Abstract

We realize quantum gates for path qubits with a high-speed, polarization-independent and tunable beam splitter. Two electro-optical modulators act in a Mach-Zehnder interferometer as high-speed phase shifters and rapidly tune its splitting ratio. We test its performance with heralded single photons, observing a polarization-independent interference contrast above 95%. The switching time is about 5.6 ns, and a maximal repetition rate is 2.5 MHz. We demonstrate tunable feed-forward operations of a single-qubit gate of path-encoded qubits and a two-qubit gate via measurement-induced interaction between two photons.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum crytography,” Rev. Mod. Phys. 74, 145–195 (2002).
    [CrossRef]
  2. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
    [CrossRef]
  3. V. Scarani, H. Bechmann-Pasquinucci, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301–1350 (2009).
    [CrossRef]
  4. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
    [CrossRef] [PubMed]
  5. M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73, 58–61 (1994).
    [CrossRef] [PubMed]
  6. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
    [CrossRef] [PubMed]
  7. K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense Coding in Experimental Quantum Communication,” Phys. Rev. Lett. 76, 4656–4659 (1994).
    [CrossRef]
  8. D. Bouwmeester, J. W. Pan, K. Mattle, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
    [CrossRef]
  9. J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 3891–3894 (1998).
    [CrossRef]
  10. T. Jennewein, G. Weihs, J. W. Pan, and A. Zeilinger, “Experimental nonlocality proof of quantum teleportation and entanglement swapping,” Phys. Rev. Lett. 88, 017903 (2002).
    [CrossRef] [PubMed]
  11. J. W. Pan, Z. B. Chen, M. Żukowski, H. Weinfurter, and A. Zeilinger, “Multi-photon entanglement and interferometry,” arXiv:0805.2853 (2008).
  12. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
    [CrossRef] [PubMed]
  13. R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86, 5188–5191 (2001).
    [CrossRef] [PubMed]
  14. R. Prevedel, P. Walther, F. Tiefenbacher, P. Böhi, R. Kaltenbaek, T. Jennewein, and A. Zeilinger, “High-speed linear optics quantum computing using active feed-forward,” Nature 445, 65–69 (2007).
    [CrossRef] [PubMed]
  15. B. L. Higgins, D. W. Berry, S. D. Bartlett, H. M. Wiseman, and G. J. Pryde, “Entanglement-free Heisenberg-limited phase estimation,” Nature 450, 393–396 (2007).
    [CrossRef] [PubMed]
  16. B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, “Towards quantum chemistry on a quantum computer,” Nat. Chem. 2, 106–1112010.
    [CrossRef] [PubMed]
  17. X. S. Ma, B. Dakic, W. Naylor, A. Zeilinger, and P. Walther, “Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems,” Nat. Phys.(2011).
    [CrossRef]
  18. A. L. Migdall, D. Branning, and S. Castelletto, “Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source,” Phys. Rev. A 66, 053805 (2002).
    [CrossRef]
  19. J. H. Shapiro and F. N. Wong, “On-demand single-photon generation using a modular array of parametric down-converters with electro-optic polarization controls,” Opt. Lett. 32, 2698–2700 (2007).
    [CrossRef] [PubMed]
  20. X. S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83, 043814 (2011).
    [CrossRef]
  21. L. Eldada, “Advances in telecom and datacom optical components,” Opt. Eng. 40, 1165–1178 (2001).
    [CrossRef]
  22. N. Spagnolo, C. Vitelli, S. Giacomini, F. Sciarrino, and F. D. Martini, “Polarization preserving ultra fast optical shutter for quantum information processing,” Opt. Express 16, 17609–17615 (2008).
    [CrossRef] [PubMed]
  23. T. T. Ng, D. Gosal, A. Lamas-Linares, and C. Kurtsiefer, “Sagnac-loop phase shifter with polarization-independent operation,” Rev. Sci. Instrum. 82, 013106 (2011).
    [CrossRef] [PubMed]
  24. M. A. Hall, J. B. Altepeter, and P. Kumar, “Ultrafast switching of photonic entanglement,” Phys. Rev. Lett. 106, 053901 (2011).
    [CrossRef] [PubMed]
  25. http://www.leysop.com/ .
  26. P. Böhi, R. Prevedel, T. Jennewein, A. Stefanov, F. Tiefenbacher, and A. Zeilinger, “Implementation and characterization of active feed-forward for deterministic linear optics quantum computing,” Appl. Phys. B 89, 499–505 (2007).
    [CrossRef]
  27. R. Kaltenbaek, B. Blauensteiner, M. Żukowski, M. Aspelmeyer, and A. Zeilinger, “Experimental interference of independent photons,” Phys. Rev. Lett. 96, 2405022006.
    [CrossRef] [PubMed]
  28. M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys. 3, 692–695 (2007).
    [CrossRef]
  29. N. K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. OBrien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in bell-state analysis,” Phys. Rev. Lett. 95, 2105042005.
    [CrossRef] [PubMed]
  30. N. Kiesel, C. Schmid, U. Weber, R. Ursin, and H. Weinfurter, “Linear optics controlled-phase gate made simple,” Phys. Rev. Lett. 95, 2105052005.
    [CrossRef] [PubMed]
  31. R. Okamoto, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Demonstration of an optical quantum controlled-not gate without path interference,” Phys. Rev. Lett. 95, 2105062005.
    [CrossRef] [PubMed]
  32. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
    [CrossRef] [PubMed]
  33. J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3, 346–350 (2009).
    [CrossRef]

2011

T. T. Ng, D. Gosal, A. Lamas-Linares, and C. Kurtsiefer, “Sagnac-loop phase shifter with polarization-independent operation,” Rev. Sci. Instrum. 82, 013106 (2011).
[CrossRef] [PubMed]

M. A. Hall, J. B. Altepeter, and P. Kumar, “Ultrafast switching of photonic entanglement,” Phys. Rev. Lett. 106, 053901 (2011).
[CrossRef] [PubMed]

X. S. Ma, B. Dakic, W. Naylor, A. Zeilinger, and P. Walther, “Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems,” Nat. Phys.(2011).
[CrossRef]

X. S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83, 043814 (2011).
[CrossRef]

2010

B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, “Towards quantum chemistry on a quantum computer,” Nat. Chem. 2, 106–1112010.
[CrossRef] [PubMed]

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[CrossRef] [PubMed]

2009

V. Scarani, H. Bechmann-Pasquinucci, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301–1350 (2009).
[CrossRef]

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3, 346–350 (2009).
[CrossRef]

2008

2007

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys. 3, 692–695 (2007).
[CrossRef]

J. H. Shapiro and F. N. Wong, “On-demand single-photon generation using a modular array of parametric down-converters with electro-optic polarization controls,” Opt. Lett. 32, 2698–2700 (2007).
[CrossRef] [PubMed]

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

P. Böhi, R. Prevedel, T. Jennewein, A. Stefanov, F. Tiefenbacher, and A. Zeilinger, “Implementation and characterization of active feed-forward for deterministic linear optics quantum computing,” Appl. Phys. B 89, 499–505 (2007).
[CrossRef]

R. Prevedel, P. Walther, F. Tiefenbacher, P. Böhi, R. Kaltenbaek, T. Jennewein, and A. Zeilinger, “High-speed linear optics quantum computing using active feed-forward,” Nature 445, 65–69 (2007).
[CrossRef] [PubMed]

B. L. Higgins, D. W. Berry, S. D. Bartlett, H. M. Wiseman, and G. J. Pryde, “Entanglement-free Heisenberg-limited phase estimation,” Nature 450, 393–396 (2007).
[CrossRef] [PubMed]

2006

R. Kaltenbaek, B. Blauensteiner, M. Żukowski, M. Aspelmeyer, and A. Zeilinger, “Experimental interference of independent photons,” Phys. Rev. Lett. 96, 2405022006.
[CrossRef] [PubMed]

2005

N. K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. OBrien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in bell-state analysis,” Phys. Rev. Lett. 95, 2105042005.
[CrossRef] [PubMed]

N. Kiesel, C. Schmid, U. Weber, R. Ursin, and H. Weinfurter, “Linear optics controlled-phase gate made simple,” Phys. Rev. Lett. 95, 2105052005.
[CrossRef] [PubMed]

R. Okamoto, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Demonstration of an optical quantum controlled-not gate without path interference,” Phys. Rev. Lett. 95, 2105062005.
[CrossRef] [PubMed]

2002

A. L. Migdall, D. Branning, and S. Castelletto, “Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source,” Phys. Rev. A 66, 053805 (2002).
[CrossRef]

T. Jennewein, G. Weihs, J. W. Pan, and A. Zeilinger, “Experimental nonlocality proof of quantum teleportation and entanglement swapping,” Phys. Rev. Lett. 88, 017903 (2002).
[CrossRef] [PubMed]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum crytography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

2001

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef] [PubMed]

R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86, 5188–5191 (2001).
[CrossRef] [PubMed]

L. Eldada, “Advances in telecom and datacom optical components,” Opt. Eng. 40, 1165–1178 (2001).
[CrossRef]

1998

J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 3891–3894 (1998).
[CrossRef]

1997

D. Bouwmeester, J. W. Pan, K. Mattle, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

1994

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense Coding in Experimental Quantum Communication,” Phys. Rev. Lett. 76, 4656–4659 (1994).
[CrossRef]

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73, 58–61 (1994).
[CrossRef] [PubMed]

1987

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[CrossRef] [PubMed]

Almeida, M. P.

B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, “Towards quantum chemistry on a quantum computer,” Nat. Chem. 2, 106–1112010.
[CrossRef] [PubMed]

Altepeter, J. B.

M. A. Hall, J. B. Altepeter, and P. Kumar, “Ultrafast switching of photonic entanglement,” Phys. Rev. Lett. 106, 053901 (2011).
[CrossRef] [PubMed]

Aspelmeyer, M.

R. Kaltenbaek, B. Blauensteiner, M. Żukowski, M. Aspelmeyer, and A. Zeilinger, “Experimental interference of independent photons,” Phys. Rev. Lett. 96, 2405022006.
[CrossRef] [PubMed]

Aspuru-Guzik, A.

B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, “Towards quantum chemistry on a quantum computer,” Nat. Chem. 2, 106–1112010.
[CrossRef] [PubMed]

Barbieri, M.

B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, “Towards quantum chemistry on a quantum computer,” Nat. Chem. 2, 106–1112010.
[CrossRef] [PubMed]

Bartlett, S. D.

B. L. Higgins, D. W. Berry, S. D. Bartlett, H. M. Wiseman, and G. J. Pryde, “Entanglement-free Heisenberg-limited phase estimation,” Nature 450, 393–396 (2007).
[CrossRef] [PubMed]

Bechmann-Pasquinucci, H.

V. Scarani, H. Bechmann-Pasquinucci, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301–1350 (2009).
[CrossRef]

Bernstein, H. J.

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73, 58–61 (1994).
[CrossRef] [PubMed]

Berry, D. W.

B. L. Higgins, D. W. Berry, S. D. Bartlett, H. M. Wiseman, and G. J. Pryde, “Entanglement-free Heisenberg-limited phase estimation,” Nature 450, 393–396 (2007).
[CrossRef] [PubMed]

Bertani, P.

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73, 58–61 (1994).
[CrossRef] [PubMed]

Beveratos, A.

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys. 3, 692–695 (2007).
[CrossRef]

Biamonte, J. D.

B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, “Towards quantum chemistry on a quantum computer,” Nat. Chem. 2, 106–1112010.
[CrossRef] [PubMed]

Blauensteiner, B.

R. Kaltenbaek, B. Blauensteiner, M. Żukowski, M. Aspelmeyer, and A. Zeilinger, “Experimental interference of independent photons,” Phys. Rev. Lett. 96, 2405022006.
[CrossRef] [PubMed]

Böhi, P.

R. Prevedel, P. Walther, F. Tiefenbacher, P. Böhi, R. Kaltenbaek, T. Jennewein, and A. Zeilinger, “High-speed linear optics quantum computing using active feed-forward,” Nature 445, 65–69 (2007).
[CrossRef] [PubMed]

P. Böhi, R. Prevedel, T. Jennewein, A. Stefanov, F. Tiefenbacher, and A. Zeilinger, “Implementation and characterization of active feed-forward for deterministic linear optics quantum computing,” Appl. Phys. B 89, 499–505 (2007).
[CrossRef]

Bouwmeester, D.

J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 3891–3894 (1998).
[CrossRef]

D. Bouwmeester, J. W. Pan, K. Mattle, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

Branning, D.

A. L. Migdall, D. Branning, and S. Castelletto, “Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source,” Phys. Rev. A 66, 053805 (2002).
[CrossRef]

Briegel, H. J.

R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86, 5188–5191 (2001).
[CrossRef] [PubMed]

Castelletto, S.

A. L. Migdall, D. Branning, and S. Castelletto, “Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source,” Phys. Rev. A 66, 053805 (2002).
[CrossRef]

Chen, Z. B.

J. W. Pan, Z. B. Chen, M. Żukowski, H. Weinfurter, and A. Zeilinger, “Multi-photon entanglement and interferometry,” arXiv:0805.2853 (2008).

Cryan, M. J.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[CrossRef] [PubMed]

Dakic, B.

X. S. Ma, B. Dakic, W. Naylor, A. Zeilinger, and P. Walther, “Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems,” Nat. Phys.(2011).
[CrossRef]

Dowling, J. P.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Dušek, M.

V. Scarani, H. Bechmann-Pasquinucci, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301–1350 (2009).
[CrossRef]

Eldada, L.

L. Eldada, “Advances in telecom and datacom optical components,” Opt. Eng. 40, 1165–1178 (2001).
[CrossRef]

Giacomini, S.

Gilchrist, A.

N. K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. OBrien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in bell-state analysis,” Phys. Rev. Lett. 95, 2105042005.
[CrossRef] [PubMed]

Gillett, G. G.

B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, “Towards quantum chemistry on a quantum computer,” Nat. Chem. 2, 106–1112010.
[CrossRef] [PubMed]

Gisin, N.

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys. 3, 692–695 (2007).
[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum crytography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Goggin, M. E.

B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, “Towards quantum chemistry on a quantum computer,” Nat. Chem. 2, 106–1112010.
[CrossRef] [PubMed]

Gosal, D.

T. T. Ng, D. Gosal, A. Lamas-Linares, and C. Kurtsiefer, “Sagnac-loop phase shifter with polarization-independent operation,” Rev. Sci. Instrum. 82, 013106 (2011).
[CrossRef] [PubMed]

Halder, M.

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys. 3, 692–695 (2007).
[CrossRef]

Hall, M. A.

M. A. Hall, J. B. Altepeter, and P. Kumar, “Ultrafast switching of photonic entanglement,” Phys. Rev. Lett. 106, 053901 (2011).
[CrossRef] [PubMed]

Higgins, B. L.

B. L. Higgins, D. W. Berry, S. D. Bartlett, H. M. Wiseman, and G. J. Pryde, “Entanglement-free Heisenberg-limited phase estimation,” Nature 450, 393–396 (2007).
[CrossRef] [PubMed]

Hofmann, H. F.

R. Okamoto, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Demonstration of an optical quantum controlled-not gate without path interference,” Phys. Rev. Lett. 95, 2105062005.
[CrossRef] [PubMed]

Hong, C. K.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[CrossRef] [PubMed]

Jelezko, F.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[CrossRef] [PubMed]

Jennewein, T.

X. S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83, 043814 (2011).
[CrossRef]

R. Prevedel, P. Walther, F. Tiefenbacher, P. Böhi, R. Kaltenbaek, T. Jennewein, and A. Zeilinger, “High-speed linear optics quantum computing using active feed-forward,” Nature 445, 65–69 (2007).
[CrossRef] [PubMed]

P. Böhi, R. Prevedel, T. Jennewein, A. Stefanov, F. Tiefenbacher, and A. Zeilinger, “Implementation and characterization of active feed-forward for deterministic linear optics quantum computing,” Appl. Phys. B 89, 499–505 (2007).
[CrossRef]

T. Jennewein, G. Weihs, J. W. Pan, and A. Zeilinger, “Experimental nonlocality proof of quantum teleportation and entanglement swapping,” Phys. Rev. Lett. 88, 017903 (2002).
[CrossRef] [PubMed]

Kaltenbaek, R.

R. Prevedel, P. Walther, F. Tiefenbacher, P. Böhi, R. Kaltenbaek, T. Jennewein, and A. Zeilinger, “High-speed linear optics quantum computing using active feed-forward,” Nature 445, 65–69 (2007).
[CrossRef] [PubMed]

R. Kaltenbaek, B. Blauensteiner, M. Żukowski, M. Aspelmeyer, and A. Zeilinger, “Experimental interference of independent photons,” Phys. Rev. Lett. 96, 2405022006.
[CrossRef] [PubMed]

Kassal, I.

B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, “Towards quantum chemistry on a quantum computer,” Nat. Chem. 2, 106–1112010.
[CrossRef] [PubMed]

Kiesel, N.

N. Kiesel, C. Schmid, U. Weber, R. Ursin, and H. Weinfurter, “Linear optics controlled-phase gate made simple,” Phys. Rev. Lett. 95, 2105052005.
[CrossRef] [PubMed]

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef] [PubMed]

Kofler, J.

X. S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83, 043814 (2011).
[CrossRef]

Kok, P.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Kumar, P.

M. A. Hall, J. B. Altepeter, and P. Kumar, “Ultrafast switching of photonic entanglement,” Phys. Rev. Lett. 106, 053901 (2011).
[CrossRef] [PubMed]

Kurtsiefer, C.

T. T. Ng, D. Gosal, A. Lamas-Linares, and C. Kurtsiefer, “Sagnac-loop phase shifter with polarization-independent operation,” Rev. Sci. Instrum. 82, 013106 (2011).
[CrossRef] [PubMed]

Kwiat, P. G.

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense Coding in Experimental Quantum Communication,” Phys. Rev. Lett. 76, 4656–4659 (1994).
[CrossRef]

Ladd, T. D.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[CrossRef] [PubMed]

Laflamme, R.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[CrossRef] [PubMed]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef] [PubMed]

Lamas-Linares, A.

T. T. Ng, D. Gosal, A. Lamas-Linares, and C. Kurtsiefer, “Sagnac-loop phase shifter with polarization-independent operation,” Rev. Sci. Instrum. 82, 013106 (2011).
[CrossRef] [PubMed]

Langford, N. K.

N. K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. OBrien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in bell-state analysis,” Phys. Rev. Lett. 95, 2105042005.
[CrossRef] [PubMed]

Lanyon, B. P.

B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, “Towards quantum chemistry on a quantum computer,” Nat. Chem. 2, 106–1112010.
[CrossRef] [PubMed]

Lütkenhaus, N.

V. Scarani, H. Bechmann-Pasquinucci, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301–1350 (2009).
[CrossRef]

Ma, X. S.

X. S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83, 043814 (2011).
[CrossRef]

X. S. Ma, B. Dakic, W. Naylor, A. Zeilinger, and P. Walther, “Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems,” Nat. Phys.(2011).
[CrossRef]

Mandel, L.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[CrossRef] [PubMed]

Martini, F. D.

Matthews, J. C. F.

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3, 346–350 (2009).
[CrossRef]

Mattle, K.

D. Bouwmeester, J. W. Pan, K. Mattle, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense Coding in Experimental Quantum Communication,” Phys. Rev. Lett. 76, 4656–4659 (1994).
[CrossRef]

Migdall, A. L.

A. L. Migdall, D. Branning, and S. Castelletto, “Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source,” Phys. Rev. A 66, 053805 (2002).
[CrossRef]

Milburn, G.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef] [PubMed]

Mohseni, M.

B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, “Towards quantum chemistry on a quantum computer,” Nat. Chem. 2, 106–1112010.
[CrossRef] [PubMed]

Monroe, C.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[CrossRef] [PubMed]

Munro, W. J.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Nakamura, Y.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[CrossRef] [PubMed]

Naylor, W.

X. S. Ma, B. Dakic, W. Naylor, A. Zeilinger, and P. Walther, “Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems,” Nat. Phys.(2011).
[CrossRef]

Nemoto, K.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Ng, T. T.

T. T. Ng, D. Gosal, A. Lamas-Linares, and C. Kurtsiefer, “Sagnac-loop phase shifter with polarization-independent operation,” Rev. Sci. Instrum. 82, 013106 (2011).
[CrossRef] [PubMed]

O’Brien, J. L.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[CrossRef] [PubMed]

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3, 346–350 (2009).
[CrossRef]

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[CrossRef] [PubMed]

OBrien, J. L.

N. K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. OBrien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in bell-state analysis,” Phys. Rev. Lett. 95, 2105042005.
[CrossRef] [PubMed]

Okamoto, R.

R. Okamoto, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Demonstration of an optical quantum controlled-not gate without path interference,” Phys. Rev. Lett. 95, 2105062005.
[CrossRef] [PubMed]

Ou, Z. Y.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[CrossRef] [PubMed]

Pan, J. W.

T. Jennewein, G. Weihs, J. W. Pan, and A. Zeilinger, “Experimental nonlocality proof of quantum teleportation and entanglement swapping,” Phys. Rev. Lett. 88, 017903 (2002).
[CrossRef] [PubMed]

J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 3891–3894 (1998).
[CrossRef]

D. Bouwmeester, J. W. Pan, K. Mattle, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

J. W. Pan, Z. B. Chen, M. Żukowski, H. Weinfurter, and A. Zeilinger, “Multi-photon entanglement and interferometry,” arXiv:0805.2853 (2008).

Peev, M.

V. Scarani, H. Bechmann-Pasquinucci, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301–1350 (2009).
[CrossRef]

Politi, A.

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3, 346–350 (2009).
[CrossRef]

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[CrossRef] [PubMed]

Powell, B. J.

B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, “Towards quantum chemistry on a quantum computer,” Nat. Chem. 2, 106–1112010.
[CrossRef] [PubMed]

Prevedel, R.

R. Prevedel, P. Walther, F. Tiefenbacher, P. Böhi, R. Kaltenbaek, T. Jennewein, and A. Zeilinger, “High-speed linear optics quantum computing using active feed-forward,” Nature 445, 65–69 (2007).
[CrossRef] [PubMed]

P. Böhi, R. Prevedel, T. Jennewein, A. Stefanov, F. Tiefenbacher, and A. Zeilinger, “Implementation and characterization of active feed-forward for deterministic linear optics quantum computing,” Appl. Phys. B 89, 499–505 (2007).
[CrossRef]

N. K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. OBrien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in bell-state analysis,” Phys. Rev. Lett. 95, 2105042005.
[CrossRef] [PubMed]

Pryde, G. J.

B. L. Higgins, D. W. Berry, S. D. Bartlett, H. M. Wiseman, and G. J. Pryde, “Entanglement-free Heisenberg-limited phase estimation,” Nature 450, 393–396 (2007).
[CrossRef] [PubMed]

N. K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. OBrien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in bell-state analysis,” Phys. Rev. Lett. 95, 2105042005.
[CrossRef] [PubMed]

Ralph, T. C.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Rarity, J. G.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[CrossRef] [PubMed]

Raussendorf, R.

R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86, 5188–5191 (2001).
[CrossRef] [PubMed]

Reck, M.

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73, 58–61 (1994).
[CrossRef] [PubMed]

Resch, K. J.

N. K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. OBrien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in bell-state analysis,” Phys. Rev. Lett. 95, 2105042005.
[CrossRef] [PubMed]

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum crytography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Sasaki, K.

R. Okamoto, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Demonstration of an optical quantum controlled-not gate without path interference,” Phys. Rev. Lett. 95, 2105062005.
[CrossRef] [PubMed]

Scarani, V.

V. Scarani, H. Bechmann-Pasquinucci, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301–1350 (2009).
[CrossRef]

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys. 3, 692–695 (2007).
[CrossRef]

Schmid, C.

N. Kiesel, C. Schmid, U. Weber, R. Ursin, and H. Weinfurter, “Linear optics controlled-phase gate made simple,” Phys. Rev. Lett. 95, 2105052005.
[CrossRef] [PubMed]

Sciarrino, F.

Shapiro, J. H.

Simon, C.

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys. 3, 692–695 (2007).
[CrossRef]

Spagnolo, N.

Stefanov, A.

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3, 346–350 (2009).
[CrossRef]

P. Böhi, R. Prevedel, T. Jennewein, A. Stefanov, F. Tiefenbacher, and A. Zeilinger, “Implementation and characterization of active feed-forward for deterministic linear optics quantum computing,” Appl. Phys. B 89, 499–505 (2007).
[CrossRef]

Takeuchi, S.

R. Okamoto, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Demonstration of an optical quantum controlled-not gate without path interference,” Phys. Rev. Lett. 95, 2105062005.
[CrossRef] [PubMed]

Tiefenbacher, F.

R. Prevedel, P. Walther, F. Tiefenbacher, P. Böhi, R. Kaltenbaek, T. Jennewein, and A. Zeilinger, “High-speed linear optics quantum computing using active feed-forward,” Nature 445, 65–69 (2007).
[CrossRef] [PubMed]

P. Böhi, R. Prevedel, T. Jennewein, A. Stefanov, F. Tiefenbacher, and A. Zeilinger, “Implementation and characterization of active feed-forward for deterministic linear optics quantum computing,” Appl. Phys. B 89, 499–505 (2007).
[CrossRef]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum crytography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Ursin, R.

N. Kiesel, C. Schmid, U. Weber, R. Ursin, and H. Weinfurter, “Linear optics controlled-phase gate made simple,” Phys. Rev. Lett. 95, 2105052005.
[CrossRef] [PubMed]

Vitelli, C.

Walther, P.

X. S. Ma, B. Dakic, W. Naylor, A. Zeilinger, and P. Walther, “Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems,” Nat. Phys.(2011).
[CrossRef]

R. Prevedel, P. Walther, F. Tiefenbacher, P. Böhi, R. Kaltenbaek, T. Jennewein, and A. Zeilinger, “High-speed linear optics quantum computing using active feed-forward,” Nature 445, 65–69 (2007).
[CrossRef] [PubMed]

Weber, U.

N. Kiesel, C. Schmid, U. Weber, R. Ursin, and H. Weinfurter, “Linear optics controlled-phase gate made simple,” Phys. Rev. Lett. 95, 2105052005.
[CrossRef] [PubMed]

Weihs, G.

T. Jennewein, G. Weihs, J. W. Pan, and A. Zeilinger, “Experimental nonlocality proof of quantum teleportation and entanglement swapping,” Phys. Rev. Lett. 88, 017903 (2002).
[CrossRef] [PubMed]

Weinfurter, H.

N. Kiesel, C. Schmid, U. Weber, R. Ursin, and H. Weinfurter, “Linear optics controlled-phase gate made simple,” Phys. Rev. Lett. 95, 2105052005.
[CrossRef] [PubMed]

J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 3891–3894 (1998).
[CrossRef]

D. Bouwmeester, J. W. Pan, K. Mattle, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense Coding in Experimental Quantum Communication,” Phys. Rev. Lett. 76, 4656–4659 (1994).
[CrossRef]

J. W. Pan, Z. B. Chen, M. Żukowski, H. Weinfurter, and A. Zeilinger, “Multi-photon entanglement and interferometry,” arXiv:0805.2853 (2008).

Weinhold, T. J.

N. K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. OBrien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in bell-state analysis,” Phys. Rev. Lett. 95, 2105042005.
[CrossRef] [PubMed]

White, A. G.

B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, “Towards quantum chemistry on a quantum computer,” Nat. Chem. 2, 106–1112010.
[CrossRef] [PubMed]

N. K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. OBrien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in bell-state analysis,” Phys. Rev. Lett. 95, 2105042005.
[CrossRef] [PubMed]

Whitfield, J. D.

B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, “Towards quantum chemistry on a quantum computer,” Nat. Chem. 2, 106–1112010.
[CrossRef] [PubMed]

Wiseman, H. M.

B. L. Higgins, D. W. Berry, S. D. Bartlett, H. M. Wiseman, and G. J. Pryde, “Entanglement-free Heisenberg-limited phase estimation,” Nature 450, 393–396 (2007).
[CrossRef] [PubMed]

Wong, F. N.

Yu, S.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[CrossRef] [PubMed]

Zbinden, H.

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys. 3, 692–695 (2007).
[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum crytography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Zeilinger, A.

X. S. Ma, B. Dakic, W. Naylor, A. Zeilinger, and P. Walther, “Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems,” Nat. Phys.(2011).
[CrossRef]

X. S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83, 043814 (2011).
[CrossRef]

R. Prevedel, P. Walther, F. Tiefenbacher, P. Böhi, R. Kaltenbaek, T. Jennewein, and A. Zeilinger, “High-speed linear optics quantum computing using active feed-forward,” Nature 445, 65–69 (2007).
[CrossRef] [PubMed]

P. Böhi, R. Prevedel, T. Jennewein, A. Stefanov, F. Tiefenbacher, and A. Zeilinger, “Implementation and characterization of active feed-forward for deterministic linear optics quantum computing,” Appl. Phys. B 89, 499–505 (2007).
[CrossRef]

R. Kaltenbaek, B. Blauensteiner, M. Żukowski, M. Aspelmeyer, and A. Zeilinger, “Experimental interference of independent photons,” Phys. Rev. Lett. 96, 2405022006.
[CrossRef] [PubMed]

T. Jennewein, G. Weihs, J. W. Pan, and A. Zeilinger, “Experimental nonlocality proof of quantum teleportation and entanglement swapping,” Phys. Rev. Lett. 88, 017903 (2002).
[CrossRef] [PubMed]

J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 3891–3894 (1998).
[CrossRef]

D. Bouwmeester, J. W. Pan, K. Mattle, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73, 58–61 (1994).
[CrossRef] [PubMed]

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense Coding in Experimental Quantum Communication,” Phys. Rev. Lett. 76, 4656–4659 (1994).
[CrossRef]

J. W. Pan, Z. B. Chen, M. Żukowski, H. Weinfurter, and A. Zeilinger, “Multi-photon entanglement and interferometry,” arXiv:0805.2853 (2008).

Zotter, S.

X. S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83, 043814 (2011).
[CrossRef]

Zukowski, M.

R. Kaltenbaek, B. Blauensteiner, M. Żukowski, M. Aspelmeyer, and A. Zeilinger, “Experimental interference of independent photons,” Phys. Rev. Lett. 96, 2405022006.
[CrossRef] [PubMed]

J. W. Pan, Z. B. Chen, M. Żukowski, H. Weinfurter, and A. Zeilinger, “Multi-photon entanglement and interferometry,” arXiv:0805.2853 (2008).

Appl. Phys. B

P. Böhi, R. Prevedel, T. Jennewein, A. Stefanov, F. Tiefenbacher, and A. Zeilinger, “Implementation and characterization of active feed-forward for deterministic linear optics quantum computing,” Appl. Phys. B 89, 499–505 (2007).
[CrossRef]

Nat. Chem.

B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, “Towards quantum chemistry on a quantum computer,” Nat. Chem. 2, 106–1112010.
[CrossRef] [PubMed]

Nat. Photonics

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3, 346–350 (2009).
[CrossRef]

Nat. Phys.

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys. 3, 692–695 (2007).
[CrossRef]

X. S. Ma, B. Dakic, W. Naylor, A. Zeilinger, and P. Walther, “Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems,” Nat. Phys.(2011).
[CrossRef]

Nature

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef] [PubMed]

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[CrossRef] [PubMed]

D. Bouwmeester, J. W. Pan, K. Mattle, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

R. Prevedel, P. Walther, F. Tiefenbacher, P. Böhi, R. Kaltenbaek, T. Jennewein, and A. Zeilinger, “High-speed linear optics quantum computing using active feed-forward,” Nature 445, 65–69 (2007).
[CrossRef] [PubMed]

B. L. Higgins, D. W. Berry, S. D. Bartlett, H. M. Wiseman, and G. J. Pryde, “Entanglement-free Heisenberg-limited phase estimation,” Nature 450, 393–396 (2007).
[CrossRef] [PubMed]

Opt. Eng.

L. Eldada, “Advances in telecom and datacom optical components,” Opt. Eng. 40, 1165–1178 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

X. S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83, 043814 (2011).
[CrossRef]

A. L. Migdall, D. Branning, and S. Castelletto, “Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source,” Phys. Rev. A 66, 053805 (2002).
[CrossRef]

Phys. Rev. Lett.

R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86, 5188–5191 (2001).
[CrossRef] [PubMed]

J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 3891–3894 (1998).
[CrossRef]

T. Jennewein, G. Weihs, J. W. Pan, and A. Zeilinger, “Experimental nonlocality proof of quantum teleportation and entanglement swapping,” Phys. Rev. Lett. 88, 017903 (2002).
[CrossRef] [PubMed]

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73, 58–61 (1994).
[CrossRef] [PubMed]

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[CrossRef] [PubMed]

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense Coding in Experimental Quantum Communication,” Phys. Rev. Lett. 76, 4656–4659 (1994).
[CrossRef]

R. Kaltenbaek, B. Blauensteiner, M. Żukowski, M. Aspelmeyer, and A. Zeilinger, “Experimental interference of independent photons,” Phys. Rev. Lett. 96, 2405022006.
[CrossRef] [PubMed]

M. A. Hall, J. B. Altepeter, and P. Kumar, “Ultrafast switching of photonic entanglement,” Phys. Rev. Lett. 106, 053901 (2011).
[CrossRef] [PubMed]

N. K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. OBrien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in bell-state analysis,” Phys. Rev. Lett. 95, 2105042005.
[CrossRef] [PubMed]

N. Kiesel, C. Schmid, U. Weber, R. Ursin, and H. Weinfurter, “Linear optics controlled-phase gate made simple,” Phys. Rev. Lett. 95, 2105052005.
[CrossRef] [PubMed]

R. Okamoto, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Demonstration of an optical quantum controlled-not gate without path interference,” Phys. Rev. Lett. 95, 2105062005.
[CrossRef] [PubMed]

Rev. Mod. Phys.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum crytography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

V. Scarani, H. Bechmann-Pasquinucci, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301–1350 (2009).
[CrossRef]

Rev. Sci. Instrum.

T. T. Ng, D. Gosal, A. Lamas-Linares, and C. Kurtsiefer, “Sagnac-loop phase shifter with polarization-independent operation,” Rev. Sci. Instrum. 82, 013106 (2011).
[CrossRef] [PubMed]

Science

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[CrossRef] [PubMed]

Other

http://www.leysop.com/ .

J. W. Pan, Z. B. Chen, M. Żukowski, H. Weinfurter, and A. Zeilinger, “Multi-photon entanglement and interferometry,” arXiv:0805.2853 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(Color online.) The concept of a tunable beam splitter. A. The splitter ratio (the ratio between the transmissivity and reflectivity) of a tunable beam splitter (TBS) can be adjusted. Therefore, the counts of detectors D1 and D2 vary according to the splitting ratio. B. The realization of a TBS with a Mach-Zehnder interferometer, which consists of two beam splitters (BS1 and BS2), two mirrors (M1 and M2) and a phase shifter (PS). The splitting ratio can be tuned by adjusting PS. C. The normalized intensities of D1 (red solid curve) and D2 (black dashed curve) are plotted as a function of the phase.

Fig. 2
Fig. 2

(Color online.) Experimental setup for performing feed-forward operation of a path-encoding single-qubit gate with heralded single photons. Femtosecond laser pulses from a Ti:Sapphire oscillator (λ = 808 nm) are up-converted with a β-barium borate crystal (BBO1). The up-converted pulses and the remaining fundamental pulses are separated with six dichroic mirrors (6 DMs). A correlated photon pair is generated from BBO2 via spontaneous parametric down-conversion. By detecting photon 1 in the transmitting arm of the polarizing beam splitter (PBS) with an avalanche photon detector (D3), we herald the presence of photon 2 in the reflecting arm of the PBS. Photon 2 is delayed with an optical fiber and the polarization rotation of the fiber is compensated by a polarization controller (PC). Then the photon is sent to the tunable beam splitter (TBS). Both photons are filtered by using interference filters (IF) with 3 nm bandwidth centered around 808 nm. The output signal of the detection of photon 1 is used to trigger two EOMs. The time delay between trigger pulse and the arrival of photon 2 at the EOMs is adjusted via the field-programmable gate array (FPGA) logic, which allows the feed-forward operations. Photon 2 is detected by D1 or D2 at the output of the TBS. Note that the interferometer is actively stabilized by using an auxiliary He-Ne laser (He-Ne), a silicon photon detector (PD), an analogue proportional-integral-derivative (PID) control circuit and a ring-piezo transducer.

Fig. 3
Fig. 3

(Color online.) Demonstration of the tunable and polarization-independent feed-forward operation of a single-qubit gate of path-encoded qubits. Experimental results for A horizontally and B +45° polarized input single photons. The black squares (red circles) are the values of the transmissivity (reflectivity) of the ultrafast tunable beam splitter, which are calculated from the coincidence counts between D1 and D3 (D2 and D3) and fitted with a black solid (red dash) sinusoidal curve. Error bars represent statistical errors of ±1 standard deviation and are comparable with the size of the data points.

Fig. 4
Fig. 4

Measured switching response of the tunable beam splitter. This is measured with a continuous wave laser and a Si photon detector. A rise time of 5.6 ns is observed, referring to the time for the signal to rise from 10% to 90%. The switching starts at an offset time of 110.4 ns. Note that, rise and fall time are typical parameters used to quantify the response speed of devices and are defined as the time required for a signal to change from 10% and 90% of the step height for the rise time (90% and 10% for the fall time).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

| Ψ TBS sin ϕ ( U ) 2 e i ( 3 π 2 ϕ ( U ) 2 ) ( α | + β | ) | e + cos ϕ ( U ) 2 e i ( π 2 + ϕ ( U ) 2 ) ( α | + + β | ) | f ,

Metrics