Abstract

We demonstrate fabrication of Au nanorod aggregates microstructures by means of a femtosecond near-infrared laser. The laser light was tightly focused into colloidal Au nanorods dispersed in photopolymerizable metyl-methacrylate (MMA) compound to induce two-photon polymerization (TPP). TPP of MMA glued the nanorods together to form solid microstrucures of aggregates. The laser light excited a local surface plasmon, resulting in confinement of TPP in the vicinity of nanorods. Concurrenly occurring optical accumulation of nanorods created a unique mechanism for the formation of nanorod aggregates into desired microstructures. This technique would be a clue for a novel micro/nanofabrication method for plasmonic materials and devices.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. (Deerfield Beach Fla.) 21(48), 4880–4910 (2009).
    [CrossRef]
  2. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
    [CrossRef] [PubMed]
  3. K. Liu, Z. Nie, N. Zhao, W. Li, M. Rubinstein, and E. Kumacheva, “Step-growth polymerization of inorganic nanoparticles,” Science 329(5988), 197–200 (2010).
    [CrossRef] [PubMed]
  4. S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67(20), 205402 (2003).
    [CrossRef]
  5. S. Kawata, A. Ono, and P. Verma, “Subwavelength colour imaging with a metallic nanolens,” Nat. Photonics 2(7), 438–442 (2008).
    [CrossRef]
  6. A. I. Kuznetsov, R. Kiyan, and B. N. Chichkov, “Laser fabrication of 2D and 3D metal nanoparticle structures and arrays,” Opt. Express 18(20), 21198–21203 (2010).
    [CrossRef] [PubMed]
  7. B. Nikoobakht, Z. L. Wang, and M. A. El-Sayed, “Self-assembly of gold nanorods,” J. Phys. Chem. B 104(36), 8635–8640 (2000).
    [CrossRef]
  8. S. Ito, H. Yoshikawa, and H. Masuhara, “Laser manipulation and fixation of single gold nanoparticles in solution at room temperature,” Appl. Phys. Lett. 80(3), 482–484 (2002).
    [CrossRef]
  9. M. J. Guffey and N. F. Scherer, “All-optical patterning of Au nanoparticles on surfaces using optical traps,” Nano Lett. 10(11), 4302–4308 (2010).
    [CrossRef] [PubMed]
  10. A. S. Urban, A. A. Lutich, F. D. Stefani, and J. Feldmann, “Laser printing single gold nanoparticles,” Nano Lett. 10(12), 4794–4798 (2010).
    [CrossRef] [PubMed]
  11. A. M. Hung, C. M. Micheel, L. D. Bozano, L. W. Osterbur, G. M. Wallraff, and J. N. Cha, “Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami,” Nat. Nanotechnol. 5(2), 121–126 (2010).
    [CrossRef] [PubMed]
  12. J. Sharma, R. Chhabra, Y. Liu, Y. Ke, and H. Yan, “DNA-templated self-assembly of two-dimensional and periodical gold nanoparticle arrays,” Angew. Chem. Int. Ed. Engl. 45(5), 730–735 (2006).
    [CrossRef] [PubMed]
  13. S. Nakanishi, H. Yoshikawa, S. Shoji, Z. Sekkat, and S. Kawata, “Size dependence of transition temperature in polymer nanowires,” J. Phys. Chem. B 112(12), 3586–3589 (2008).
    [CrossRef] [PubMed]
  14. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
    [CrossRef] [PubMed]
  15. W. S. Kuo, C. H. Lien, K. C. Cho, C. Y. Chang, C. Y. Lin, L. L. H. Huang, P. J. Campagnola, C. Y. Dong, and S. J. Chen, “Multiphoton fabrication of freeform polymer microstructures with gold nanorods,” Opt. Express 18(26), 27550–27559 (2010).
    [CrossRef] [PubMed]
  16. C. H. Lien, W. S. Kuo, K. C. Cho, C. Y. Lin, Y. D. Su, L. L. H. Huang, P. J. Campagnola, C. Y. Dong, and S. J. Chen, “Fabrication of gold nanorods-doped, bovine serum albumin microstructures via multiphoton excited photochemistry,” Opt. Express 19(7), 6260–6268 (2011).
    [CrossRef] [PubMed]
  17. N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template,” Adv. Mater. (Deerfield Beach Fla.) 13(18), 1389–1393 (2001).
    [CrossRef]
  18. B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
    [CrossRef]
  19. T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114(3), 343–347 (2006).
    [CrossRef] [PubMed]
  20. J. Yang, J. C. Wu, Y. C. Wu, J. K. Wang, and C. C. Chen, “Organic solvent dependence of plasma resonance of gold nanorods: a simple relationship,” Chem. Phys. Lett. 416(4-6), 215–219 (2005).
    [CrossRef]
  21. J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249(17-18), 1870–1901 (2005).
    [CrossRef]
  22. Y. Horiguchi, K. Honda, Y. Kato, N. Nakashima, and Y. Niidome, “Photothermal reshaping of gold nanorods depends on the passivating layers of the nanorod surfaces,” Langmuir 24(20), 12026–12031 (2008).
    [CrossRef] [PubMed]
  23. S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104(26), 6152–6163 (2000).
    [CrossRef]
  24. P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
    [CrossRef] [PubMed]
  25. A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
    [CrossRef] [PubMed]
  26. N. Murazawa, K. Ueno, V. Mizeikis, S. Juodkazis, and H. Misawa, “Spatially selective nonlinear photopolymerization induced by the near-field of surface plasmons localized on rectangular gold nanorods,” J. Phys. Chem. C 113(4), 1147–1149 (2009).
    [CrossRef]
  27. S. Nah, L. Li, R. Liu, J. Hao, S. B. Lee, and J. T. Fourkas, “Metal-enhanced multiphoton absorption polymerization with gold nanowires,” J. Phys. Chem. C 114(17), 7774–7779 (2010).
    [CrossRef]
  28. H.-B. Sun, K. Takada, M.-S. Kim, K.-S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83(6), 1104–1106 (2003).
    [CrossRef]
  29. S. Kawata and H.-B. Sun, “Two-photon photopolymerization as a tool for making micro-devices,” Appl. Surf. Sci. 208–209, 153–158 (2003).
    [CrossRef]
  30. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [CrossRef] [PubMed]
  31. M. Pelton, M. Z. Liu, H. Y. Kim, G. Smith, P. Guyot-Sionnest, and N. F. Scherer, “Optical trapping and alignment of single gold nanorods by using plasmon resonances,” Opt. Lett. 31(13), 2075–2077 (2006).
    [CrossRef] [PubMed]
  32. C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
    [CrossRef] [PubMed]
  33. P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
    [CrossRef] [PubMed]
  34. J. Zhang, H. I. Kim, C. H. Oh, X. Sun, and H. Lee, “Multidimensional manipulation of carbon nanotube bundles with optical tweezers,” Appl. Phys. Lett. 88(5), 053123 (2006).
    [CrossRef]
  35. J. Junio, S. Park, M. W. Kim, and H. D. Ou-Yang, “Optical bottles: A quantitative analysis of optically confined nanoparticle ensembles in suspension,” Solid State Commun. 150(21-22), 1003–1008 (2010).
    [CrossRef]
  36. P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C 111(34), 12522–12527 (2007).
    [CrossRef]
  37. L. Shao, K. C. Woo, H. Chen, Z. Jin, J. Wang, and H. Q. Lin, “Angle- and energy-resolved plasmon coupling in gold nanorod dimers,” ACS Nano 4(6), 3053–3062 (2010).
    [CrossRef] [PubMed]
  38. K. Ueno, S. Takabatake, K. Onishi, H. Itoh, Y. Nishijima, and H. Misawa, “Homogeneous nano-patterning using plasmon-assisted photolithography,” Appl. Phys. Lett. 99(1), 011107 (2011).
    [CrossRef]
  39. K. Ueno, S. Takabatake, Y. Nishijima, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanogap-assisted surface plasmon nanolithography,” J. Phys. Chem. Lett. 1(3), 657–662 (2010).
    [CrossRef]
  40. K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanoparticle-enhanced photopolymerization,” J. Phys. Chem. C 113(27), 11720–11724 (2009).
    [CrossRef]

2011 (2)

2010 (10)

A. I. Kuznetsov, R. Kiyan, and B. N. Chichkov, “Laser fabrication of 2D and 3D metal nanoparticle structures and arrays,” Opt. Express 18(20), 21198–21203 (2010).
[CrossRef] [PubMed]

W. S. Kuo, C. H. Lien, K. C. Cho, C. Y. Chang, C. Y. Lin, L. L. H. Huang, P. J. Campagnola, C. Y. Dong, and S. J. Chen, “Multiphoton fabrication of freeform polymer microstructures with gold nanorods,” Opt. Express 18(26), 27550–27559 (2010).
[CrossRef] [PubMed]

K. Ueno, S. Takabatake, Y. Nishijima, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanogap-assisted surface plasmon nanolithography,” J. Phys. Chem. Lett. 1(3), 657–662 (2010).
[CrossRef]

S. Nah, L. Li, R. Liu, J. Hao, S. B. Lee, and J. T. Fourkas, “Metal-enhanced multiphoton absorption polymerization with gold nanowires,” J. Phys. Chem. C 114(17), 7774–7779 (2010).
[CrossRef]

J. Junio, S. Park, M. W. Kim, and H. D. Ou-Yang, “Optical bottles: A quantitative analysis of optically confined nanoparticle ensembles in suspension,” Solid State Commun. 150(21-22), 1003–1008 (2010).
[CrossRef]

K. Liu, Z. Nie, N. Zhao, W. Li, M. Rubinstein, and E. Kumacheva, “Step-growth polymerization of inorganic nanoparticles,” Science 329(5988), 197–200 (2010).
[CrossRef] [PubMed]

L. Shao, K. C. Woo, H. Chen, Z. Jin, J. Wang, and H. Q. Lin, “Angle- and energy-resolved plasmon coupling in gold nanorod dimers,” ACS Nano 4(6), 3053–3062 (2010).
[CrossRef] [PubMed]

M. J. Guffey and N. F. Scherer, “All-optical patterning of Au nanoparticles on surfaces using optical traps,” Nano Lett. 10(11), 4302–4308 (2010).
[CrossRef] [PubMed]

A. S. Urban, A. A. Lutich, F. D. Stefani, and J. Feldmann, “Laser printing single gold nanoparticles,” Nano Lett. 10(12), 4794–4798 (2010).
[CrossRef] [PubMed]

A. M. Hung, C. M. Micheel, L. D. Bozano, L. W. Osterbur, G. M. Wallraff, and J. N. Cha, “Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami,” Nat. Nanotechnol. 5(2), 121–126 (2010).
[CrossRef] [PubMed]

2009 (5)

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

N. Murazawa, K. Ueno, V. Mizeikis, S. Juodkazis, and H. Misawa, “Spatially selective nonlinear photopolymerization induced by the near-field of surface plasmons localized on rectangular gold nanorods,” J. Phys. Chem. C 113(4), 1147–1149 (2009).
[CrossRef]

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanoparticle-enhanced photopolymerization,” J. Phys. Chem. C 113(27), 11720–11724 (2009).
[CrossRef]

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. (Deerfield Beach Fla.) 21(48), 4880–4910 (2009).
[CrossRef]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

2008 (4)

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[CrossRef] [PubMed]

S. Kawata, A. Ono, and P. Verma, “Subwavelength colour imaging with a metallic nanolens,” Nat. Photonics 2(7), 438–442 (2008).
[CrossRef]

Y. Horiguchi, K. Honda, Y. Kato, N. Nakashima, and Y. Niidome, “Photothermal reshaping of gold nanorods depends on the passivating layers of the nanorod surfaces,” Langmuir 24(20), 12026–12031 (2008).
[CrossRef] [PubMed]

S. Nakanishi, H. Yoshikawa, S. Shoji, Z. Sekkat, and S. Kawata, “Size dependence of transition temperature in polymer nanowires,” J. Phys. Chem. B 112(12), 3586–3589 (2008).
[CrossRef] [PubMed]

2007 (1)

P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C 111(34), 12522–12527 (2007).
[CrossRef]

2006 (6)

M. Pelton, M. Z. Liu, H. Y. Kim, G. Smith, P. Guyot-Sionnest, and N. F. Scherer, “Optical trapping and alignment of single gold nanorods by using plasmon resonances,” Opt. Lett. 31(13), 2075–2077 (2006).
[CrossRef] [PubMed]

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

J. Zhang, H. I. Kim, C. H. Oh, X. Sun, and H. Lee, “Multidimensional manipulation of carbon nanotube bundles with optical tweezers,” Appl. Phys. Lett. 88(5), 053123 (2006).
[CrossRef]

J. Sharma, R. Chhabra, Y. Liu, Y. Ke, and H. Yan, “DNA-templated self-assembly of two-dimensional and periodical gold nanoparticle arrays,” Angew. Chem. Int. Ed. Engl. 45(5), 730–735 (2006).
[CrossRef] [PubMed]

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114(3), 343–347 (2006).
[CrossRef] [PubMed]

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
[CrossRef] [PubMed]

2005 (2)

J. Yang, J. C. Wu, Y. C. Wu, J. K. Wang, and C. C. Chen, “Organic solvent dependence of plasma resonance of gold nanorods: a simple relationship,” Chem. Phys. Lett. 416(4-6), 215–219 (2005).
[CrossRef]

J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249(17-18), 1870–1901 (2005).
[CrossRef]

2003 (4)

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[CrossRef]

H.-B. Sun, K. Takada, M.-S. Kim, K.-S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83(6), 1104–1106 (2003).
[CrossRef]

S. Kawata and H.-B. Sun, “Two-photon photopolymerization as a tool for making micro-devices,” Appl. Surf. Sci. 208–209, 153–158 (2003).
[CrossRef]

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67(20), 205402 (2003).
[CrossRef]

2002 (1)

S. Ito, H. Yoshikawa, and H. Masuhara, “Laser manipulation and fixation of single gold nanoparticles in solution at room temperature,” Appl. Phys. Lett. 80(3), 482–484 (2002).
[CrossRef]

2001 (2)

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template,” Adv. Mater. (Deerfield Beach Fla.) 13(18), 1389–1393 (2001).
[CrossRef]

2000 (2)

B. Nikoobakht, Z. L. Wang, and M. A. El-Sayed, “Self-assembly of gold nanorods,” J. Phys. Chem. B 104(36), 8635–8640 (2000).
[CrossRef]

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104(26), 6152–6163 (2000).
[CrossRef]

1986 (1)

Akiyama, Y.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114(3), 343–347 (2006).
[CrossRef] [PubMed]

Ashkin, A.

Atkinson, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C 111(34), 12522–12527 (2007).
[CrossRef]

Atwater, H. A.

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67(20), 205402 (2003).
[CrossRef]

Bjorkholm, J. E.

Bozano, L. D.

A. M. Hung, C. M. Micheel, L. D. Bozano, L. W. Osterbur, G. M. Wallraff, and J. N. Cha, “Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami,” Nat. Nanotechnol. 5(2), 121–126 (2010).
[CrossRef] [PubMed]

Burda, C.

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104(26), 6152–6163 (2000).
[CrossRef]

Campagnola, P. J.

Cha, J. N.

A. M. Hung, C. M. Micheel, L. D. Bozano, L. W. Osterbur, G. M. Wallraff, and J. N. Cha, “Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami,” Nat. Nanotechnol. 5(2), 121–126 (2010).
[CrossRef] [PubMed]

Chang, C. Y.

Chen, C. C.

J. Yang, J. C. Wu, Y. C. Wu, J. K. Wang, and C. C. Chen, “Organic solvent dependence of plasma resonance of gold nanorods: a simple relationship,” Chem. Phys. Lett. 416(4-6), 215–219 (2005).
[CrossRef]

Chen, H.

L. Shao, K. C. Woo, H. Chen, Z. Jin, J. Wang, and H. Q. Lin, “Angle- and energy-resolved plasmon coupling in gold nanorod dimers,” ACS Nano 4(6), 3053–3062 (2010).
[CrossRef] [PubMed]

Chen, S. J.

Chhabra, R.

J. Sharma, R. Chhabra, Y. Liu, Y. Ke, and H. Yan, “DNA-templated self-assembly of two-dimensional and periodical gold nanoparticle arrays,” Angew. Chem. Int. Ed. Engl. 45(5), 730–735 (2006).
[CrossRef] [PubMed]

Chichkov, B. N.

Cho, K. C.

Chon, J. W. M.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

Chu, S.

Conley, N. R.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
[CrossRef] [PubMed]

Dickson, W.

P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C 111(34), 12522–12527 (2007).
[CrossRef]

Dong, C. Y.

Dziedzic, J. M.

El-Sayed, M. A.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. (Deerfield Beach Fla.) 21(48), 4880–4910 (2009).
[CrossRef]

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[CrossRef]

B. Nikoobakht, Z. L. Wang, and M. A. El-Sayed, “Self-assembly of gold nanorods,” J. Phys. Chem. B 104(36), 8635–8640 (2000).
[CrossRef]

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104(26), 6152–6163 (2000).
[CrossRef]

Evans, P.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Evans, P. R.

P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C 111(34), 12522–12527 (2007).
[CrossRef]

Feldmann, J.

A. S. Urban, A. A. Lutich, F. D. Stefani, and J. Feldmann, “Laser printing single gold nanoparticles,” Nano Lett. 10(12), 4794–4798 (2010).
[CrossRef] [PubMed]

Fourkas, J. T.

S. Nah, L. Li, R. Liu, J. Hao, S. B. Lee, and J. T. Fourkas, “Metal-enhanced multiphoton absorption polymerization with gold nanowires,” J. Phys. Chem. C 114(17), 7774–7779 (2010).
[CrossRef]

Fromm, D. P.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
[CrossRef] [PubMed]

Gearheart, L.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template,” Adv. Mater. (Deerfield Beach Fla.) 13(18), 1389–1393 (2001).
[CrossRef]

Gu, M.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

Guffey, M. J.

M. J. Guffey and N. F. Scherer, “All-optical patterning of Au nanoparticles on surfaces using optical traps,” Nano Lett. 10(11), 4302–4308 (2010).
[CrossRef] [PubMed]

Guyot-Sionnest, P.

Hao, J.

S. Nah, L. Li, R. Liu, J. Hao, S. B. Lee, and J. T. Fourkas, “Metal-enhanced multiphoton absorption polymerization with gold nanowires,” J. Phys. Chem. C 114(17), 7774–7779 (2010).
[CrossRef]

Hendren, W.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C 111(34), 12522–12527 (2007).
[CrossRef]

Honda, K.

Y. Horiguchi, K. Honda, Y. Kato, N. Nakashima, and Y. Niidome, “Photothermal reshaping of gold nanorods depends on the passivating layers of the nanorod surfaces,” Langmuir 24(20), 12026–12031 (2008).
[CrossRef] [PubMed]

Horiguchi, Y.

Y. Horiguchi, K. Honda, Y. Kato, N. Nakashima, and Y. Niidome, “Photothermal reshaping of gold nanorods depends on the passivating layers of the nanorod surfaces,” Langmuir 24(20), 12026–12031 (2008).
[CrossRef] [PubMed]

Huang, L. L. H.

Huang, X.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. (Deerfield Beach Fla.) 21(48), 4880–4910 (2009).
[CrossRef]

Hung, A. M.

A. M. Hung, C. M. Micheel, L. D. Bozano, L. W. Osterbur, G. M. Wallraff, and J. N. Cha, “Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami,” Nat. Nanotechnol. 5(2), 121–126 (2010).
[CrossRef] [PubMed]

Ito, S.

S. Ito, H. Yoshikawa, and H. Masuhara, “Laser manipulation and fixation of single gold nanoparticles in solution at room temperature,” Appl. Phys. Lett. 80(3), 482–484 (2002).
[CrossRef]

Itoh, H.

K. Ueno, S. Takabatake, K. Onishi, H. Itoh, Y. Nishijima, and H. Misawa, “Homogeneous nano-patterning using plasmon-assisted photolithography,” Appl. Phys. Lett. 99(1), 011107 (2011).
[CrossRef]

Jana, N. R.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template,” Adv. Mater. (Deerfield Beach Fla.) 13(18), 1389–1393 (2001).
[CrossRef]

Jin, Z.

L. Shao, K. C. Woo, H. Chen, Z. Jin, J. Wang, and H. Q. Lin, “Angle- and energy-resolved plasmon coupling in gold nanorod dimers,” ACS Nano 4(6), 3053–3062 (2010).
[CrossRef] [PubMed]

Junio, J.

J. Junio, S. Park, M. W. Kim, and H. D. Ou-Yang, “Optical bottles: A quantitative analysis of optically confined nanoparticle ensembles in suspension,” Solid State Commun. 150(21-22), 1003–1008 (2010).
[CrossRef]

Juodkazis, S.

N. Murazawa, K. Ueno, V. Mizeikis, S. Juodkazis, and H. Misawa, “Spatially selective nonlinear photopolymerization induced by the near-field of surface plasmons localized on rectangular gold nanorods,” J. Phys. Chem. C 113(4), 1147–1149 (2009).
[CrossRef]

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanoparticle-enhanced photopolymerization,” J. Phys. Chem. C 113(27), 11720–11724 (2009).
[CrossRef]

Kabashin, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Katayama, Y.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114(3), 343–347 (2006).
[CrossRef] [PubMed]

Kato, Y.

Y. Horiguchi, K. Honda, Y. Kato, N. Nakashima, and Y. Niidome, “Photothermal reshaping of gold nanorods depends on the passivating layers of the nanorod surfaces,” Langmuir 24(20), 12026–12031 (2008).
[CrossRef] [PubMed]

Kawano, T.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114(3), 343–347 (2006).
[CrossRef] [PubMed]

Kawata, S.

S. Kawata, A. Ono, and P. Verma, “Subwavelength colour imaging with a metallic nanolens,” Nat. Photonics 2(7), 438–442 (2008).
[CrossRef]

S. Nakanishi, H. Yoshikawa, S. Shoji, Z. Sekkat, and S. Kawata, “Size dependence of transition temperature in polymer nanowires,” J. Phys. Chem. B 112(12), 3586–3589 (2008).
[CrossRef] [PubMed]

H.-B. Sun, K. Takada, M.-S. Kim, K.-S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83(6), 1104–1106 (2003).
[CrossRef]

S. Kawata and H.-B. Sun, “Two-photon photopolymerization as a tool for making micro-devices,” Appl. Surf. Sci. 208–209, 153–158 (2003).
[CrossRef]

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Ke, Y.

J. Sharma, R. Chhabra, Y. Liu, Y. Ke, and H. Yan, “DNA-templated self-assembly of two-dimensional and periodical gold nanoparticle arrays,” Angew. Chem. Int. Ed. Engl. 45(5), 730–735 (2006).
[CrossRef] [PubMed]

Kik, P. G.

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67(20), 205402 (2003).
[CrossRef]

Kim, H. I.

J. Zhang, H. I. Kim, C. H. Oh, X. Sun, and H. Lee, “Multidimensional manipulation of carbon nanotube bundles with optical tweezers,” Appl. Phys. Lett. 88(5), 053123 (2006).
[CrossRef]

Kim, H. Y.

Kim, M. W.

J. Junio, S. Park, M. W. Kim, and H. D. Ou-Yang, “Optical bottles: A quantitative analysis of optically confined nanoparticle ensembles in suspension,” Solid State Commun. 150(21-22), 1003–1008 (2010).
[CrossRef]

Kim, M.-S.

H.-B. Sun, K. Takada, M.-S. Kim, K.-S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83(6), 1104–1106 (2003).
[CrossRef]

Kino, G. S.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
[CrossRef] [PubMed]

Kiyan, R.

Kumacheva, E.

K. Liu, Z. Nie, N. Zhao, W. Li, M. Rubinstein, and E. Kumacheva, “Step-growth polymerization of inorganic nanoparticles,” Science 329(5988), 197–200 (2010).
[CrossRef] [PubMed]

Kuo, W. S.

Kuznetsov, A. I.

Lee, H.

J. Zhang, H. I. Kim, C. H. Oh, X. Sun, and H. Lee, “Multidimensional manipulation of carbon nanotube bundles with optical tweezers,” Appl. Phys. Lett. 88(5), 053123 (2006).
[CrossRef]

Lee, K.-S.

H.-B. Sun, K. Takada, M.-S. Kim, K.-S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83(6), 1104–1106 (2003).
[CrossRef]

Lee, S. B.

S. Nah, L. Li, R. Liu, J. Hao, S. B. Lee, and J. T. Fourkas, “Metal-enhanced multiphoton absorption polymerization with gold nanowires,” J. Phys. Chem. C 114(17), 7774–7779 (2010).
[CrossRef]

Li, L.

S. Nah, L. Li, R. Liu, J. Hao, S. B. Lee, and J. T. Fourkas, “Metal-enhanced multiphoton absorption polymerization with gold nanowires,” J. Phys. Chem. C 114(17), 7774–7779 (2010).
[CrossRef]

Li, W.

K. Liu, Z. Nie, N. Zhao, W. Li, M. Rubinstein, and E. Kumacheva, “Step-growth polymerization of inorganic nanoparticles,” Science 329(5988), 197–200 (2010).
[CrossRef] [PubMed]

Lien, C. H.

Lin, C. Y.

Lin, H. Q.

L. Shao, K. C. Woo, H. Chen, Z. Jin, J. Wang, and H. Q. Lin, “Angle- and energy-resolved plasmon coupling in gold nanorod dimers,” ACS Nano 4(6), 3053–3062 (2010).
[CrossRef] [PubMed]

Link, S.

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104(26), 6152–6163 (2000).
[CrossRef]

Liphardt, J.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

Liu, K.

K. Liu, Z. Nie, N. Zhao, W. Li, M. Rubinstein, and E. Kumacheva, “Step-growth polymerization of inorganic nanoparticles,” Science 329(5988), 197–200 (2010).
[CrossRef] [PubMed]

Liu, M. Z.

Liu, R.

S. Nah, L. Li, R. Liu, J. Hao, S. B. Lee, and J. T. Fourkas, “Metal-enhanced multiphoton absorption polymerization with gold nanowires,” J. Phys. Chem. C 114(17), 7774–7779 (2010).
[CrossRef]

Liu, Y.

J. Sharma, R. Chhabra, Y. Liu, Y. Ke, and H. Yan, “DNA-templated self-assembly of two-dimensional and periodical gold nanoparticle arrays,” Angew. Chem. Int. Ed. Engl. 45(5), 730–735 (2006).
[CrossRef] [PubMed]

Liz-Marzan, L. M.

J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249(17-18), 1870–1901 (2005).
[CrossRef]

Lutich, A. A.

A. S. Urban, A. A. Lutich, F. D. Stefani, and J. Feldmann, “Laser printing single gold nanoparticles,” Nano Lett. 10(12), 4794–4798 (2010).
[CrossRef] [PubMed]

Maier, S. A.

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67(20), 205402 (2003).
[CrossRef]

Masuhara, H.

S. Ito, H. Yoshikawa, and H. Masuhara, “Laser manipulation and fixation of single gold nanoparticles in solution at room temperature,” Appl. Phys. Lett. 80(3), 482–484 (2002).
[CrossRef]

Micheel, C. M.

A. M. Hung, C. M. Micheel, L. D. Bozano, L. W. Osterbur, G. M. Wallraff, and J. N. Cha, “Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami,” Nat. Nanotechnol. 5(2), 121–126 (2010).
[CrossRef] [PubMed]

Misawa, H.

K. Ueno, S. Takabatake, K. Onishi, H. Itoh, Y. Nishijima, and H. Misawa, “Homogeneous nano-patterning using plasmon-assisted photolithography,” Appl. Phys. Lett. 99(1), 011107 (2011).
[CrossRef]

K. Ueno, S. Takabatake, Y. Nishijima, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanogap-assisted surface plasmon nanolithography,” J. Phys. Chem. Lett. 1(3), 657–662 (2010).
[CrossRef]

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanoparticle-enhanced photopolymerization,” J. Phys. Chem. C 113(27), 11720–11724 (2009).
[CrossRef]

N. Murazawa, K. Ueno, V. Mizeikis, S. Juodkazis, and H. Misawa, “Spatially selective nonlinear photopolymerization induced by the near-field of surface plasmons localized on rectangular gold nanorods,” J. Phys. Chem. C 113(4), 1147–1149 (2009).
[CrossRef]

Mizeikis, V.

K. Ueno, S. Takabatake, Y. Nishijima, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanogap-assisted surface plasmon nanolithography,” J. Phys. Chem. Lett. 1(3), 657–662 (2010).
[CrossRef]

N. Murazawa, K. Ueno, V. Mizeikis, S. Juodkazis, and H. Misawa, “Spatially selective nonlinear photopolymerization induced by the near-field of surface plasmons localized on rectangular gold nanorods,” J. Phys. Chem. C 113(4), 1147–1149 (2009).
[CrossRef]

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanoparticle-enhanced photopolymerization,” J. Phys. Chem. C 113(27), 11720–11724 (2009).
[CrossRef]

Moerner, W. E.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
[CrossRef] [PubMed]

Mulvaney, P.

J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249(17-18), 1870–1901 (2005).
[CrossRef]

Murazawa, N.

N. Murazawa, K. Ueno, V. Mizeikis, S. Juodkazis, and H. Misawa, “Spatially selective nonlinear photopolymerization induced by the near-field of surface plasmons localized on rectangular gold nanorods,” J. Phys. Chem. C 113(4), 1147–1149 (2009).
[CrossRef]

Murphy, C. J.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template,” Adv. Mater. (Deerfield Beach Fla.) 13(18), 1389–1393 (2001).
[CrossRef]

Nah, S.

S. Nah, L. Li, R. Liu, J. Hao, S. B. Lee, and J. T. Fourkas, “Metal-enhanced multiphoton absorption polymerization with gold nanowires,” J. Phys. Chem. C 114(17), 7774–7779 (2010).
[CrossRef]

Nakanishi, S.

S. Nakanishi, H. Yoshikawa, S. Shoji, Z. Sekkat, and S. Kawata, “Size dependence of transition temperature in polymer nanowires,” J. Phys. Chem. B 112(12), 3586–3589 (2008).
[CrossRef] [PubMed]

Nakashima, N.

Y. Horiguchi, K. Honda, Y. Kato, N. Nakashima, and Y. Niidome, “Photothermal reshaping of gold nanorods depends on the passivating layers of the nanorod surfaces,” Langmuir 24(20), 12026–12031 (2008).
[CrossRef] [PubMed]

Neretina, S.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. (Deerfield Beach Fla.) 21(48), 4880–4910 (2009).
[CrossRef]

Nie, Z.

K. Liu, Z. Nie, N. Zhao, W. Li, M. Rubinstein, and E. Kumacheva, “Step-growth polymerization of inorganic nanoparticles,” Science 329(5988), 197–200 (2010).
[CrossRef] [PubMed]

Niidome, T.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114(3), 343–347 (2006).
[CrossRef] [PubMed]

Niidome, Y.

Y. Horiguchi, K. Honda, Y. Kato, N. Nakashima, and Y. Niidome, “Photothermal reshaping of gold nanorods depends on the passivating layers of the nanorod surfaces,” Langmuir 24(20), 12026–12031 (2008).
[CrossRef] [PubMed]

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114(3), 343–347 (2006).
[CrossRef] [PubMed]

Nikoobakht, B.

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[CrossRef]

B. Nikoobakht, Z. L. Wang, and M. A. El-Sayed, “Self-assembly of gold nanorods,” J. Phys. Chem. B 104(36), 8635–8640 (2000).
[CrossRef]

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104(26), 6152–6163 (2000).
[CrossRef]

Nishijima, Y.

K. Ueno, S. Takabatake, K. Onishi, H. Itoh, Y. Nishijima, and H. Misawa, “Homogeneous nano-patterning using plasmon-assisted photolithography,” Appl. Phys. Lett. 99(1), 011107 (2011).
[CrossRef]

K. Ueno, S. Takabatake, Y. Nishijima, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanogap-assisted surface plasmon nanolithography,” J. Phys. Chem. Lett. 1(3), 657–662 (2010).
[CrossRef]

O’Connor, D.

P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C 111(34), 12522–12527 (2007).
[CrossRef]

Oddershede, L. B.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[CrossRef] [PubMed]

Oh, C. H.

J. Zhang, H. I. Kim, C. H. Oh, X. Sun, and H. Lee, “Multidimensional manipulation of carbon nanotube bundles with optical tweezers,” Appl. Phys. Lett. 88(5), 053123 (2006).
[CrossRef]

Okamoto, Y.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114(3), 343–347 (2006).
[CrossRef] [PubMed]

Onishi, K.

K. Ueno, S. Takabatake, K. Onishi, H. Itoh, Y. Nishijima, and H. Misawa, “Homogeneous nano-patterning using plasmon-assisted photolithography,” Appl. Phys. Lett. 99(1), 011107 (2011).
[CrossRef]

Ono, A.

S. Kawata, A. Ono, and P. Verma, “Subwavelength colour imaging with a metallic nanolens,” Nat. Photonics 2(7), 438–442 (2008).
[CrossRef]

Osterbur, L. W.

A. M. Hung, C. M. Micheel, L. D. Bozano, L. W. Osterbur, G. M. Wallraff, and J. N. Cha, “Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami,” Nat. Nanotechnol. 5(2), 121–126 (2010).
[CrossRef] [PubMed]

Ou-Yang, H. D.

J. Junio, S. Park, M. W. Kim, and H. D. Ou-Yang, “Optical bottles: A quantitative analysis of optically confined nanoparticle ensembles in suspension,” Solid State Commun. 150(21-22), 1003–1008 (2010).
[CrossRef]

Park, S.

J. Junio, S. Park, M. W. Kim, and H. D. Ou-Yang, “Optical bottles: A quantitative analysis of optically confined nanoparticle ensembles in suspension,” Solid State Commun. 150(21-22), 1003–1008 (2010).
[CrossRef]

Pastkovsky, S.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Pastoriza-Santos, I.

J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249(17-18), 1870–1901 (2005).
[CrossRef]

Pauzauskie, P. J.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

Pelton, M.

Perez-Juste, J.

J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249(17-18), 1870–1901 (2005).
[CrossRef]

Podolskiy, V. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Pollard, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Pollard, R. J.

P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C 111(34), 12522–12527 (2007).
[CrossRef]

Radenovic, A.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

Rubinstein, M.

K. Liu, Z. Nie, N. Zhao, W. Li, M. Rubinstein, and E. Kumacheva, “Step-growth polymerization of inorganic nanoparticles,” Science 329(5988), 197–200 (2010).
[CrossRef] [PubMed]

Scherer, N. F.

Schubert, O.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[CrossRef] [PubMed]

Schuck, P. J.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
[CrossRef] [PubMed]

Sekkat, Z.

S. Nakanishi, H. Yoshikawa, S. Shoji, Z. Sekkat, and S. Kawata, “Size dependence of transition temperature in polymer nanowires,” J. Phys. Chem. B 112(12), 3586–3589 (2008).
[CrossRef] [PubMed]

Selhuber-Unkel, C.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[CrossRef] [PubMed]

Shao, L.

L. Shao, K. C. Woo, H. Chen, Z. Jin, J. Wang, and H. Q. Lin, “Angle- and energy-resolved plasmon coupling in gold nanorod dimers,” ACS Nano 4(6), 3053–3062 (2010).
[CrossRef] [PubMed]

Sharma, J.

J. Sharma, R. Chhabra, Y. Liu, Y. Ke, and H. Yan, “DNA-templated self-assembly of two-dimensional and periodical gold nanoparticle arrays,” Angew. Chem. Int. Ed. Engl. 45(5), 730–735 (2006).
[CrossRef] [PubMed]

Shibuya, T.

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanoparticle-enhanced photopolymerization,” J. Phys. Chem. C 113(27), 11720–11724 (2009).
[CrossRef]

Shoji, S.

S. Nakanishi, H. Yoshikawa, S. Shoji, Z. Sekkat, and S. Kawata, “Size dependence of transition temperature in polymer nanowires,” J. Phys. Chem. B 112(12), 3586–3589 (2008).
[CrossRef] [PubMed]

Shroff, H.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

Smith, G.

Sönnichsen, C.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[CrossRef] [PubMed]

Stefani, F. D.

A. S. Urban, A. A. Lutich, F. D. Stefani, and J. Feldmann, “Laser printing single gold nanoparticles,” Nano Lett. 10(12), 4794–4798 (2010).
[CrossRef] [PubMed]

Su, Y. D.

Sun, H. B.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Sun, H.-B.

S. Kawata and H.-B. Sun, “Two-photon photopolymerization as a tool for making micro-devices,” Appl. Surf. Sci. 208–209, 153–158 (2003).
[CrossRef]

H.-B. Sun, K. Takada, M.-S. Kim, K.-S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83(6), 1104–1106 (2003).
[CrossRef]

Sun, X.

J. Zhang, H. I. Kim, C. H. Oh, X. Sun, and H. Lee, “Multidimensional manipulation of carbon nanotube bundles with optical tweezers,” Appl. Phys. Lett. 88(5), 053123 (2006).
[CrossRef]

Sundaramurthy, A.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
[CrossRef] [PubMed]

Takabatake, S.

K. Ueno, S. Takabatake, K. Onishi, H. Itoh, Y. Nishijima, and H. Misawa, “Homogeneous nano-patterning using plasmon-assisted photolithography,” Appl. Phys. Lett. 99(1), 011107 (2011).
[CrossRef]

K. Ueno, S. Takabatake, Y. Nishijima, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanogap-assisted surface plasmon nanolithography,” J. Phys. Chem. Lett. 1(3), 657–662 (2010).
[CrossRef]

Takada, K.

H.-B. Sun, K. Takada, M.-S. Kim, K.-S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83(6), 1104–1106 (2003).
[CrossRef]

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Takahashi, H.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114(3), 343–347 (2006).
[CrossRef] [PubMed]

Tanaka, T.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Trepagnier, E.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

Ueno, K.

K. Ueno, S. Takabatake, K. Onishi, H. Itoh, Y. Nishijima, and H. Misawa, “Homogeneous nano-patterning using plasmon-assisted photolithography,” Appl. Phys. Lett. 99(1), 011107 (2011).
[CrossRef]

K. Ueno, S. Takabatake, Y. Nishijima, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanogap-assisted surface plasmon nanolithography,” J. Phys. Chem. Lett. 1(3), 657–662 (2010).
[CrossRef]

N. Murazawa, K. Ueno, V. Mizeikis, S. Juodkazis, and H. Misawa, “Spatially selective nonlinear photopolymerization induced by the near-field of surface plasmons localized on rectangular gold nanorods,” J. Phys. Chem. C 113(4), 1147–1149 (2009).
[CrossRef]

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanoparticle-enhanced photopolymerization,” J. Phys. Chem. C 113(27), 11720–11724 (2009).
[CrossRef]

Urban, A. S.

A. S. Urban, A. A. Lutich, F. D. Stefani, and J. Feldmann, “Laser printing single gold nanoparticles,” Nano Lett. 10(12), 4794–4798 (2010).
[CrossRef] [PubMed]

Verma, P.

S. Kawata, A. Ono, and P. Verma, “Subwavelength colour imaging with a metallic nanolens,” Nat. Photonics 2(7), 438–442 (2008).
[CrossRef]

Wallraff, G. M.

A. M. Hung, C. M. Micheel, L. D. Bozano, L. W. Osterbur, G. M. Wallraff, and J. N. Cha, “Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami,” Nat. Nanotechnol. 5(2), 121–126 (2010).
[CrossRef] [PubMed]

Wang, J.

L. Shao, K. C. Woo, H. Chen, Z. Jin, J. Wang, and H. Q. Lin, “Angle- and energy-resolved plasmon coupling in gold nanorod dimers,” ACS Nano 4(6), 3053–3062 (2010).
[CrossRef] [PubMed]

Wang, J. K.

J. Yang, J. C. Wu, Y. C. Wu, J. K. Wang, and C. C. Chen, “Organic solvent dependence of plasma resonance of gold nanorods: a simple relationship,” Chem. Phys. Lett. 416(4-6), 215–219 (2005).
[CrossRef]

Wang, Z. L.

B. Nikoobakht, Z. L. Wang, and M. A. El-Sayed, “Self-assembly of gold nanorods,” J. Phys. Chem. B 104(36), 8635–8640 (2000).
[CrossRef]

Woo, K. C.

L. Shao, K. C. Woo, H. Chen, Z. Jin, J. Wang, and H. Q. Lin, “Angle- and energy-resolved plasmon coupling in gold nanorod dimers,” ACS Nano 4(6), 3053–3062 (2010).
[CrossRef] [PubMed]

Wu, J. C.

J. Yang, J. C. Wu, Y. C. Wu, J. K. Wang, and C. C. Chen, “Organic solvent dependence of plasma resonance of gold nanorods: a simple relationship,” Chem. Phys. Lett. 416(4-6), 215–219 (2005).
[CrossRef]

Wu, Y. C.

J. Yang, J. C. Wu, Y. C. Wu, J. K. Wang, and C. C. Chen, “Organic solvent dependence of plasma resonance of gold nanorods: a simple relationship,” Chem. Phys. Lett. 416(4-6), 215–219 (2005).
[CrossRef]

Wurtz, G. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C 111(34), 12522–12527 (2007).
[CrossRef]

Yamagata, M.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114(3), 343–347 (2006).
[CrossRef] [PubMed]

Yan, H.

J. Sharma, R. Chhabra, Y. Liu, Y. Ke, and H. Yan, “DNA-templated self-assembly of two-dimensional and periodical gold nanoparticle arrays,” Angew. Chem. Int. Ed. Engl. 45(5), 730–735 (2006).
[CrossRef] [PubMed]

Yang, J.

J. Yang, J. C. Wu, Y. C. Wu, J. K. Wang, and C. C. Chen, “Organic solvent dependence of plasma resonance of gold nanorods: a simple relationship,” Chem. Phys. Lett. 416(4-6), 215–219 (2005).
[CrossRef]

Yang, P.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

Yokota, Y.

K. Ueno, S. Takabatake, Y. Nishijima, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanogap-assisted surface plasmon nanolithography,” J. Phys. Chem. Lett. 1(3), 657–662 (2010).
[CrossRef]

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanoparticle-enhanced photopolymerization,” J. Phys. Chem. C 113(27), 11720–11724 (2009).
[CrossRef]

Yoshikawa, H.

S. Nakanishi, H. Yoshikawa, S. Shoji, Z. Sekkat, and S. Kawata, “Size dependence of transition temperature in polymer nanowires,” J. Phys. Chem. B 112(12), 3586–3589 (2008).
[CrossRef] [PubMed]

S. Ito, H. Yoshikawa, and H. Masuhara, “Laser manipulation and fixation of single gold nanoparticles in solution at room temperature,” Appl. Phys. Lett. 80(3), 482–484 (2002).
[CrossRef]

Zayats, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C 111(34), 12522–12527 (2007).
[CrossRef]

Zhang, J.

J. Zhang, H. I. Kim, C. H. Oh, X. Sun, and H. Lee, “Multidimensional manipulation of carbon nanotube bundles with optical tweezers,” Appl. Phys. Lett. 88(5), 053123 (2006).
[CrossRef]

Zhao, N.

K. Liu, Z. Nie, N. Zhao, W. Li, M. Rubinstein, and E. Kumacheva, “Step-growth polymerization of inorganic nanoparticles,” Science 329(5988), 197–200 (2010).
[CrossRef] [PubMed]

Zijlstra, P.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

Zins, I.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[CrossRef] [PubMed]

ACS Nano (1)

L. Shao, K. C. Woo, H. Chen, Z. Jin, J. Wang, and H. Q. Lin, “Angle- and energy-resolved plasmon coupling in gold nanorod dimers,” ACS Nano 4(6), 3053–3062 (2010).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (2)

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. (Deerfield Beach Fla.) 21(48), 4880–4910 (2009).
[CrossRef]

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template,” Adv. Mater. (Deerfield Beach Fla.) 13(18), 1389–1393 (2001).
[CrossRef]

Angew. Chem. Int. Ed. Engl. (1)

J. Sharma, R. Chhabra, Y. Liu, Y. Ke, and H. Yan, “DNA-templated self-assembly of two-dimensional and periodical gold nanoparticle arrays,” Angew. Chem. Int. Ed. Engl. 45(5), 730–735 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

S. Ito, H. Yoshikawa, and H. Masuhara, “Laser manipulation and fixation of single gold nanoparticles in solution at room temperature,” Appl. Phys. Lett. 80(3), 482–484 (2002).
[CrossRef]

K. Ueno, S. Takabatake, K. Onishi, H. Itoh, Y. Nishijima, and H. Misawa, “Homogeneous nano-patterning using plasmon-assisted photolithography,” Appl. Phys. Lett. 99(1), 011107 (2011).
[CrossRef]

J. Zhang, H. I. Kim, C. H. Oh, X. Sun, and H. Lee, “Multidimensional manipulation of carbon nanotube bundles with optical tweezers,” Appl. Phys. Lett. 88(5), 053123 (2006).
[CrossRef]

H.-B. Sun, K. Takada, M.-S. Kim, K.-S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83(6), 1104–1106 (2003).
[CrossRef]

Appl. Surf. Sci. (1)

S. Kawata and H.-B. Sun, “Two-photon photopolymerization as a tool for making micro-devices,” Appl. Surf. Sci. 208–209, 153–158 (2003).
[CrossRef]

Chem. Mater. (1)

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[CrossRef]

Chem. Phys. Lett. (1)

J. Yang, J. C. Wu, Y. C. Wu, J. K. Wang, and C. C. Chen, “Organic solvent dependence of plasma resonance of gold nanorods: a simple relationship,” Chem. Phys. Lett. 416(4-6), 215–219 (2005).
[CrossRef]

Coord. Chem. Rev. (1)

J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249(17-18), 1870–1901 (2005).
[CrossRef]

J. Control. Release (1)

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114(3), 343–347 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. B (3)

S. Nakanishi, H. Yoshikawa, S. Shoji, Z. Sekkat, and S. Kawata, “Size dependence of transition temperature in polymer nanowires,” J. Phys. Chem. B 112(12), 3586–3589 (2008).
[CrossRef] [PubMed]

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104(26), 6152–6163 (2000).
[CrossRef]

B. Nikoobakht, Z. L. Wang, and M. A. El-Sayed, “Self-assembly of gold nanorods,” J. Phys. Chem. B 104(36), 8635–8640 (2000).
[CrossRef]

J. Phys. Chem. C (4)

N. Murazawa, K. Ueno, V. Mizeikis, S. Juodkazis, and H. Misawa, “Spatially selective nonlinear photopolymerization induced by the near-field of surface plasmons localized on rectangular gold nanorods,” J. Phys. Chem. C 113(4), 1147–1149 (2009).
[CrossRef]

S. Nah, L. Li, R. Liu, J. Hao, S. B. Lee, and J. T. Fourkas, “Metal-enhanced multiphoton absorption polymerization with gold nanowires,” J. Phys. Chem. C 114(17), 7774–7779 (2010).
[CrossRef]

P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C 111(34), 12522–12527 (2007).
[CrossRef]

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanoparticle-enhanced photopolymerization,” J. Phys. Chem. C 113(27), 11720–11724 (2009).
[CrossRef]

J. Phys. Chem. Lett. (1)

K. Ueno, S. Takabatake, Y. Nishijima, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanogap-assisted surface plasmon nanolithography,” J. Phys. Chem. Lett. 1(3), 657–662 (2010).
[CrossRef]

Langmuir (1)

Y. Horiguchi, K. Honda, Y. Kato, N. Nakashima, and Y. Niidome, “Photothermal reshaping of gold nanorods depends on the passivating layers of the nanorod surfaces,” Langmuir 24(20), 12026–12031 (2008).
[CrossRef] [PubMed]

Nano Lett. (4)

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
[CrossRef] [PubMed]

M. J. Guffey and N. F. Scherer, “All-optical patterning of Au nanoparticles on surfaces using optical traps,” Nano Lett. 10(11), 4302–4308 (2010).
[CrossRef] [PubMed]

A. S. Urban, A. A. Lutich, F. D. Stefani, and J. Feldmann, “Laser printing single gold nanoparticles,” Nano Lett. 10(12), 4794–4798 (2010).
[CrossRef] [PubMed]

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[CrossRef] [PubMed]

Nat. Mater. (2)

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

A. M. Hung, C. M. Micheel, L. D. Bozano, L. W. Osterbur, G. M. Wallraff, and J. N. Cha, “Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami,” Nat. Nanotechnol. 5(2), 121–126 (2010).
[CrossRef] [PubMed]

Nat. Photonics (1)

S. Kawata, A. Ono, and P. Verma, “Subwavelength colour imaging with a metallic nanolens,” Nat. Photonics 2(7), 438–442 (2008).
[CrossRef]

Nature (2)

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. B (1)

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67(20), 205402 (2003).
[CrossRef]

Science (1)

K. Liu, Z. Nie, N. Zhao, W. Li, M. Rubinstein, and E. Kumacheva, “Step-growth polymerization of inorganic nanoparticles,” Science 329(5988), 197–200 (2010).
[CrossRef] [PubMed]

Solid State Commun. (1)

J. Junio, S. Park, M. W. Kim, and H. D. Ou-Yang, “Optical bottles: A quantitative analysis of optically confined nanoparticle ensembles in suspension,” Solid State Commun. 150(21-22), 1003–1008 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the preparation of Au nanorods/MMA compound. (a) Synthesis of Au nanorods by seed-mediated method, (b) PEGylation of Au nanorods, and (c) Dispersion of Au nanorods into photo-polymerizable resin.

Fig. 2
Fig. 2

(a) SEM image of synthesized Au nanorods. (b) Vis-NIR spectra of Au nanorods dispersed in different solution; (solid line) mPEG-SH wrapped Au nanorods (broken line) in water, (dashed and double-dotted line) in ethanol and (dotted line) in MMA. The refractive indices of water, ethanol and MMA for visible light are 1.33, 1.36 and 1.41, respectively.

Fig. 3
Fig. 3

(a) Schematic of the experimental condition. (b) The plot of the thickness of PMMA layers formed on Au nanorods as a function of the intensity of Ti:sapphire laser light. SEM images of (i) PMMA-wrapped Au nanorods by LSPR-induced TPP after laser irradiation, (ii) polymerized PMMA line without Au nanorods, (iii) residues of bubbling of MMA caused by laser irradiation onto Au nanorods.

Fig. 4
Fig. 4

SEM images of Au nanorods/PMMA aggregated spots produced at a stationary focused spot of Ti:sapphire laser light. The laser intensity was 1.5 GW/cm2 and the exposure time was (a) 7.5 s and (b) 10 s, respectively. (c) High magnification image of (b). The spot consisted of Au nanorods individually wrapped by a PMMA layer. (d) Hypothetical mechanism of the formation of Au nanorods aggregation.

Fig. 5
Fig. 5

SEM images of letters “GOLD” made of aggregations of Au nanorods. (a) top view, (b, c) high magnification images. The laser intensity was 1.6 GW/cm2 and the exposure time was 3 s. The total size of the structure was 10 µm and the line width was about 1.2 µm.

Fig. 6
Fig. 6

SEM images of the fabricated line structures at the exposure time of 200 ms, 500 ms, 2 s and 3 s, respectively. The laser intensity was fixed at 1.6 GW/cm2. The plot shows line widths of the fabricated line structures as a function of the exposure time.

Fig. 7
Fig. 7

SEM images of the fabricated line structures with different NA, (a) 0.8, (b) 0.4, and (c) 1.4, respectively. The laser intensity was fixed at 1.5 GW/cm2.

Metrics