Abstract

Amplifier similaritons are generated in a dispersion-mapped fiber laser. Output pulse parameters are nearly independent of the net group velocity dispersion (GVD) owing to the strong local nonlinear attraction in the gain fiber, which dictates the pulse evolution. This constitutes a stable mode-locking regime that is capable of generating sub-100-fs pulses over a broad range of anomalous and normal GVD. These features are consistent with numerical simulations.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18, 1080–1082 (1993).
    [CrossRef] [PubMed]
  2. F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
    [CrossRef] [PubMed]
  3. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14, 10095–10100 (2006).
    [CrossRef] [PubMed]
  4. W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).
    [CrossRef]
  5. K. Kieu, W. H. Renninger, A. Chong, and F. W. Wise, “Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser,” Opt. Lett. 34, 593–595 (2009).
    [CrossRef] [PubMed]
  6. M. Baumgartl, F. Jansen, F. Stutzki, C. Jauregui, B. Ortaç, J. Limpert, and A. Tünnermann, “High average and peak power femtosecond large-pitch photonic-crystal-fiber laser,” Opt. Lett. 36, 244–246 (2011).
    [CrossRef] [PubMed]
  7. D. Anderson, M. Desaix, M. Karlsson, M. Lisak, and M. Quiroga-Teixeiro, “Wave-breaking-free pulses in nonlinear-optical fibers,” J. Opt. Soc. Am. B 10, 1185–1190 (1993).
    [CrossRef]
  8. K. Tamura and M. Nakazawa, “Pulse compression by nonlinear pulse evolution with reduced optical wave breaking in erbium-doped fiber amplifiers,” Opt. Lett. 21, 68–70 (1996).
    [CrossRef] [PubMed]
  9. V. Kruglov, A. Peacock, J. Dudley, and J. Harvey, “Self-similar propagation of high-power parabolic pulses in optical fiber amplifiers,” Opt. Lett. 25, 1753–1755 (2000).
    [CrossRef]
  10. V. Kruglov, A. Peacock, J. Harvey, and J. Dudley, “Self-similar propagation of parabolic pulses in normal dispersion fiber amplifiers,” J. Opt. Soc. Am. B 19, 461–469 (2002).
    [CrossRef]
  11. V. I. Kruglov, A. C. Peacock, and J. D. Harvey, “Exact self-similar solutions of the generalized nonlinear Schrödinger equation with distributed coefficients,” Phys. Rev. Lett. 90, 113902 (2003).
    [CrossRef] [PubMed]
  12. M. Fermann, V. Kruglov, B. Thomsen, J. Dudley, and J. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
    [CrossRef] [PubMed]
  13. C. Finot, G. Millot, and J. M. Dudley, “Asymptotic characteristics of parabolic similariton pulses in optical fiber amplifiers,” Opt. Lett. 29, 2533–2535 (2004).
    [CrossRef] [PubMed]
  14. C. Finot and G. Millot, “Synthesis of optical pulses by use of similaritons,” Opt. Express 12, 5104–5109 (2004).
    [CrossRef] [PubMed]
  15. C. Finot, G. Millot, C. Billet, and J. Dudley, “Experimental generation of parabolic pulses via raman amplification in optical fiber,” Opt. Express 11, 1547–1552 (2003).
    [CrossRef] [PubMed]
  16. D. B. Soh, J. Nilsson, and A. B. Grudinin, “Efficient femtosecond pulse generation using a parabolic amplifier combined with a pulse compressor. II. Finite gain-bandwidth effect,” J. Opt. Soc. Am. B 23, 10–19 (2006).
    [CrossRef]
  17. T. Hirooka and M. Nakazawa, “Parabolic pulse generation by use of a dispersion-decreasing fiber with normal group-velocity dispersion,” Opt. Lett. 29, 498–500 (2004).
    [CrossRef] [PubMed]
  18. C. Finot, B. Barviau, G. Millot, A. Guryanov, A. Sysoliatin, and S. Wabnitz, “Parabolic pulse generation with active or passive dispersion decreasing optical fibers,” Opt. Express 15, 15824–15835 (2007).
    [CrossRef] [PubMed]
  19. J. Limpert, T. Schreiber, T. Clausnitzer, K. Zöllner, H. Fuchs, E. Kley, H. Zellmer, and A. Tünnermann, “High-power femtosecond yb-doped fiber amplifier,” Opt. Express 10, 628–638 (2002).
    [PubMed]
  20. D. N. Papadopoulos, Y. Zaouter, M. Hanna, F. Druon, E. Mottay, E. Cormier, and P. Georges, “Generation of 63 fs 4.1 MW peak power pulses from a parabolic fiber amplifier operated beyond the gain bandwidth limit,” Opt. Lett. 32, 2520–2522 (2007).
    [CrossRef] [PubMed]
  21. Y. Deng, C.-Y. Chien, B. G. Fidric, and J. D. Kafka, “Generation of sub-50 fs pulses from a high-power yb-doped fiber amplifier,” Opt. Lett. 34, 3469–3471 (2009).
    [CrossRef] [PubMed]
  22. B. Oktem, C. Ulgudur, and F. O. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4, 307–311 (2010).
    [CrossRef]
  23. W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82, 021805 (2010).
    [CrossRef]
  24. C. Aguergaray, D. Méchin, V. Kruglov, and J. D. Harvey, “Experimental realization of a mode-locked parabolic raman fiber oscillator,” Opt. Express 18, 8680–8687 (2010).
    [CrossRef] [PubMed]
  25. B. G. Bale and S. Wabnitz, “Strong spectral filtering for a mode-locked similariton fiber laser,” Opt. Lett. 35, 2466–2468 (2010).
    [CrossRef] [PubMed]
  26. B. Nie, D. Pestov, F. W. Wise, and M. Dantus, “Generation of 42-fs and 10-nJ pulses from a fiber laser with self-similar evolution in the gain segment,” Opt. Express 19, 12074–12080 (2011).
    [CrossRef] [PubMed]
  27. G. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001).
  28. L. Nugent-Glandorf, T. A. Johnson, Y. Kobayashi, and S. A. Diddams, “Impact of dispersion on amplitude and frequency noise in a yb-fiber laser comb,” Opt. Lett. 36, 1578–1580 (2011).
    [CrossRef] [PubMed]

2011

2010

C. Aguergaray, D. Méchin, V. Kruglov, and J. D. Harvey, “Experimental realization of a mode-locked parabolic raman fiber oscillator,” Opt. Express 18, 8680–8687 (2010).
[CrossRef] [PubMed]

B. G. Bale and S. Wabnitz, “Strong spectral filtering for a mode-locked similariton fiber laser,” Opt. Lett. 35, 2466–2468 (2010).
[CrossRef] [PubMed]

B. Oktem, C. Ulgudur, and F. O. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4, 307–311 (2010).
[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82, 021805 (2010).
[CrossRef]

2009

2008

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).
[CrossRef]

2007

2006

2004

2003

V. I. Kruglov, A. C. Peacock, and J. D. Harvey, “Exact self-similar solutions of the generalized nonlinear Schrödinger equation with distributed coefficients,” Phys. Rev. Lett. 90, 113902 (2003).
[CrossRef] [PubMed]

C. Finot, G. Millot, C. Billet, and J. Dudley, “Experimental generation of parabolic pulses via raman amplification in optical fiber,” Opt. Express 11, 1547–1552 (2003).
[CrossRef] [PubMed]

2002

2000

V. Kruglov, A. Peacock, J. Dudley, and J. Harvey, “Self-similar propagation of high-power parabolic pulses in optical fiber amplifiers,” Opt. Lett. 25, 1753–1755 (2000).
[CrossRef]

M. Fermann, V. Kruglov, B. Thomsen, J. Dudley, and J. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[CrossRef] [PubMed]

1996

1993

Agrawal, G.

G. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001).

Aguergaray, C.

Anderson, D.

Bale, B. G.

Barviau, B.

Baumgartl, M.

Billet, C.

Buckley, J.

Buckley, J. R.

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Chien, C.-Y.

Chong, A.

W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82, 021805 (2010).
[CrossRef]

K. Kieu, W. H. Renninger, A. Chong, and F. W. Wise, “Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser,” Opt. Lett. 34, 593–595 (2009).
[CrossRef] [PubMed]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).
[CrossRef]

A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14, 10095–10100 (2006).
[CrossRef] [PubMed]

Clark, W. G.

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Clausnitzer, T.

Cormier, E.

Dantus, M.

Deng, Y.

Desaix, M.

Diddams, S. A.

Druon, F.

Dudley, J.

Dudley, J. M.

Fermann, M.

M. Fermann, V. Kruglov, B. Thomsen, J. Dudley, and J. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[CrossRef] [PubMed]

Fidric, B. G.

Finot, C.

Fuchs, H.

Georges, P.

Grudinin, A. B.

Guryanov, A.

Hanna, M.

Harvey, J.

Harvey, J. D.

C. Aguergaray, D. Méchin, V. Kruglov, and J. D. Harvey, “Experimental realization of a mode-locked parabolic raman fiber oscillator,” Opt. Express 18, 8680–8687 (2010).
[CrossRef] [PubMed]

V. I. Kruglov, A. C. Peacock, and J. D. Harvey, “Exact self-similar solutions of the generalized nonlinear Schrödinger equation with distributed coefficients,” Phys. Rev. Lett. 90, 113902 (2003).
[CrossRef] [PubMed]

Haus, H. A.

Hirooka, T.

Ilday, F. O.

B. Oktem, C. Ulgudur, and F. O. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4, 307–311 (2010).
[CrossRef]

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Ippen, E. P.

Jansen, F.

Jauregui, C.

Johnson, T. A.

Kafka, J. D.

Karlsson, M.

Kieu, K.

Kley, E.

Kobayashi, Y.

Kruglov, V.

Kruglov, V. I.

V. I. Kruglov, A. C. Peacock, and J. D. Harvey, “Exact self-similar solutions of the generalized nonlinear Schrödinger equation with distributed coefficients,” Phys. Rev. Lett. 90, 113902 (2003).
[CrossRef] [PubMed]

Limpert, J.

Lisak, M.

Méchin, D.

Millot, G.

Mottay, E.

Nakazawa, M.

Nelson, L. E.

Nie, B.

Nilsson, J.

Nugent-Glandorf, L.

Oktem, B.

B. Oktem, C. Ulgudur, and F. O. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4, 307–311 (2010).
[CrossRef]

Ortaç, B.

Papadopoulos, D. N.

Peacock, A.

Peacock, A. C.

V. I. Kruglov, A. C. Peacock, and J. D. Harvey, “Exact self-similar solutions of the generalized nonlinear Schrödinger equation with distributed coefficients,” Phys. Rev. Lett. 90, 113902 (2003).
[CrossRef] [PubMed]

Pestov, D.

Quiroga-Teixeiro, M.

Renninger, W.

Renninger, W. H.

W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82, 021805 (2010).
[CrossRef]

K. Kieu, W. H. Renninger, A. Chong, and F. W. Wise, “Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser,” Opt. Lett. 34, 593–595 (2009).
[CrossRef] [PubMed]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).
[CrossRef]

Schreiber, T.

Soh, D. B.

Stutzki, F.

Sysoliatin, A.

Tamura, K.

Thomsen, B.

M. Fermann, V. Kruglov, B. Thomsen, J. Dudley, and J. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[CrossRef] [PubMed]

Tünnermann, A.

Ulgudur, C.

B. Oktem, C. Ulgudur, and F. O. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4, 307–311 (2010).
[CrossRef]

Wabnitz, S.

Wise, F.

Wise, F. W.

B. Nie, D. Pestov, F. W. Wise, and M. Dantus, “Generation of 42-fs and 10-nJ pulses from a fiber laser with self-similar evolution in the gain segment,” Opt. Express 19, 12074–12080 (2011).
[CrossRef] [PubMed]

W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82, 021805 (2010).
[CrossRef]

K. Kieu, W. H. Renninger, A. Chong, and F. W. Wise, “Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser,” Opt. Lett. 34, 593–595 (2009).
[CrossRef] [PubMed]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).
[CrossRef]

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Zaouter, Y.

Zellmer, H.

Zöllner, K.

J. Opt. Soc. Am. B

Nat. Photonics

B. Oktem, C. Ulgudur, and F. O. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4, 307–311 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

K. Kieu, W. H. Renninger, A. Chong, and F. W. Wise, “Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser,” Opt. Lett. 34, 593–595 (2009).
[CrossRef] [PubMed]

Y. Deng, C.-Y. Chien, B. G. Fidric, and J. D. Kafka, “Generation of sub-50 fs pulses from a high-power yb-doped fiber amplifier,” Opt. Lett. 34, 3469–3471 (2009).
[CrossRef] [PubMed]

B. G. Bale and S. Wabnitz, “Strong spectral filtering for a mode-locked similariton fiber laser,” Opt. Lett. 35, 2466–2468 (2010).
[CrossRef] [PubMed]

M. Baumgartl, F. Jansen, F. Stutzki, C. Jauregui, B. Ortaç, J. Limpert, and A. Tünnermann, “High average and peak power femtosecond large-pitch photonic-crystal-fiber laser,” Opt. Lett. 36, 244–246 (2011).
[CrossRef] [PubMed]

L. Nugent-Glandorf, T. A. Johnson, Y. Kobayashi, and S. A. Diddams, “Impact of dispersion on amplitude and frequency noise in a yb-fiber laser comb,” Opt. Lett. 36, 1578–1580 (2011).
[CrossRef] [PubMed]

T. Hirooka and M. Nakazawa, “Parabolic pulse generation by use of a dispersion-decreasing fiber with normal group-velocity dispersion,” Opt. Lett. 29, 498–500 (2004).
[CrossRef] [PubMed]

C. Finot, G. Millot, and J. M. Dudley, “Asymptotic characteristics of parabolic similariton pulses in optical fiber amplifiers,” Opt. Lett. 29, 2533–2535 (2004).
[CrossRef] [PubMed]

D. N. Papadopoulos, Y. Zaouter, M. Hanna, F. Druon, E. Mottay, E. Cormier, and P. Georges, “Generation of 63 fs 4.1 MW peak power pulses from a parabolic fiber amplifier operated beyond the gain bandwidth limit,” Opt. Lett. 32, 2520–2522 (2007).
[CrossRef] [PubMed]

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18, 1080–1082 (1993).
[CrossRef] [PubMed]

K. Tamura and M. Nakazawa, “Pulse compression by nonlinear pulse evolution with reduced optical wave breaking in erbium-doped fiber amplifiers,” Opt. Lett. 21, 68–70 (1996).
[CrossRef] [PubMed]

V. Kruglov, A. Peacock, J. Dudley, and J. Harvey, “Self-similar propagation of high-power parabolic pulses in optical fiber amplifiers,” Opt. Lett. 25, 1753–1755 (2000).
[CrossRef]

Phys. Rev. A

W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82, 021805 (2010).
[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).
[CrossRef]

Phys. Rev. Lett.

V. I. Kruglov, A. C. Peacock, and J. D. Harvey, “Exact self-similar solutions of the generalized nonlinear Schrödinger equation with distributed coefficients,” Phys. Rev. Lett. 90, 113902 (2003).
[CrossRef] [PubMed]

M. Fermann, V. Kruglov, B. Thomsen, J. Dudley, and J. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[CrossRef] [PubMed]

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Other

G. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the dispersion-mapped amplifier similariton fiber laser: QWP, quarter-wave plate; HWP, half-wave plate; DDL, dispersive delay line (diffraction grating pair).

Fig. 2
Fig. 2

Simulated evolution of the pulse chirp for four different values of net cavity GVD: SA, saturable absorber; DDL, dispersive delay line.

Fig. 3
Fig. 3

(a) Output spectrum and (b) dechirped autocorrelation of the pulses from a laser with large net anomalous dispersion. Inset: output spectrum with a logarithmic scale.

Fig. 4
Fig. 4

(a) Output spectrum and (b) dechirped autocorrelation of the pulses from output 1 and (c) output spectrum and (d) direct autocorrelation from output 2 from a laser operating at net dispersion of 0.03 ps2.

Fig. 5
Fig. 5

(a) Output spectrum and (b) dechirped autocorrelation of pulses from a laser with zero net cavity dispersion.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A ( z , τ ) z + i β 2 2 2 A ( z , τ ) τ 2 = i γ | A ( z , τ ) | 2 A ( z , τ ) + g ( E pulse ) A ( z , τ ) .

Metrics