. Dong, and S. J. Chen, “Fabrication of gold nanorods-doped, bovine serum albumin microstructures via multiphoton excited photochemistry,” Opt. Express 19(7), 6260–6268 (2011).
    [CrossRef] [PubMed]
  17. N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template,” Adv. Mater. (Deerfield Beach Fla.) 13(18), 1389–1393 (2001).
    [CrossRef]
  18. B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
    [CrossRef]
  19. T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114(3), 343–347 (2006).
    [CrossRef] [PubMed]
  20. J. Yang, J. C. Wu, Y. C. Wu, J. K. Wang, and C. C. Chen, “Organic solvent dependence of plasma resonance of gold nanorods: a simple relationship,” Chem. Phys. Lett. 416(4-6), 215–219 (2005).
    [CrossRef]
  21. J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249(17-18), 1870–1901 (2005).
    [CrossRef]
  22. Y. Horiguchi, K. Honda, Y. Kato, N. Nakashima, and Y. Niidome, “Photothermal reshaping of gold nanorods depends on the passivating layers of the nanorod surfaces,” Langmuir 24(20), 12026–12031 (2008).
    [CrossRef] [PubMed]
  23. S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104(26), 6152–6163 (2000).
    [CrossRef]
  24. P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
    [CrossRef] [PubMed]
  25. A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
    [CrossRef] [PubMed]
  26. N. Murazawa, K. Ueno, V. Mizeikis, S. Juodkazis, and H. Misawa, “Spatially selective nonlinear photopolymerization induced by the near-field of surface plasmons localized on rectangular gold nanorods,” J. Phys. Chem. C 113(4), 1147–1149 (2009).
    [CrossRef]
  27. S. Nah, L. Li, R. Liu, J. Hao, S. B. Lee, and J. T. Fourkas, “Metal-enhanced multiphoton absorption polymerization with gold nanowires,” J. Phys. Chem. C 114(17), 7774–7779 (2010).
    [CrossRef]
  28. H.-B. Sun, K. Takada, M.-S. Kim, K.-S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83(6), 1104–1106 (2003).
    [CrossRef]
  29. S. Kawata and H.-B. Sun, “Two-photon photopolymerization as a tool for making micro-devices,” Appl. Surf. Sci. 208–209, 153–158 (2003).
    [CrossRef]
  30. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [CrossRef] [PubMed]
  31. M. Pelton, M. Z. Liu, H. Y. Kim, G. Smith, P. Guyot-Sionnest, and N. F. Scherer, “Optical trapping and alignment of single gold nanorods by using plasmon resonances,” Opt. Lett. 31(13), 2075–2077 (2006).
    [CrossRef] [PubMed]
  32. C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
    [CrossRef] [PubMed]
  33. P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
    [CrossRef] [PubMed]
  34. J. Zhang, H. I. Kim, C. H. Oh, X. Sun, and H. Lee, “Multidimensional manipulation of carbon nanotube bundles with optical tweezers,” Appl. Phys. Lett. 88(5), 053123 (2006).
    [CrossRef]
  35. J. Junio, S. Park, M. W. Kim, and H. D. Ou-Yang, “Optical bottles: A quantitative analysis of optically confined nanoparticle ensembles in suspension,” Solid State Commun. 150(21-22), 1003–1008 (2010).
    [CrossRef]
  36. P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C 111(34), 12522–12527 (2007).
    [CrossRef]
  37. L. Shao, K. C. Woo, H. Chen, Z. Jin, J. Wang, and H. Q. Lin, “Angle- and energy-resolved plasmon coupling in gold nanorod dimers,” ACS Nano 4(6), 3053–3062 (2010).
    [CrossRef] [PubMed]
  38. K. Ueno, S. Takabatake, K. Onishi, H. Itoh, Y. Nishijima, and H. Misawa, “Homogeneous nano-patterning using plasmon-assisted photolithography,” Appl. Phys. Lett. 99(1), 011107 (2011).
    [CrossRef]
  39. K. Ueno, S. Takabatake, Y. Nishijima, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanogap-assisted surface plasmon nanolithography,” J. Phys. Chem. Lett. 1(3), 657–662 (2010).
    [CrossRef]
  40. K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanoparticle-enhanced photopolymerization,” J. Phys. Chem. C 113(27), 11720–11724 (2009).
    [CrossRef]

2011

2010

K. Ueno, S. Takabatake, Y. Nishijima, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanogap-assisted surface plasmon nanolithography,” J. Phys. Chem. Lett. 1(3), 657–662 (2010).
[CrossRef]

J. Junio, S. Park, M. W. Kim, and H. D. Ou-Yang, “Optical bottles: A quantitative analysis of optically confined nanoparticle ensembles in suspension,” Solid State Commun. 150(21-22), 1003–1008 (2010).
[CrossRef]

L. Shao, K. C. Woo, H. Chen, Z. Jin, J. Wang, and H. Q. Lin, “Angle- and energy-resolved plasmon coupling in gold nanorod dimers,” ACS Nano 4(6), 3053–3062 (2010).
[CrossRef] [PubMed]

M. J. Guffey and N. F. Scherer, “All-optical patterning of Au nanoparticles on surfaces using optical traps,” Nano Lett. 10(11), 4302–4308 (2010).
[CrossRef] [PubMed]

A. S. Urban, A. A. Lutich, F. D. Stefani, and J. Feldmann, “Laser printing single gold nanoparticles,” Nano Lett. 10(12), 4794–4798 (2010).
[CrossRef] [PubMed]

A. M. Hung, C. M. Micheel, L. D. Bozano, L. W. Osterbur, G. M. Wallraff, and J. N. Cha, “Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami,” Nat. Nanotechnol. 5(2), 121–126 (2010).
[CrossRef] [PubMed]

K. Liu, Z. Nie, N. Zhao, W. Li, M. Rubinstein, and E. Kumacheva, “Step-growth polymerization of inorganic nanoparticles,” Science 329(5988), 197–200 (2010).
[CrossRef] [PubMed]

A. I. Kuznetsov, R. Kiyan, and B. N. Chichkov, “Laser fabrication of 2D and 3D metal nanoparticle structures and arrays,” Opt. Express 18(20), 21198–21203 (2010).
[CrossRef] [PubMed]

W. S. Kuo, C. H. Lien, K. C. Cho, C. Y. Chang, C. Y. Lin, L. L. H. Huang, P. J. Campagnola, C. Y. Dong, and S. J. Chen, “Multiphoton fabrication of freeform polymer microstructures with gold nanorods,” Opt. Express 18(26), 27550–27559 (2010).
[CrossRef] [PubMed]

S. Nah, L. Li, R. Liu, J. Hao, S. B. Lee, and J. T. Fourkas, “Metal-enhanced multiphoton absorption polymerization with gold nanowires,” J. Phys. Chem. C 114(17), 7774–7779 (2010).
[CrossRef]

2009

N. Murazawa, K. Ueno, V. Mizeikis, S. Juodkazis, and H. Misawa, “Spatially selective nonlinear photopolymerization induced by the near-field of surface plasmons localized on rectangular gold nanorods,” J. Phys. Chem. C 113(4), 1147–1149 (2009).
[CrossRef]

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. (Deerfield Beach Fla.) 21(48), 4880–4910 (2009).
[CrossRef]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanoparticle-enhanced photopolymerization,” J. Phys. Chem. C 113(27), 11720–11724 (2009).
[CrossRef]

2008

S. Kawata, A. Ono, and P. Verma, “Subwavelength colour imaging with a metallic nanolens,” Nat. Photonics 2(7), 438–442 (2008).
[CrossRef]

S. Nakanishi, H. Yoshikawa, S. Shoji, Z. Sekkat, and S. Kawata, “Size dependence of transition temperature in polymer nanowires,” J. Phys. Chem. B 112(12), 3586–3589 (2008).
[CrossRef] [PubMed]

Y. Horiguchi, K. Honda, Y. Kato, N. Nakashima, and Y. Niidome, “Photothermal reshaping of gold nanorods depends on the passivating layers of the nanorod surfaces,” Langmuir 24(20), 12026–12031 (2008).
[CrossRef] [PubMed]

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[CrossRef] [PubMed]

2007

P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C 111(34), 12522–12527 (2007).
[CrossRef]

2006

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

J. Zhang, H. I. Kim, C. H. Oh, X. Sun, and H. Lee, “Multidimensional manipulation of carbon nanotube bundles with optical tweezers,” Appl. Phys. Lett. 88(5), 053123 (2006).
[CrossRef]

M. Pelton, M. Z. Liu, H. Y. Kim, G. Smith, P. Guyot-Sionnest, and N. F. Scherer, “Optical trapping and alignment of single gold nanorods by using plasmon resonances,” Opt. Lett. 31(13), 2075–2077 (2006).
[CrossRef] [PubMed]

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
[CrossRef] [PubMed]

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114(3), 343–347 (2006).
[CrossRef] [PubMed]

J. Sharma, R. Chhabra, Y. Liu, Y. Ke, and H. Yan, “DNA-templated self-assembly of two-dimensional and periodical gold nanoparticle arrays,” Angew. Chem. Int. Ed. Engl. 45(5), 730–735 (2006).
[CrossRef] [PubMed]

2005

J. Yang, J. C. Wu, Y. C. Wu, J. K. Wang, and C. C. Chen, “Organic solvent dependence of plasma resonance of gold nanorods: a simple relationship,” Chem. Phys. Lett. 416(4-6), 215–219 (2005).
[CrossRef]

J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249(17-18), 1870–1901 (2005).
[CrossRef]

2003

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[CrossRef]

H.-B. Sun, K. Takada, M.-S. Kim, K.-S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83(6), 1104–1106 (2003).
[CrossRef]

S. Kawata and H.-B. Sun, “Two-photon photopolymerization as a tool for making micro-devices,” Appl. Surf. Sci. 208–209, 153–158 (2003).
[CrossRef]

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67(20), 205402 (2003).
[CrossRef]

2002

S. Ito, H. Yoshikawa, and H. Masuhara, “Laser manipulation and fixation of single gold nanoparticles in solution at room temperature,” Appl. Phys. Lett. 80(3), 482–484 (2002).
[CrossRef]

2001

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template,” Adv. Mater. (Deerfield Beach Fla.) 13(18), 1389–1393 (2001).
[CrossRef]

2000

B. Nikoobakht, Z. L. Wang, and M. A. El-Sayed, “Self-assembly of gold nanorods,” J. Phys. Chem. B 104(36), 8635–8640 (2000).
[CrossRef]

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104(26), 6152–6163 (2000).
[CrossRef]

1986

Akiyama, Y.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114(3), 343–347 (2006).
[CrossRef] [PubMed]

Ashkin, A.

Atkinson, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C 111(34), 12522–12527 (2007).
[CrossRef]

Atwater, H. A.

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67(20), 205402 (2003).
[CrossRef]

Bjorkholm, J. E.

Bozano, L. D.

A. M. Hung, C. M. Micheel, L. D. Bozano, L. W. Osterbur, G. M. Wallraff, and J. N. Cha, “Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami,” Nat. Nanotechnol. 5(2), 121–126 (2010).
[CrossRef] [PubMed]

Burda, C.

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104(26), 6152–6163 (2000).
[CrossRef]

Campagnola, P. J.

Cha, J. N.

A. M. Hung, C. M. Micheel, L. D. Bozano, L. W. Osterbur, G. M. Wallraff, and J. N. Cha, “Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami,” Nat. Nanotechnol. 5(2), 121–126 (2010).
[CrossRef] [PubMed]

Chang, C. Y.

Chen, C. C.

J. Yang, J. C. Wu, Y. C. Wu, J. K. Wang, and C. C. Chen, “Organic solvent dependence of plasma resonance of gold nanorods: a simple relationship,” Chem. Phys. Lett. 416(4-6), 215–219 (2005).
[CrossRef]

Chen, H.

L. Shao, K. C. Woo, H. Chen, Z. Jin, J. Wang, and H. Q. Lin, “Angle- and energy-resolved plasmon coupling in gold nanorod dimers,” ACS Nano 4(6), 3053–3062 (2010).
[CrossRef] [PubMed]

Chen, S. J.

Chhabra, R.

J. Sharma, R. Chhabra, Y. Liu, Y. Ke, and H. Yan, “DNA-templated self-assembly of two-dimensional and periodical gold nanoparticle arrays,” Angew. Chem. Int. Ed. Engl. 45(5), 730–735 (2006).
[CrossRef] [PubMed]

Chichkov, B. N.

Cho, K. C.

Chon, J. W. M.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

Chu, S.

Conley, N. R.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
[CrossRef] [PubMed]

Dickson, W.

P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C 111(34), 12522–12527 (2007).
[CrossRef]

Dong, C. Y.

Dziedzic, J. M.

El-Sayed, M. A.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. (Deerfield Beach Fla.) 21(48), 4880–4910 (2009).
[CrossRef]

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[CrossRef]

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104(26), 6152–6163 (2000).
[CrossRef]

B. Nikoobakht, Z. L. Wang, and M. A. El-Sayed, “Self-assembly of gold nanorods,” J. Phys. Chem. B 104(36), 8635–8640 (2000).
[CrossRef]

Evans, P.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Evans, P. R.

P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C 111(34), 12522–12527 (2007).
[CrossRef]

Feldmann, J.

A. S. Urban, A. A. Lutich, F. D. Stefani, and J. Feldmann, “Laser printing single gold nanoparticles,” Nano Lett. 10(12), 4794–4798 (2010).
[CrossRef] [PubMed]

Fourkas, J. T.

S. Nah, L. Li, R. Liu, J. Hao, S. B. Lee, and J. T. Fourkas, “Metal-enhanced multiphoton absorption polymerization with gold nanowires,” J. Phys. Chem. C 114(17), 7774–7779 (2010).
[CrossRef]

Fromm, D. P.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
[CrossRef] [PubMed]

Gearheart, L.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template,” Adv. Mater. (Deerfield Beach Fla.) 13(18), 1389–1393 (2001).
[CrossRef]

Gu, M.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

Guffey, M. J.

M. J. Guffey and N. F. Scherer, “All-optical patterning of Au nanoparticles on surfaces using optical traps,” Nano Lett. 10(11), 4302–4308 (2010).
[CrossRef] [PubMed]

Guyot-Sionnest, P.

Hao, J.

S. Nah, L. Li, R. Liu, J. Hao, S. B. Lee, and J. T. Fourkas, “Metal-enhanced multiphoton absorption polymerization with gold nanowires,” J. Phys. Chem. C 114(17), 7774–7779 (2010).
[CrossRef]

Hendren, W.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C 111(34), 12522–12527 (2007).
[CrossRef]

Honda, K.

Y. Horiguchi, K. Honda, Y. Kato, N. Nakashima, and Y. Niidome, “Photothermal reshaping of gold nanorods depends on the passivating layers of the nanorod surfaces,” Langmuir 24(20), 12026–12031 (2008).
[CrossRef] [PubMed]

Horiguchi, Y.

Y. Horiguchi, K. Honda, Y. Kato, N. Nakashima, and Y. Niidome, “Photothermal reshaping of gold nanorods depends on the passivating layers of the nanorod surfaces,” Langmuir 24(20), 12026–12031 (2008).
[CrossRef] [PubMed]

Huang, L. L. H.

Huang, X.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. (Deerfield Beach Fla.) 21(48), 4880–4910 (2009).
[CrossRef]

Hung, A. M.

A. M. Hung, C. M. Micheel, L. D. Bozano, L. W. Osterbur, G. M. Wallraff, and J. N. Cha, “Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami,” Nat. Nanotechnol. 5(2), 121–126 (2010).
[CrossRef] [PubMed]

Ito, S.

S. Ito, H. Yoshikawa, and H. Masuhara, “Laser manipulation and fixation of single gold nanoparticles in solution at room temperature,” Appl. Phys. Lett. 80(3), 482–484 (2002).
[CrossRef]

Itoh, H.

K. Ueno, S. Takabatake, K. Onishi, H. Itoh, Y. Nishijima, and H. Misawa, “Homogeneous nano-patterning using plasmon-assisted photolithography,” Appl. Phys. Lett. 99(1), 011107 (2011).
[CrossRef]

Jana, N. R.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template,” Adv. Mater. (Deerfield Beach Fla.) 13(18), 1389–1393 (2001).
[CrossRef]

Jin, Z.

L. Shao, K. C. Woo, H. Chen, Z. Jin, J. Wang, and H. Q. Lin, “Angle- and energy-resolved plasmon coupling in gold nanorod dimers,” ACS Nano 4(6), 3053–3062 (2010).
[CrossRef] [PubMed]

Junio, J.

J. Junio, S. Park, M. W. Kim, and H. D. Ou-Yang, “Optical bottles: A quantitative analysis of optically confined nanoparticle ensembles in suspension,” Solid State Commun. 150(21-22), 1003–1008 (2010).
[CrossRef]

Juodkazis, S.

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanoparticle-enhanced photopolymerization,” J. Phys. Chem. C 113(27), 11720–11724 (2009).
[CrossRef]

N. Murazawa, K. Ueno, V. Mizeikis, S. Juodkazis, and H. Misawa, “Spatially selective nonlinear photopolymerization induced by the near-field of surface plasmons localized on rectangular gold nanorods,” J. Phys. Chem. C 113(4), 1147–1149 (2009).
[CrossRef]

Kabashin, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Katayama, Y.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114(3), 343–347 (2006).
[CrossRef] [PubMed]

Kato, Y.

Y. Horiguchi, K. Honda, Y. Kato, N. Nakashima, and Y. Niidome, “Photothermal reshaping of gold nanorods depends on the passivating layers of the nanorod surfaces,” Langmuir 24(20), 12026–12031 (2008).
[CrossRef] [PubMed]

Kawano, T.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114(3), 343–347 (2006).
[CrossRef] [PubMed]

Kawata, S.

S. Kawata, A. Ono, and P. Verma, “Subwavelength colour imaging with a metallic nanolens,” Nat. Photonics 2(7), 438–442 (2008).
[CrossRef]

S. Nakanishi, H. Yoshikawa, S. Shoji, Z. Sekkat, and S. Kawata, “Size dependence of transition temperature in polymer nanowires,” J. Phys. Chem. B 112(12), 3586–3589 (2008).
[CrossRef] [PubMed]

H.-B. Sun, K. Takada, M.-S. Kim, K.-S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83(6), 1104–1106 (2003).
[CrossRef]

S. Kawata and H.-B. Sun, “Two-photon photopolymerization as a tool for making micro-devices,” Appl. Surf. Sci. 208–209, 153–158 (2003).
[CrossRef]

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Ke, Y.

J. Sharma, R. Chhabra, Y. Liu, Y. Ke, and H. Yan, “DNA-templated self-assembly of two-dimensional and periodical gold nanoparticle arrays,” Angew. Chem. Int. Ed. Engl. 45(5), 730–735 (2006).
[CrossRef] [PubMed]

Kik, P. G.

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67(20), 205402 (2003).
[CrossRef]

Kim, H. I.

J. Zhang, H. I. Kim, C. H. Oh, X. Sun, and H. Lee, “Multidimensional manipulation of carbon nanotube bundles with optical tweezers,” Appl. Phys. Lett. 88(5), 053123 (2006).
[CrossRef]

Kim, H. Y.

Kim, M. W.

J. Junio, S. Park, M. W. Kim, and H. D. Ou-Yang, “Optical bottles: A quantitative analysis of optically confined nanoparticle ensembles in suspension,” Solid State Commun. 150(21-22), 1003–1008 (2010).
[CrossRef]

Kim, M.-S.

H.-B. Sun, K. Takada, M.-S. Kim, K.-S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83(6), 1104–1106 (2003).
[CrossRef]

Kino, G. S.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
[CrossRef] [PubMed]

Kiyan, R.

Kumacheva, E.

K. Liu, Z. Nie, N. Zhao, W. Li, M. Rubinstein, and E. Kumacheva, “Step-growth polymerization of inorganic nanoparticles,” Science 329(5988), 197–200 (2010).
[CrossRef] [PubMed]

Kuo, W. S.

Kuznetsov, A. I.

Lee, H.

J. Zhang, H. I. Kim, C. H. Oh, X. Sun, and H. Lee, “Multidimensional manipulation of carbon nanotube bundles with optical tweezers,” Appl. Phys. Lett. 88(5), 053123 (2006).
[CrossRef]

Lee, K.-S.

H.-B. Sun, K. Takada, M.-S. Kim, K.-S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83(6), 1104–1106 (2003).
[CrossRef]

Lee, S. B.

S. Nah, L. Li, R. Liu, J. Hao, S. B. Lee, and J. T. Fourkas, “Metal-enhanced multiphoton absorption polymerization with gold nanowires,” J. Phys. Chem. C 114(17), 7774–7779 (2010).
[CrossRef]

Li, L.

S. Nah, L. Li, R. Liu, J. Hao, S. B. Lee, and J. T. Fourkas, “Metal-enhanced multiphoton absorption polymerization with gold nanowires,” J. Phys. Chem. C 114(17), 7774–7779 (2010).
[CrossRef]

Li, W.

K. Liu, Z. Nie, N. Zhao, W. Li, M. Rubinstein, and E. Kumacheva, “Step-growth polymerization of inorganic nanoparticles,” Science 329(5988), 197–200 (2010).
[CrossRef] [PubMed]

Lien, C. H.

Lin, C. Y.

Lin, H. Q.

L. Shao, K. C. Woo, H. Chen, Z. Jin, J. Wang, and H. Q. Lin, “Angle- and energy-resolved plasmon coupling in gold nanorod dimers,” ACS Nano 4(6), 3053–3062 (2010).
[CrossRef] [PubMed]

Link, S.

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104(26), 6152–6163 (2000).
[CrossRef]

Liphardt, J.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

Liu, K.

K. Liu, Z. Nie, N. Zhao, W. Li, M. Rubinstein, and E. Kumacheva, “Step-growth polymerization of inorganic nanoparticles,” Science 329(5988), 197–200 (2010).
[CrossRef] [PubMed]

Liu, M. Z.

Liu, R.

S. Nah, L. Li, R. Liu, J. Hao, S. B. Lee, and J. T. Fourkas, “Metal-enhanced multiphoton absorption polymerization with gold nanowires,” J. Phys. Chem. C 114(17), 7774–7779 (2010).
[CrossRef]

Liu, Y.

J. Sharma, R. Chhabra, Y. Liu, Y. Ke, and H. Yan, “DNA-templated self-assembly of two-dimensional and periodical gold nanoparticle arrays,” Angew. Chem. Int. Ed. Engl. 45(5), 730–735 (2006).
[CrossRef] [PubMed]

Liz-Marzan, L. M.

J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249(17-18), 1870–1901 (2005).
[CrossRef]

Lutich, A. A.

A. S. Urban, A. A. Lutich, F. D. Stefani, and J. Feldmann, “Laser printing single gold nanoparticles,” Nano Lett. 10(12), 4794–4798 (2010).
[CrossRef] [PubMed]

Maier, S. A.

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67(20), 205402 (2003).
[CrossRef]

Masuhara, H.

S. Ito, H. Yoshikawa, and H. Masuhara, “Laser manipulation and fixation of single gold nanoparticles in solution at room temperature,” Appl. Phys. Lett. 80(3), 482–484 (2002).
[CrossRef]

Micheel, C. M.

A. M. Hung, C. M. Micheel, L. D. Bozano, L. W. Osterbur, G. M. Wallraff, and J. N. Cha, “Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami,” Nat. Nanotechnol. 5(2), 121–126 (2010).
[CrossRef] [PubMed]

Misawa, H.

K. Ueno, S. Takabatake, K. Onishi, H. Itoh, Y. Nishijima, and H. Misawa, “Homogeneous nano-patterning using plasmon-assisted photolithography,” Appl. Phys. Lett. 99(1), 011107 (2011).
[CrossRef]

K. Ueno, S. Takabatake, Y. Nishijima, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanogap-assisted surface plasmon nanolithography,” J. Phys. Chem. Lett. 1(3), 657–662 (2010).
[CrossRef]

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanoparticle-enhanced photopolymerization,” J. Phys. Chem. C 113(27), 11720–11724 (2009).
[CrossRef]

N. Murazawa, K. Ueno, V. Mizeikis, S. Juodkazis, and H. Misawa, “Spatially selective nonlinear photopolymerization induced by the near-field of surface plasmons localized on rectangular gold nanorods,” J. Phys. Chem. C 113(4), 1147–1149 (2009).
[CrossRef]

Mizeikis, V.

K. Ueno, S. Takabatake, Y. Nishijima, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanogap-assisted surface plasmon nanolithography,” J. Phys. Chem. Lett. 1(3), 657–662 (2010).
[CrossRef]

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanoparticle-enhanced photopolymerization,” J. Phys. Chem. C 113(27), 11720–11724 (2009).
[CrossRef]

N. Murazawa, K. Ueno, V. Mizeikis, S. Juodkazis, and H. Misawa, “Spatially selective nonlinear photopolymerization induced by the near-field of surface plasmons localized on rectangular gold nanorods,” J. Phys. Chem. C 113(4), 1147–1149 (2009).
[CrossRef]

Moerner, W. E.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
[CrossRef] [PubMed]

Mulvaney, P.

J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249(17-18), 1870–1901 (2005).
[CrossRef]

Murazawa, N.

N. Murazawa, K. Ueno, V. Mizeikis, S. Juodkazis, and H. Misawa, “Spatially selective nonlinear photopolymerization induced by the near-field of surface plasmons localized on rectangular gold nanorods,” J. Phys. Chem. C 113(4), 1147–1149 (2009).
[CrossRef]

Murphy, C. J.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template,” Adv. Mater. (Deerfield Beach Fla.) 13(18), 1389–1393 (2001).
[CrossRef]

Nah, S.

S. Nah, L. Li, R. Liu, J. Hao, S. B. Lee, and J. T. Fourkas, “Metal-enhanced multiphoton absorption polymerization with gold nanowires,” J. Phys. Chem. C 114(17), 7774–7779 (2010).
[CrossRef]

Nakanishi, S.

S. Nakanishi, H. Yoshikawa, S. Shoji, Z. Sekkat, and S. Kawata, “Size dependence of transition temperature in polymer nanowires,” J. Phys. Chem. B 112(12), 3586–3589 (2008).
[CrossRef] [PubMed]

Nakashima, N.

Y. Horiguchi, K. Honda, Y. Kato, N. Nakashima, and Y. Niidome, “Photothermal reshaping of gold nanorods depends on the passivating layers of the nanorod surfaces,” Langmuir 24(20), 12026–12031 (2008).
[CrossRef] [PubMed]

Neretina, S.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. (Deerfield Beach Fla.) 21(48), 4880–4910 (2009).
[CrossRef]

Nie, Z.

K. Liu, Z. Nie, N. Zhao, W. Li, M. Rubinstein, and E. Kumacheva, “Step-growth polymerization of inorganic nanoparticles,” Science 329(5988), 197–200 (2010).
[CrossRef] [PubMed]

Niidome, T.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114(3), 343–347 (2006).
[CrossRef] [PubMed]

Niidome, Y.

Y. Horiguchi, K. Honda, Y. Kato, N. Nakashima, and Y. Niidome, “Photothermal reshaping of gold nanorods depends on the passivating layers of the nanorod surfaces,” Langmuir 24(20), 12026–12031 (2008).
[CrossRef] [PubMed]

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114(3), 343–347 (2006).
[CrossRef] [PubMed]

Nikoobakht, B.

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[CrossRef]

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104(26), 6152–6163 (2000).
[CrossRef]

B. Nikoobakht, Z. L. Wang, and M. A. El-Sayed, “Self-assembly of gold nanorods,” J. Phys. Chem. B 104(36), 8635–8640 (2000).
[CrossRef]

Nishijima, Y.

K. Ueno, S. Takabatake, K. Onishi, H. Itoh, Y. Nishijima, and H. Misawa, “Homogeneous nano-patterning using plasmon-assisted photolithography,” Appl. Phys. Lett. 99(1), 011107 (2011).
[CrossRef]

K. Ueno, S. Takabatake, Y. Nishijima, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanogap-assisted surface plasmon nanolithography,” J. Phys. Chem. Lett. 1(3), 657–662 (2010).
[CrossRef]

O’Connor, D.

P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C 111(34), 12522–12527 (2007).
[CrossRef]

Oddershede, L. B.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[CrossRef] [PubMed]

Oh, C. H.

J. Zhang, H. I. Kim, C. H. Oh, X. Sun, and H. Lee, “Multidimensional manipulation of carbon nanotube bundles with optical tweezers,” Appl. Phys. Lett. 88(5), 053123 (2006).
[CrossRef]

Okamoto, Y.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114(3), 343–347 (2006).
[CrossRef] [PubMed]

Onishi, K.

K. Ueno, S. Takabatake, K. Onishi, H. Itoh, Y. Nishijima, and H. Misawa, “Homogeneous nano-patterning using plasmon-assisted photolithography,” Appl. Phys. Lett. 99(1), 011107 (2011).
[CrossRef]

Ono, A.

S. Kawata, A. Ono, and P. Verma, “Subwavelength colour imaging with a metallic nanolens,” Nat. Photonics 2(7), 438–442 (2008).
[CrossRef]

Osterbur, L. W.

A. M. Hung, C. M. Micheel, L. D. Bozano, L. W. Osterbur, G. M. Wallraff, and J. N. Cha, “Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami,” Nat. Nanotechnol. 5(2), 121–126 (2010).
[CrossRef] [PubMed]

Ou-Yang, H. D.

J. Junio, S. Park, M. W. Kim, and H. D. Ou-Yang, “Optical bottles: A quantitative analysis of optically confined nanoparticle ensembles in suspension,” Solid State Commun. 150(21-22), 1003–1008 (2010).
[CrossRef]

Park, S.

J. Junio, S. Park, M. W. Kim, and H. D. Ou-Yang, “Optical bottles: A quantitative analysis of optically confined nanoparticle ensembles in suspension,” Solid State Commun. 150(21-22), 1003–1008 (2010).
[CrossRef]

Pastkovsky, S.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Pastoriza-Santos, I.

J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249(17-18), 1870–1901 (2005).
[CrossRef]

Pauzauskie, P. J.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

Pelton, M.

Perez-Juste, J.

J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249(17-18), 1870–1901 (2005).
[CrossRef]

Podolskiy, V. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Pollard, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Pollard, R. J.

P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C 111(34), 12522–12527 (2007).
[CrossRef]

Radenovic, A.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

Rubinstein, M.

K. Liu, Z. Nie, N. Zhao, W. Li, M. Rubinstein, and E. Kumacheva, “Step-growth polymerization of inorganic nanoparticles,” Science 329(5988), 197–200 (2010).
[CrossRef] [PubMed]

Scherer, N. F.

Schubert, O.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[CrossRef] [PubMed]

Schuck, P. J.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
[CrossRef] [PubMed]

Sekkat, Z.

S. Nakanishi, H. Yoshikawa, S. Shoji, Z. Sekkat, and S. Kawata, “Size dependence of transition temperature in polymer nanowires,” J. Phys. Chem. B 112(12), 3586–3589 (2008).
[CrossRef] [PubMed]

Selhuber-Unkel, C.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[CrossRef] [PubMed]

Shao, L.

L. Shao, K. C. Woo, H. Chen, Z. Jin, J. Wang, and H. Q. Lin, “Angle- and energy-resolved plasmon coupling in gold nanorod dimers,” ACS Nano 4(6), 3053–3062 (2010).
[CrossRef] [PubMed]

Sharma, J.

J. Sharma, R. Chhabra, Y. Liu, Y. Ke, and H. Yan, “DNA-templated self-assembly of two-dimensional and periodical gold nanoparticle arrays,” Angew. Chem. Int. Ed. Engl. 45(5), 730–735 (2006).
[CrossRef] [PubMed]

Shibuya, T.

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanoparticle-enhanced photopolymerization,” J. Phys. Chem. C 113(27), 11720–11724 (2009).
[CrossRef]

Shoji, S.

S. Nakanishi, H. Yoshikawa, S. Shoji, Z. Sekkat, and S. Kawata, “Size dependence of transition temperature in polymer nanowires,” J. Phys. Chem. B 112(12), 3586–3589 (2008).
[CrossRef] [PubMed]

Shroff, H.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

Smith, G.

Sönnichsen, C.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[CrossRef] [PubMed]

Stefani, F. D.

A. S. Urban, A. A. Lutich, F. D. Stefani, and J. Feldmann, “Laser printing single gold nanoparticles,” Nano Lett. 10(12), 4794–4798 (2010).
[CrossRef] [PubMed]

Su, Y. D.

Sun, H. B.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Sun, H.-B.

H.-B. Sun, K. Takada, M.-S. Kim, K.-S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83(6), 1104–1106 (2003).
[CrossRef]

S. Kawata and H.-B. Sun, “Two-photon photopolymerization as a tool for making micro-devices,” Appl. Surf. Sci. 208–209, 153–158 (2003).
[CrossRef]

Sun, X.

J. Zhang, H. I. Kim, C. H. Oh, X. Sun, and H. Lee, “Multidimensional manipulation of carbon nanotube bundles with optical tweezers,” Appl. Phys. Lett. 88(5), 053123 (2006).
[CrossRef]

Sundaramurthy, A.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
[CrossRef] [PubMed]

Takabatake, S.

K. Ueno, S. Takabatake, K. Onishi, H. Itoh, Y. Nishijima, and H. Misawa, “Homogeneous nano-patterning using plasmon-assisted photolithography,” Appl. Phys. Lett. 99(1), 011107 (2011).
[CrossRef]

K. Ueno, S. Takabatake, Y. Nishijima, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanogap-assisted surface plasmon nanolithography,” J. Phys. Chem. Lett. 1(3), 657–662 (2010).
[CrossRef]

Takada, K.

H.-B. Sun, K. Takada, M.-S. Kim, K.-S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83(6), 1104–1106 (2003).
[CrossRef]

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Takahashi, H.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114(3), 343–347 (2006).
[CrossRef] [PubMed]

Tanaka, T.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Trepagnier, E.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

Ueno, K.

K. Ueno, S. Takabatake, K. Onishi, H. Itoh, Y. Nishijima, and H. Misawa, “Homogeneous nano-patterning using plasmon-assisted photolithography,” Appl. Phys. Lett. 99(1), 011107 (2011).
[CrossRef]

K. Ueno, S. Takabatake, Y. Nishijima, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanogap-assisted surface plasmon nanolithography,” J. Phys. Chem. Lett. 1(3), 657–662 (2010).
[CrossRef]

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanoparticle-enhanced photopolymerization,” J. Phys. Chem. C 113(27), 11720–11724 (2009).
[CrossRef]

N. Murazawa, K. Ueno, V. Mizeikis, S. Juodkazis, and H. Misawa, “Spatially selective nonlinear photopolymerization induced by the near-field of surface plasmons localized on rectangular gold nanorods,” J. Phys. Chem. C 113(4), 1147–1149 (2009).
[CrossRef]

Urban, A. S.

A. S. Urban, A. A. Lutich, F. D. Stefani, and J. Feldmann, “Laser printing single gold nanoparticles,” Nano Lett. 10(12), 4794–4798 (2010).
[CrossRef] [PubMed]

Verma, P.

S. Kawata, A. Ono, and P. Verma, “Subwavelength colour imaging with a metallic nanolens,” Nat. Photonics 2(7), 438–442 (2008).
[CrossRef]

Wallraff, G. M.

A. M. Hung, C. M. Micheel, L. D. Bozano, L. W. Osterbur, G. M. Wallraff, and J. N. Cha, “Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami,” Nat. Nanotechnol. 5(2), 121–126 (2010).
[CrossRef] [PubMed]

Wang, J.

L. Shao, K. C. Woo, H. Chen, Z. Jin, J. Wang, and H. Q. Lin, “Angle- and energy-resolved plasmon coupling in gold nanorod dimers,” ACS Nano 4(6), 3053–3062 (2010).
[CrossRef] [PubMed]

Wang, J. K.

J. Yang, J. C. Wu, Y. C. Wu, J. K. Wang, and C. C. Chen, “Organic solvent dependence of plasma resonance of gold nanorods: a simple relationship,” Chem. Phys. Lett. 416(4-6), 215–219 (2005).
[CrossRef]

Wang, Z. L.

B. Nikoobakht, Z. L. Wang, and M. A. El-Sayed, “Self-assembly of gold nanorods,” J. Phys. Chem. B 104(36), 8635–8640 (2000).
[CrossRef]

Woo, K. C.

L. Shao, K. C. Woo, H. Chen, Z. Jin, J. Wang, and H. Q. Lin, “Angle- and energy-resolved plasmon coupling in gold nanorod dimers,” ACS Nano 4(6), 3053–3062 (2010).
[CrossRef] [PubMed]

Wu, J. C.

J. Yang, J. C. Wu, Y. C. Wu, J. K. Wang, and C. C. Chen, “Organic solvent dependence of plasma resonance of gold nanorods: a simple relationship,” Chem. Phys. Lett. 416(4-6), 215–219 (2005).
[CrossRef]

Wu, Y. C.

J. Yang, J. C. Wu, Y. C. Wu, J. K. Wang, and C. C. Chen, “Organic solvent dependence of plasma resonance of gold nanorods: a simple relationship,” Chem. Phys. Lett. 416(4-6), 215–219 (2005).
[CrossRef]

Wurtz, G. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C 111(34), 12522–12527 (2007).
[CrossRef]

Yamagata, M.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114(3), 343–347 (2006).
[CrossRef] [PubMed]

Yan, H.

J. Sharma, R. Chhabra, Y. Liu, Y. Ke, and H. Yan, “DNA-templated self-assembly of two-dimensional and periodical gold nanoparticle arrays,” Angew. Chem. Int. Ed. Engl. 45(5), 730–735 (2006).
[CrossRef] [PubMed]

Yang, J.

J. Yang, J. C. Wu, Y. C. Wu, J. K. Wang, and C. C. Chen, “Organic solvent dependence of plasma resonance of gold nanorods: a simple relationship,” Chem. Phys. Lett. 416(4-6), 215–219 (2005).
[CrossRef]

Yang, P.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

Yokota, Y.

K. Ueno, S. Takabatake, Y. Nishijima, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanogap-assisted surface plasmon nanolithography,” J. Phys. Chem. Lett. 1(3), 657–662 (2010).
[CrossRef]

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanoparticle-enhanced photopolymerization,” J. Phys. Chem. C 113(27), 11720–11724 (2009).
[CrossRef]

Yoshikawa, H.

S. Nakanishi, H. Yoshikawa, S. Shoji, Z. Sekkat, and S. Kawata, “Size dependence of transition temperature in polymer nanowires,” J. Phys. Chem. B 112(12), 3586–3589 (2008).
[CrossRef] [PubMed]

S. Ito, H. Yoshikawa, and H. Masuhara, “Laser manipulation and fixation of single gold nanoparticles in solution at room temperature,” Appl. Phys. Lett. 80(3), 482–484 (2002).
[CrossRef]

Zayats, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C 111(34), 12522–12527 (2007).
[CrossRef]

Zhang, J.

J. Zhang, H. I. Kim, C. H. Oh, X. Sun, and H. Lee, “Multidimensional manipulation of carbon nanotube bundles with optical tweezers,” Appl. Phys. Lett. 88(5), 053123 (2006).
[CrossRef]

Zhao, N.

K. Liu, Z. Nie, N. Zhao, W. Li, M. Rubinstein, and E. Kumacheva, “Step-growth polymerization of inorganic nanoparticles,” Science 329(5988), 197–200 (2010).
[CrossRef] [PubMed]

Zijlstra, P.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

Zins, I.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[CrossRef] [PubMed]

ACS Nano

L. Shao, K. C. Woo, H. Chen, Z. Jin, J. Wang, and H. Q. Lin, “Angle- and energy-resolved plasmon coupling in gold nanorod dimers,” ACS Nano 4(6), 3053–3062 (2010).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.)

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. (Deerfield Beach Fla.) 21(48), 4880–4910 (2009).
[CrossRef]

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template,” Adv. Mater. (Deerfield Beach Fla.) 13(18), 1389–1393 (2001).
[CrossRef]

Angew. Chem. Int. Ed. Engl.

J. Sharma, R. Chhabra, Y. Liu, Y. Ke, and H. Yan, “DNA-templated self-assembly of two-dimensional and periodical gold nanoparticle arrays,” Angew. Chem. Int. Ed. Engl. 45(5), 730–735 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett.

S. Ito, H. Yoshikawa, and H. Masuhara, “Laser manipulation and fixation of single gold nanoparticles in solution at room temperature,” Appl. Phys. Lett. 80(3), 482–484 (2002).
[CrossRef]

H.-B. Sun, K. Takada, M.-S. Kim, K.-S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83(6), 1104–1106 (2003).
[CrossRef]

J. Zhang, H. I. Kim, C. H. Oh, X. Sun, and H. Lee, “Multidimensional manipulation of carbon nanotube bundles with optical tweezers,” Appl. Phys. Lett. 88(5), 053123 (2006).
[CrossRef]

K. Ueno, S. Takabatake, K. Onishi, H. Itoh, Y. Nishijima, and H. Misawa, “Homogeneous nano-patterning using plasmon-assisted photolithography,” Appl. Phys. Lett. 99(1), 011107 (2011).
[CrossRef]

Appl. Surf. Sci.

S. Kawata and H.-B. Sun, “Two-photon photopolymerization as a tool for making micro-devices,” Appl. Surf. Sci. 208–209, 153–158 (2003).
[CrossRef]

Chem. Mater.

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[CrossRef]

Chem. Phys. Lett.

J. Yang, J. C. Wu, Y. C. Wu, J. K. Wang, and C. C. Chen, “Organic solvent dependence of plasma resonance of gold nanorods: a simple relationship,” Chem. Phys. Lett. 416(4-6), 215–219 (2005).
[CrossRef]

Coord. Chem. Rev.

J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249(17-18), 1870–1901 (2005).
[CrossRef]

J. Control. Release

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114(3), 343–347 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. B

B. Nikoobakht, Z. L. Wang, and M. A. El-Sayed, “Self-assembly of gold nanorods,” J. Phys. Chem. B 104(36), 8635–8640 (2000).
[CrossRef]

S. Nakanishi, H. Yoshikawa, S. Shoji, Z. Sekkat, and S. Kawata, “Size dependence of transition temperature in polymer nanowires,” J. Phys. Chem. B 112(12), 3586–3589 (2008).
[CrossRef] [PubMed]

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104(26), 6152–6163 (2000).
[CrossRef]

J. Phys. Chem. C

P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C 111(34), 12522–12527 (2007).
[CrossRef]

N. Murazawa, K. Ueno, V. Mizeikis, S. Juodkazis, and H. Misawa, “Spatially selective nonlinear photopolymerization induced by the near-field of surface plasmons localized on rectangular gold nanorods,” J. Phys. Chem. C 113(4), 1147–1149 (2009).
[CrossRef]

S. Nah, L. Li, R. Liu, J. Hao, S. B. Lee, and J. T. Fourkas, “Metal-enhanced multiphoton absorption polymerization with gold nanowires,” J. Phys. Chem. C 114(17), 7774–7779 (2010).
[CrossRef]

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanoparticle-enhanced photopolymerization,” J. Phys. Chem. C 113(27), 11720–11724 (2009).
[CrossRef]

J. Phys. Chem. Lett.

K. Ueno, S. Takabatake, Y. Nishijima, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanogap-assisted surface plasmon nanolithography,” J. Phys. Chem. Lett. 1(3), 657–662 (2010).
[CrossRef]

Langmuir

Y. Horiguchi, K. Honda, Y. Kato, N. Nakashima, and Y. Niidome, “Photothermal reshaping of gold nanorods depends on the passivating layers of the nanorod surfaces,” Langmuir 24(20), 12026–12031 (2008).
[CrossRef] [PubMed]

Nano Lett.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[CrossRef] [PubMed]

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
[CrossRef] [PubMed]

M. J. Guffey and N. F. Scherer, “All-optical patterning of Au nanoparticles on surfaces using optical traps,” Nano Lett. 10(11), 4302–4308 (2010).
[CrossRef] [PubMed]

A. S. Urban, A. A. Lutich, F. D. Stefani, and J. Feldmann, “Laser printing single gold nanoparticles,” Nano Lett. 10(12), 4794–4798 (2010).
[CrossRef] [PubMed]

Nat. Mater.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

Nat. Nanotechnol.

A. M. Hung, C. M. Micheel, L. D. Bozano, L. W. Osterbur, G. M. Wallraff, and J. N. Cha, “Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami,” Nat. Nanotechnol. 5(2), 121–126 (2010).
[CrossRef] [PubMed]

Nat. Photonics

S. Kawata, A. Ono, and P. Verma, “Subwavelength colour imaging with a metallic nanolens,” Nat. Photonics 2(7), 438–442 (2008).
[CrossRef]

Nature

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. B

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67(20), 205402 (2003).
[CrossRef]

Science

K. Liu, Z. Nie, N. Zhao, W. Li, M. Rubinstein, and E. Kumacheva, “Step-growth polymerization of inorganic nanoparticles,” Science 329(5988), 197–200 (2010).
[CrossRef] [PubMed]

Solid State Commun.

J. Junio, S. Park, M. W. Kim, and H. D. Ou-Yang, “Optical bottles: A quantitative analysis of optically confined nanoparticle ensembles in suspension,” Solid State Commun. 150(21-22), 1003–1008 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the preparation of Au nanorods/MMA compound. (a) Synthesis of Au nanorods by seed-mediated method, (b) PEGylation of Au nanorods, and (c) Dispersion of Au nanorods into photo-polymerizable resin.

Fig. 2
Fig. 2

(a) SEM image of synthesized Au nanorods. (b) Vis-NIR spectra of Au nanorods dispersed in different solution; (solid line) mPEG-SH wrapped Au nanorods (broken line) in water, (dashed and double-dotted line) in ethanol and (dotted line) in MMA. The refractive indices of water, ethanol and MMA for visible light are 1.33, 1.36 and 1.41, respectively.

Fig. 3
Fig. 3

(a) Schematic of the experimental condition. (b) The plot of the thickness of PMMA layers formed on Au nanorods as a function of the intensity of Ti:sapphire laser light. SEM images of (i) PMMA-wrapped Au nanorods by LSPR-induced TPP after laser irradiation, (ii) polymerized PMMA line without Au nanorods, (iii) residues of bubbling of MMA caused by laser irradiation onto Au nanorods.

Fig. 4
Fig. 4

SEM images of Au nanorods/PMMA aggregated spots produced at a stationary focused spot of Ti:sapphire laser light. The laser intensity was 1.5 GW/cm2 and the exposure time was (a) 7.5 s and (b) 10 s, respectively. (c) High magnification image of (b). The spot consisted of Au nanorods individually wrapped by a PMMA layer. (d) Hypothetical mechanism of the formation of Au nanorods aggregation.

Fig. 5
Fig. 5

SEM images of letters “GOLD” made of aggregations of Au nanorods. (a) top view, (b, c) high magnification images. The laser intensity was 1.6 GW/cm2 and the exposure time was 3 s. The total size of the structure was 10 µm and the line width was about 1.2 µm.

Fig. 6
Fig. 6

SEM images of the fabricated line structures at the exposure time of 200 ms, 500 ms, 2 s and 3 s, respectively. The laser intensity was fixed at 1.6 GW/cm2. The plot shows line widths of the fabricated line structures as a function of the exposure time.

Fig. 7
Fig. 7

SEM images of the fabricated line structures with different NA, (a) 0.8, (b) 0.4, and (c) 1.4, respectively. The laser intensity was fixed at 1.5 GW/cm2.

Metrics