Abstract

Resonator-based optical circulators are fundamentally bandwidth-limited by their quality factors. We propose a new type of circulator based on directional coupling between one-way photonic chiral edge states and conventional two-way waveguides. The operational bandwidth of such circulators is tied to the bandwidth of the directional waveguide coupler and has the potential for simultaneous broadband operation and small device footprint.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Potton, “Reciprocity in optics,” Rep. Prog. Phys. 67(5), 717–754 (2004).
    [CrossRef]
  2. H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A 78(2), 023804 (2008).
    [CrossRef]
  3. A. B. Khanikaev, A. V. Baryshev, M. Inoue, and Y. S. Kivshar, “One-way electromagnetic Tamm states in magnetophotonic structures,” Appl. Phys. Lett. 95(1), 011101 (2009).
    [CrossRef]
  4. A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett. 105(12), 126804 (2010).
    [CrossRef] [PubMed]
  5. D. Jalas, A. Petrov, M. Krause, J. Hampe, and M. Eich, “Resonance splitting in gyrotropic ring resonators,” Opt. Lett. 35(20), 3438–3440 (2010).
    [CrossRef] [PubMed]
  6. J. Zheng, Optical Frequency-modulated Continuous-wave (FMCW) Interferometry (Springer, 2005).
  7. M. Inoue, K. Arai, T. Fujii, and M. Abe, “Magneto-optical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers,” J. Appl. Phys. 83(11), 6768–6770 (1998).
    [CrossRef]
  8. M. Levy, I. Ilic, R. Scarmozzino, R. Osgood, R. Wolfe, C. J. Gutierrez, and G. A. Prinz, “Thin-film-magnet magneto-optic waveguide isolator,” IEEE Photonics Technol. Lett. 5(2), 198–200 (1993).
    [CrossRef]
  9. Z. Wang and S. Fan, “Magneto-optical defects in two-dimensional photonic crystals,” Appl. Phys. B 81(2-3), 369–375 (2005).
    [CrossRef]
  10. Z. Wang and S. Fan, “Optical circulators in two-dimensional magneto-optical photonic crystals,” Opt. Lett. 30(15), 1989–1991 (2005).
    [CrossRef] [PubMed]
  11. Z. Wang and S. Fan, “Suppressing the effect of disorders using time-reversal symmetry breaking in magneto-optical photonic crystals: An illustration with a four-port circulator,” Photonics Nanostruct. Fundam. Appl. 4, 132–140 (2006).
  12. W. ?migaj, J. Romero-Vivas, B. Gralak, L. Magdenko, B. Dagens, and M. Vanwolleghem, “Magneto-optical circulator designed for operation in a uniform external magnetic field,” Opt. Lett. 35(4), 568–570 (2010).
    [CrossRef] [PubMed]
  13. K. Yayoi, K. Tobinaga, Y. Kaneko, A. V. Baryshev, and M. Inoue, “Optical waveguide circulators based on two-dimensional magneto photonic crystals: Numerical simulation for structure simplification and experimental verification,” J. Appl. Phys. 109, 07B750 (2011).
  14. H. Zhu and C. Jiang, “Optical isolation based on Nonreciprocal Micro-Ring Resonator,” J. Lightwave Technol. 29(11), 1647–1651 (2011).
    [CrossRef]
  15. E. Ohm, “A Broad-Band Microwave Circulator,” IRE Trans. Microwave Theor. Tech. 4(4), 210–217 (1956).
    [CrossRef]
  16. J. Helszajn, Nonreciprocal Microwave Junctions and Circulators (Wiley, 1975).
  17. M. Lohmeyer, M. Shamonin, and P. Hertel, “Integrated optical circulator based on radiatively coupled magneto-optic waveguides,” Opt. Eng. 36(3), 889 (1997).
    [CrossRef]
  18. N. Sugimoto, T. Shintaku, A. Tate, H. Terui, M. Shimokozono, E. Kubota, M. Ishii, and Y. Inoue, “Waveguide polarization-independent optical circulator,” IEEE Photon. Technol. Lett. 11(3), 355–357 (1999).
    [CrossRef]
  19. J. Fujita, “Hybrid-integrated optical isolators and circulators,” in Proceedings Of SPIE (SPIE, 2002), Vol. 4652, pp. 77–85.
  20. N. Hanashima, K. Hata, R. Mochida, T. Oikawa, T. Kineri, Y. Satoh, and S. Iwatsuka, “Hybrid Optical Circulator Using Garnet–Quartz Composite Embedded in Planar Waveguides,” IEEE Photon. Technol. Lett. 16(10), 2269–2271 (2004).
    [CrossRef]
  21. D. M. Pozar, “Ferrite Circulators,” in Microwave Engineering, 3rd ed. (John Wiley & Sons, Inc., 2005), pp. 476–481.
  22. F. D. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100(1), 013904 (2008).
    [CrossRef] [PubMed]
  23. Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljaci?, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100(1), 013905 (2008).
    [CrossRef] [PubMed]
  24. Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 023902 (2008).
    [CrossRef] [PubMed]
  25. Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljaci?, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009).
    [CrossRef] [PubMed]
  26. Q. Wang, Z. Ouyang, and Q. Liu, “Multiport photonic crystal circulators created by cascading magneto-optical cavities,” J. Opt. Soc. Am. B 28(4), 703 (2011).
    [CrossRef]
  27. K. Chiu and J. Quinn, “Magnetoplasma Surface Waves in Polar Semiconductors: Retardation Effects,” Phys. Rev. Lett. 29(9), 600–603 (1972).
    [CrossRef]
  28. R. Wallis, J. Brion, E. Burstein, and A. Hartstein, “Theory of surface polaritons in anisotropic dielectric media with application to surface magnetoplasmons in semiconductors,” Phys. Rev. B 9(8), 3424–3437 (1974).
    [CrossRef]
  29. Y. Poo, R. X. Wu, Z. Lin, Y. Yang, and C. T. Chan, “Experimental realization of self-guiding unidirectional electromagnetic edge states,” Phys. Rev. Lett. 106(9), 093903 (2011).
    [CrossRef] [PubMed]
  30. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
    [CrossRef]
  31. H. A. Haus, Waves and Fields In Optoelectronics (Prentice-Hall, 1984), Vol. 32.
  32. I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
    [CrossRef]
  33. M. Jablan, H. Buljan, and M. Solja?i?, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
    [CrossRef]

2011 (5)

K. Yayoi, K. Tobinaga, Y. Kaneko, A. V. Baryshev, and M. Inoue, “Optical waveguide circulators based on two-dimensional magneto photonic crystals: Numerical simulation for structure simplification and experimental verification,” J. Appl. Phys. 109, 07B750 (2011).

Y. Poo, R. X. Wu, Z. Lin, Y. Yang, and C. T. Chan, “Experimental realization of self-guiding unidirectional electromagnetic edge states,” Phys. Rev. Lett. 106(9), 093903 (2011).
[CrossRef] [PubMed]

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[CrossRef]

Q. Wang, Z. Ouyang, and Q. Liu, “Multiport photonic crystal circulators created by cascading magneto-optical cavities,” J. Opt. Soc. Am. B 28(4), 703 (2011).
[CrossRef]

H. Zhu and C. Jiang, “Optical isolation based on Nonreciprocal Micro-Ring Resonator,” J. Lightwave Technol. 29(11), 1647–1651 (2011).
[CrossRef]

2010 (3)

2009 (3)

A. B. Khanikaev, A. V. Baryshev, M. Inoue, and Y. S. Kivshar, “One-way electromagnetic Tamm states in magnetophotonic structures,” Appl. Phys. Lett. 95(1), 011101 (2009).
[CrossRef]

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljaci?, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009).
[CrossRef] [PubMed]

M. Jablan, H. Buljan, and M. Solja?i?, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[CrossRef]

2008 (4)

F. D. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100(1), 013904 (2008).
[CrossRef] [PubMed]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljaci?, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100(1), 013905 (2008).
[CrossRef] [PubMed]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 023902 (2008).
[CrossRef] [PubMed]

H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A 78(2), 023804 (2008).
[CrossRef]

2006 (1)

Z. Wang and S. Fan, “Suppressing the effect of disorders using time-reversal symmetry breaking in magneto-optical photonic crystals: An illustration with a four-port circulator,” Photonics Nanostruct. Fundam. Appl. 4, 132–140 (2006).

2005 (2)

Z. Wang and S. Fan, “Magneto-optical defects in two-dimensional photonic crystals,” Appl. Phys. B 81(2-3), 369–375 (2005).
[CrossRef]

Z. Wang and S. Fan, “Optical circulators in two-dimensional magneto-optical photonic crystals,” Opt. Lett. 30(15), 1989–1991 (2005).
[CrossRef] [PubMed]

2004 (2)

R. J. Potton, “Reciprocity in optics,” Rep. Prog. Phys. 67(5), 717–754 (2004).
[CrossRef]

N. Hanashima, K. Hata, R. Mochida, T. Oikawa, T. Kineri, Y. Satoh, and S. Iwatsuka, “Hybrid Optical Circulator Using Garnet–Quartz Composite Embedded in Planar Waveguides,” IEEE Photon. Technol. Lett. 16(10), 2269–2271 (2004).
[CrossRef]

1999 (1)

N. Sugimoto, T. Shintaku, A. Tate, H. Terui, M. Shimokozono, E. Kubota, M. Ishii, and Y. Inoue, “Waveguide polarization-independent optical circulator,” IEEE Photon. Technol. Lett. 11(3), 355–357 (1999).
[CrossRef]

1998 (1)

M. Inoue, K. Arai, T. Fujii, and M. Abe, “Magneto-optical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers,” J. Appl. Phys. 83(11), 6768–6770 (1998).
[CrossRef]

1997 (1)

M. Lohmeyer, M. Shamonin, and P. Hertel, “Integrated optical circulator based on radiatively coupled magneto-optic waveguides,” Opt. Eng. 36(3), 889 (1997).
[CrossRef]

1993 (1)

M. Levy, I. Ilic, R. Scarmozzino, R. Osgood, R. Wolfe, C. J. Gutierrez, and G. A. Prinz, “Thin-film-magnet magneto-optic waveguide isolator,” IEEE Photonics Technol. Lett. 5(2), 198–200 (1993).
[CrossRef]

1974 (1)

R. Wallis, J. Brion, E. Burstein, and A. Hartstein, “Theory of surface polaritons in anisotropic dielectric media with application to surface magnetoplasmons in semiconductors,” Phys. Rev. B 9(8), 3424–3437 (1974).
[CrossRef]

1973 (1)

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
[CrossRef]

1972 (1)

K. Chiu and J. Quinn, “Magnetoplasma Surface Waves in Polar Semiconductors: Retardation Effects,” Phys. Rev. Lett. 29(9), 600–603 (1972).
[CrossRef]

1956 (1)

E. Ohm, “A Broad-Band Microwave Circulator,” IRE Trans. Microwave Theor. Tech. 4(4), 210–217 (1956).
[CrossRef]

Abe, M.

M. Inoue, K. Arai, T. Fujii, and M. Abe, “Magneto-optical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers,” J. Appl. Phys. 83(11), 6768–6770 (1998).
[CrossRef]

Arai, K.

M. Inoue, K. Arai, T. Fujii, and M. Abe, “Magneto-optical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers,” J. Appl. Phys. 83(11), 6768–6770 (1998).
[CrossRef]

Baryshev, A. V.

K. Yayoi, K. Tobinaga, Y. Kaneko, A. V. Baryshev, and M. Inoue, “Optical waveguide circulators based on two-dimensional magneto photonic crystals: Numerical simulation for structure simplification and experimental verification,” J. Appl. Phys. 109, 07B750 (2011).

A. B. Khanikaev, A. V. Baryshev, M. Inoue, and Y. S. Kivshar, “One-way electromagnetic Tamm states in magnetophotonic structures,” Appl. Phys. Lett. 95(1), 011101 (2009).
[CrossRef]

Bostwick, A.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[CrossRef]

Brion, J.

R. Wallis, J. Brion, E. Burstein, and A. Hartstein, “Theory of surface polaritons in anisotropic dielectric media with application to surface magnetoplasmons in semiconductors,” Phys. Rev. B 9(8), 3424–3437 (1974).
[CrossRef]

Buljan, H.

M. Jablan, H. Buljan, and M. Solja?i?, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[CrossRef]

Burstein, E.

R. Wallis, J. Brion, E. Burstein, and A. Hartstein, “Theory of surface polaritons in anisotropic dielectric media with application to surface magnetoplasmons in semiconductors,” Phys. Rev. B 9(8), 3424–3437 (1974).
[CrossRef]

Chan, C. T.

Y. Poo, R. X. Wu, Z. Lin, Y. Yang, and C. T. Chan, “Experimental realization of self-guiding unidirectional electromagnetic edge states,” Phys. Rev. Lett. 106(9), 093903 (2011).
[CrossRef] [PubMed]

Chiu, K.

K. Chiu and J. Quinn, “Magnetoplasma Surface Waves in Polar Semiconductors: Retardation Effects,” Phys. Rev. Lett. 29(9), 600–603 (1972).
[CrossRef]

Chong, Y.

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljaci?, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009).
[CrossRef] [PubMed]

Chong, Y. D.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljaci?, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100(1), 013905 (2008).
[CrossRef] [PubMed]

Crassee, I.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[CrossRef]

Dagens, B.

Eich, M.

Fan, S.

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 023902 (2008).
[CrossRef] [PubMed]

Z. Wang and S. Fan, “Suppressing the effect of disorders using time-reversal symmetry breaking in magneto-optical photonic crystals: An illustration with a four-port circulator,” Photonics Nanostruct. Fundam. Appl. 4, 132–140 (2006).

Z. Wang and S. Fan, “Magneto-optical defects in two-dimensional photonic crystals,” Appl. Phys. B 81(2-3), 369–375 (2005).
[CrossRef]

Z. Wang and S. Fan, “Optical circulators in two-dimensional magneto-optical photonic crystals,” Opt. Lett. 30(15), 1989–1991 (2005).
[CrossRef] [PubMed]

Fujii, T.

M. Inoue, K. Arai, T. Fujii, and M. Abe, “Magneto-optical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers,” J. Appl. Phys. 83(11), 6768–6770 (1998).
[CrossRef]

Gralak, B.

Gutierrez, C. J.

M. Levy, I. Ilic, R. Scarmozzino, R. Osgood, R. Wolfe, C. J. Gutierrez, and G. A. Prinz, “Thin-film-magnet magneto-optic waveguide isolator,” IEEE Photonics Technol. Lett. 5(2), 198–200 (1993).
[CrossRef]

Haldane, F. D.

F. D. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100(1), 013904 (2008).
[CrossRef] [PubMed]

Hampe, J.

Hanashima, N.

N. Hanashima, K. Hata, R. Mochida, T. Oikawa, T. Kineri, Y. Satoh, and S. Iwatsuka, “Hybrid Optical Circulator Using Garnet–Quartz Composite Embedded in Planar Waveguides,” IEEE Photon. Technol. Lett. 16(10), 2269–2271 (2004).
[CrossRef]

Hartstein, A.

R. Wallis, J. Brion, E. Burstein, and A. Hartstein, “Theory of surface polaritons in anisotropic dielectric media with application to surface magnetoplasmons in semiconductors,” Phys. Rev. B 9(8), 3424–3437 (1974).
[CrossRef]

Hata, K.

N. Hanashima, K. Hata, R. Mochida, T. Oikawa, T. Kineri, Y. Satoh, and S. Iwatsuka, “Hybrid Optical Circulator Using Garnet–Quartz Composite Embedded in Planar Waveguides,” IEEE Photon. Technol. Lett. 16(10), 2269–2271 (2004).
[CrossRef]

Hertel, P.

M. Lohmeyer, M. Shamonin, and P. Hertel, “Integrated optical circulator based on radiatively coupled magneto-optic waveguides,” Opt. Eng. 36(3), 889 (1997).
[CrossRef]

Ilic, I.

M. Levy, I. Ilic, R. Scarmozzino, R. Osgood, R. Wolfe, C. J. Gutierrez, and G. A. Prinz, “Thin-film-magnet magneto-optic waveguide isolator,” IEEE Photonics Technol. Lett. 5(2), 198–200 (1993).
[CrossRef]

Inoue, M.

K. Yayoi, K. Tobinaga, Y. Kaneko, A. V. Baryshev, and M. Inoue, “Optical waveguide circulators based on two-dimensional magneto photonic crystals: Numerical simulation for structure simplification and experimental verification,” J. Appl. Phys. 109, 07B750 (2011).

A. B. Khanikaev, A. V. Baryshev, M. Inoue, and Y. S. Kivshar, “One-way electromagnetic Tamm states in magnetophotonic structures,” Appl. Phys. Lett. 95(1), 011101 (2009).
[CrossRef]

M. Inoue, K. Arai, T. Fujii, and M. Abe, “Magneto-optical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers,” J. Appl. Phys. 83(11), 6768–6770 (1998).
[CrossRef]

Inoue, Y.

N. Sugimoto, T. Shintaku, A. Tate, H. Terui, M. Shimokozono, E. Kubota, M. Ishii, and Y. Inoue, “Waveguide polarization-independent optical circulator,” IEEE Photon. Technol. Lett. 11(3), 355–357 (1999).
[CrossRef]

Ishii, M.

N. Sugimoto, T. Shintaku, A. Tate, H. Terui, M. Shimokozono, E. Kubota, M. Ishii, and Y. Inoue, “Waveguide polarization-independent optical circulator,” IEEE Photon. Technol. Lett. 11(3), 355–357 (1999).
[CrossRef]

Iwatsuka, S.

N. Hanashima, K. Hata, R. Mochida, T. Oikawa, T. Kineri, Y. Satoh, and S. Iwatsuka, “Hybrid Optical Circulator Using Garnet–Quartz Composite Embedded in Planar Waveguides,” IEEE Photon. Technol. Lett. 16(10), 2269–2271 (2004).
[CrossRef]

Jablan, M.

M. Jablan, H. Buljan, and M. Solja?i?, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[CrossRef]

Jalas, D.

Jiang, C.

Joannopoulos, J. D.

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljaci?, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009).
[CrossRef] [PubMed]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljaci?, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100(1), 013905 (2008).
[CrossRef] [PubMed]

John, S.

H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A 78(2), 023804 (2008).
[CrossRef]

Kaneko, Y.

K. Yayoi, K. Tobinaga, Y. Kaneko, A. V. Baryshev, and M. Inoue, “Optical waveguide circulators based on two-dimensional magneto photonic crystals: Numerical simulation for structure simplification and experimental verification,” J. Appl. Phys. 109, 07B750 (2011).

Khanikaev, A. B.

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett. 105(12), 126804 (2010).
[CrossRef] [PubMed]

A. B. Khanikaev, A. V. Baryshev, M. Inoue, and Y. S. Kivshar, “One-way electromagnetic Tamm states in magnetophotonic structures,” Appl. Phys. Lett. 95(1), 011101 (2009).
[CrossRef]

Kineri, T.

N. Hanashima, K. Hata, R. Mochida, T. Oikawa, T. Kineri, Y. Satoh, and S. Iwatsuka, “Hybrid Optical Circulator Using Garnet–Quartz Composite Embedded in Planar Waveguides,” IEEE Photon. Technol. Lett. 16(10), 2269–2271 (2004).
[CrossRef]

Kivshar, Y. S.

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett. 105(12), 126804 (2010).
[CrossRef] [PubMed]

A. B. Khanikaev, A. V. Baryshev, M. Inoue, and Y. S. Kivshar, “One-way electromagnetic Tamm states in magnetophotonic structures,” Appl. Phys. Lett. 95(1), 011101 (2009).
[CrossRef]

Krause, M.

Kubota, E.

N. Sugimoto, T. Shintaku, A. Tate, H. Terui, M. Shimokozono, E. Kubota, M. Ishii, and Y. Inoue, “Waveguide polarization-independent optical circulator,” IEEE Photon. Technol. Lett. 11(3), 355–357 (1999).
[CrossRef]

Kuzmenko, A. B.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[CrossRef]

Levallois, J.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[CrossRef]

Levy, M.

M. Levy, I. Ilic, R. Scarmozzino, R. Osgood, R. Wolfe, C. J. Gutierrez, and G. A. Prinz, “Thin-film-magnet magneto-optic waveguide isolator,” IEEE Photonics Technol. Lett. 5(2), 198–200 (1993).
[CrossRef]

Lin, Z.

Y. Poo, R. X. Wu, Z. Lin, Y. Yang, and C. T. Chan, “Experimental realization of self-guiding unidirectional electromagnetic edge states,” Phys. Rev. Lett. 106(9), 093903 (2011).
[CrossRef] [PubMed]

Liu, Q.

Lohmeyer, M.

M. Lohmeyer, M. Shamonin, and P. Hertel, “Integrated optical circulator based on radiatively coupled magneto-optic waveguides,” Opt. Eng. 36(3), 889 (1997).
[CrossRef]

Magdenko, L.

Mochida, R.

N. Hanashima, K. Hata, R. Mochida, T. Oikawa, T. Kineri, Y. Satoh, and S. Iwatsuka, “Hybrid Optical Circulator Using Garnet–Quartz Composite Embedded in Planar Waveguides,” IEEE Photon. Technol. Lett. 16(10), 2269–2271 (2004).
[CrossRef]

Mousavi, S. H.

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett. 105(12), 126804 (2010).
[CrossRef] [PubMed]

Ohm, E.

E. Ohm, “A Broad-Band Microwave Circulator,” IRE Trans. Microwave Theor. Tech. 4(4), 210–217 (1956).
[CrossRef]

Oikawa, T.

N. Hanashima, K. Hata, R. Mochida, T. Oikawa, T. Kineri, Y. Satoh, and S. Iwatsuka, “Hybrid Optical Circulator Using Garnet–Quartz Composite Embedded in Planar Waveguides,” IEEE Photon. Technol. Lett. 16(10), 2269–2271 (2004).
[CrossRef]

Osgood, R.

M. Levy, I. Ilic, R. Scarmozzino, R. Osgood, R. Wolfe, C. J. Gutierrez, and G. A. Prinz, “Thin-film-magnet magneto-optic waveguide isolator,” IEEE Photonics Technol. Lett. 5(2), 198–200 (1993).
[CrossRef]

Ostler, M.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[CrossRef]

Ouyang, Z.

Petrov, A.

Poo, Y.

Y. Poo, R. X. Wu, Z. Lin, Y. Yang, and C. T. Chan, “Experimental realization of self-guiding unidirectional electromagnetic edge states,” Phys. Rev. Lett. 106(9), 093903 (2011).
[CrossRef] [PubMed]

Potton, R. J.

R. J. Potton, “Reciprocity in optics,” Rep. Prog. Phys. 67(5), 717–754 (2004).
[CrossRef]

Prinz, G. A.

M. Levy, I. Ilic, R. Scarmozzino, R. Osgood, R. Wolfe, C. J. Gutierrez, and G. A. Prinz, “Thin-film-magnet magneto-optic waveguide isolator,” IEEE Photonics Technol. Lett. 5(2), 198–200 (1993).
[CrossRef]

Quinn, J.

K. Chiu and J. Quinn, “Magnetoplasma Surface Waves in Polar Semiconductors: Retardation Effects,” Phys. Rev. Lett. 29(9), 600–603 (1972).
[CrossRef]

Raghu, S.

F. D. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100(1), 013904 (2008).
[CrossRef] [PubMed]

Romero-Vivas, J.

Rotenberg, E.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[CrossRef]

Satoh, Y.

N. Hanashima, K. Hata, R. Mochida, T. Oikawa, T. Kineri, Y. Satoh, and S. Iwatsuka, “Hybrid Optical Circulator Using Garnet–Quartz Composite Embedded in Planar Waveguides,” IEEE Photon. Technol. Lett. 16(10), 2269–2271 (2004).
[CrossRef]

Scarmozzino, R.

M. Levy, I. Ilic, R. Scarmozzino, R. Osgood, R. Wolfe, C. J. Gutierrez, and G. A. Prinz, “Thin-film-magnet magneto-optic waveguide isolator,” IEEE Photonics Technol. Lett. 5(2), 198–200 (1993).
[CrossRef]

Seyller, T.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[CrossRef]

Shamonin, M.

M. Lohmeyer, M. Shamonin, and P. Hertel, “Integrated optical circulator based on radiatively coupled magneto-optic waveguides,” Opt. Eng. 36(3), 889 (1997).
[CrossRef]

Shimokozono, M.

N. Sugimoto, T. Shintaku, A. Tate, H. Terui, M. Shimokozono, E. Kubota, M. Ishii, and Y. Inoue, “Waveguide polarization-independent optical circulator,” IEEE Photon. Technol. Lett. 11(3), 355–357 (1999).
[CrossRef]

Shintaku, T.

N. Sugimoto, T. Shintaku, A. Tate, H. Terui, M. Shimokozono, E. Kubota, M. Ishii, and Y. Inoue, “Waveguide polarization-independent optical circulator,” IEEE Photon. Technol. Lett. 11(3), 355–357 (1999).
[CrossRef]

Shvets, G.

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett. 105(12), 126804 (2010).
[CrossRef] [PubMed]

Smigaj, W.

Soljacic, M.

M. Jablan, H. Buljan, and M. Solja?i?, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[CrossRef]

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljaci?, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009).
[CrossRef] [PubMed]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljaci?, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100(1), 013905 (2008).
[CrossRef] [PubMed]

Sugimoto, N.

N. Sugimoto, T. Shintaku, A. Tate, H. Terui, M. Shimokozono, E. Kubota, M. Ishii, and Y. Inoue, “Waveguide polarization-independent optical circulator,” IEEE Photon. Technol. Lett. 11(3), 355–357 (1999).
[CrossRef]

Takeda, H.

H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A 78(2), 023804 (2008).
[CrossRef]

Tate, A.

N. Sugimoto, T. Shintaku, A. Tate, H. Terui, M. Shimokozono, E. Kubota, M. Ishii, and Y. Inoue, “Waveguide polarization-independent optical circulator,” IEEE Photon. Technol. Lett. 11(3), 355–357 (1999).
[CrossRef]

Terui, H.

N. Sugimoto, T. Shintaku, A. Tate, H. Terui, M. Shimokozono, E. Kubota, M. Ishii, and Y. Inoue, “Waveguide polarization-independent optical circulator,” IEEE Photon. Technol. Lett. 11(3), 355–357 (1999).
[CrossRef]

Tobinaga, K.

K. Yayoi, K. Tobinaga, Y. Kaneko, A. V. Baryshev, and M. Inoue, “Optical waveguide circulators based on two-dimensional magneto photonic crystals: Numerical simulation for structure simplification and experimental verification,” J. Appl. Phys. 109, 07B750 (2011).

van der Marel, D.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[CrossRef]

Vanwolleghem, M.

Veronis, G.

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 023902 (2008).
[CrossRef] [PubMed]

Wallis, R.

R. Wallis, J. Brion, E. Burstein, and A. Hartstein, “Theory of surface polaritons in anisotropic dielectric media with application to surface magnetoplasmons in semiconductors,” Phys. Rev. B 9(8), 3424–3437 (1974).
[CrossRef]

Walter, A. L.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[CrossRef]

Wang, Q.

Wang, Z.

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljaci?, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009).
[CrossRef] [PubMed]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 023902 (2008).
[CrossRef] [PubMed]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljaci?, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100(1), 013905 (2008).
[CrossRef] [PubMed]

Z. Wang and S. Fan, “Suppressing the effect of disorders using time-reversal symmetry breaking in magneto-optical photonic crystals: An illustration with a four-port circulator,” Photonics Nanostruct. Fundam. Appl. 4, 132–140 (2006).

Z. Wang and S. Fan, “Magneto-optical defects in two-dimensional photonic crystals,” Appl. Phys. B 81(2-3), 369–375 (2005).
[CrossRef]

Z. Wang and S. Fan, “Optical circulators in two-dimensional magneto-optical photonic crystals,” Opt. Lett. 30(15), 1989–1991 (2005).
[CrossRef] [PubMed]

Wolfe, R.

M. Levy, I. Ilic, R. Scarmozzino, R. Osgood, R. Wolfe, C. J. Gutierrez, and G. A. Prinz, “Thin-film-magnet magneto-optic waveguide isolator,” IEEE Photonics Technol. Lett. 5(2), 198–200 (1993).
[CrossRef]

Wu, R. X.

Y. Poo, R. X. Wu, Z. Lin, Y. Yang, and C. T. Chan, “Experimental realization of self-guiding unidirectional electromagnetic edge states,” Phys. Rev. Lett. 106(9), 093903 (2011).
[CrossRef] [PubMed]

Yang, Y.

Y. Poo, R. X. Wu, Z. Lin, Y. Yang, and C. T. Chan, “Experimental realization of self-guiding unidirectional electromagnetic edge states,” Phys. Rev. Lett. 106(9), 093903 (2011).
[CrossRef] [PubMed]

Yariv, A.

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
[CrossRef]

Yayoi, K.

K. Yayoi, K. Tobinaga, Y. Kaneko, A. V. Baryshev, and M. Inoue, “Optical waveguide circulators based on two-dimensional magneto photonic crystals: Numerical simulation for structure simplification and experimental verification,” J. Appl. Phys. 109, 07B750 (2011).

Yu, Z.

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 023902 (2008).
[CrossRef] [PubMed]

Zhu, H.

Appl. Phys. B (1)

Z. Wang and S. Fan, “Magneto-optical defects in two-dimensional photonic crystals,” Appl. Phys. B 81(2-3), 369–375 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

A. B. Khanikaev, A. V. Baryshev, M. Inoue, and Y. S. Kivshar, “One-way electromagnetic Tamm states in magnetophotonic structures,” Appl. Phys. Lett. 95(1), 011101 (2009).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

N. Sugimoto, T. Shintaku, A. Tate, H. Terui, M. Shimokozono, E. Kubota, M. Ishii, and Y. Inoue, “Waveguide polarization-independent optical circulator,” IEEE Photon. Technol. Lett. 11(3), 355–357 (1999).
[CrossRef]

N. Hanashima, K. Hata, R. Mochida, T. Oikawa, T. Kineri, Y. Satoh, and S. Iwatsuka, “Hybrid Optical Circulator Using Garnet–Quartz Composite Embedded in Planar Waveguides,” IEEE Photon. Technol. Lett. 16(10), 2269–2271 (2004).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

M. Levy, I. Ilic, R. Scarmozzino, R. Osgood, R. Wolfe, C. J. Gutierrez, and G. A. Prinz, “Thin-film-magnet magneto-optic waveguide isolator,” IEEE Photonics Technol. Lett. 5(2), 198–200 (1993).
[CrossRef]

IRE Trans. Microwave Theor. Tech. (1)

E. Ohm, “A Broad-Band Microwave Circulator,” IRE Trans. Microwave Theor. Tech. 4(4), 210–217 (1956).
[CrossRef]

J. Appl. Phys. (2)

M. Inoue, K. Arai, T. Fujii, and M. Abe, “Magneto-optical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers,” J. Appl. Phys. 83(11), 6768–6770 (1998).
[CrossRef]

K. Yayoi, K. Tobinaga, Y. Kaneko, A. V. Baryshev, and M. Inoue, “Optical waveguide circulators based on two-dimensional magneto photonic crystals: Numerical simulation for structure simplification and experimental verification,” J. Appl. Phys. 109, 07B750 (2011).

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Nat. Phys. (1)

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[CrossRef]

Nature (1)

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljaci?, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009).
[CrossRef] [PubMed]

Opt. Eng. (1)

M. Lohmeyer, M. Shamonin, and P. Hertel, “Integrated optical circulator based on radiatively coupled magneto-optic waveguides,” Opt. Eng. 36(3), 889 (1997).
[CrossRef]

Opt. Lett. (3)

Photonics Nanostruct. Fundam. Appl. (1)

Z. Wang and S. Fan, “Suppressing the effect of disorders using time-reversal symmetry breaking in magneto-optical photonic crystals: An illustration with a four-port circulator,” Photonics Nanostruct. Fundam. Appl. 4, 132–140 (2006).

Phys. Rev. A (1)

H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A 78(2), 023804 (2008).
[CrossRef]

Phys. Rev. B (2)

M. Jablan, H. Buljan, and M. Solja?i?, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[CrossRef]

R. Wallis, J. Brion, E. Burstein, and A. Hartstein, “Theory of surface polaritons in anisotropic dielectric media with application to surface magnetoplasmons in semiconductors,” Phys. Rev. B 9(8), 3424–3437 (1974).
[CrossRef]

Phys. Rev. Lett. (6)

Y. Poo, R. X. Wu, Z. Lin, Y. Yang, and C. T. Chan, “Experimental realization of self-guiding unidirectional electromagnetic edge states,” Phys. Rev. Lett. 106(9), 093903 (2011).
[CrossRef] [PubMed]

K. Chiu and J. Quinn, “Magnetoplasma Surface Waves in Polar Semiconductors: Retardation Effects,” Phys. Rev. Lett. 29(9), 600–603 (1972).
[CrossRef]

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett. 105(12), 126804 (2010).
[CrossRef] [PubMed]

F. D. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100(1), 013904 (2008).
[CrossRef] [PubMed]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljaci?, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100(1), 013905 (2008).
[CrossRef] [PubMed]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 023902 (2008).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

R. J. Potton, “Reciprocity in optics,” Rep. Prog. Phys. 67(5), 717–754 (2004).
[CrossRef]

Other (5)

J. Zheng, Optical Frequency-modulated Continuous-wave (FMCW) Interferometry (Springer, 2005).

J. Helszajn, Nonreciprocal Microwave Junctions and Circulators (Wiley, 1975).

D. M. Pozar, “Ferrite Circulators,” in Microwave Engineering, 3rd ed. (John Wiley & Sons, Inc., 2005), pp. 476–481.

J. Fujita, “Hybrid-integrated optical isolators and circulators,” in Proceedings Of SPIE (SPIE, 2002), Vol. 4652, pp. 77–85.

H. A. Haus, Waves and Fields In Optoelectronics (Prentice-Hall, 1984), Vol. 32.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematics of optical circulators based on one-way waveguides, with the port number illustrated. (a) A three-port circulator constructed from a directional coupler between a one-way waveguide (yellow) and a two-way waveguide (green). The arrows indicate the allowed propagation directions in each individual waveguide, in the absence of other waveguides. Coupling between adjacent waveguides alters the power flow and creates a circulator. (b) A four-port circulator created by cascading two three-port circulators.

Fig. 2
Fig. 2

Waveguide coupler between a photonic chiral edge state (one-way waveguide) and a two-way waveguide in a photonic crystal. (a) Schematics of the photonic crystal structure. The lower cladding is a gyromagnetic photonic crystal, while the upper cladding is a dielectric photonic crystal. (b) Calculated band diagram. The green and the blue regions are the projected band diagrams of the gyromagnetic photonic crystals and the dielectric photonic crystals respectively. An overlapping bandgap, [0.5270.576](2πc/a) , supports a photonic chiral edge state (one-way) at the boundary between the two claddings. The top row of the lower cladding has enlarged rods to adjust the dispersion. The second lowest row of the upper cladding consists of enlarged rods to create a line-defect, serving as a two-way waveguide. The two waveguides couple strongly in the forward (left-to-right) direction. The eigenmodes of the coupled system are shown as the red and purple curves. (c) Dispersion relation in the k-space where the two forward modes are strongly coupled. The blue curves are unperturbed dispersion relations of the one-way and the two-way modes in the absence of coupling, where the mode profiles are shown in insets I and II. The red and purple curves are the dispersion relations of the compound modes in the presence of coupling (mode profiles shown in inset III and IV). The insets illustrate the calculated E-field distribution at ω=0.551(2πc/a) . For the entire frequency range shown, there is only one backward propagating mode as can be seen in panel (b).

Fig. 3
Fig. 3

Power transport in the waveguide coupler. (a) Steady state E-field pattern at ω=0.551(2πc/a) , showing a complete transfer from the two-way waveguide (incident from the left) to the one-way waveguide.(b) Light is transferred between the two-way waveguide and the one-way waveguide, as indicated by the power flux. (c) Power transfer over a range of frequencies.

Fig. 4
Fig. 4

Three-port circulator. (a) Steady-state electric-field distribution of a 3-port circulator excited from Port 1 at ω=0.548(2πc/a) . The waveguide coupler transfers light from the two-way waveguide to the one-way waveguide, producing complete transmission at Port 2. (b) Steady-state field distribution with excitation from Port 3 at ω=0.548(2πc/a) , where the transmission is routed to Port 1 instead. The leakage to Port 2 amounts to 0.5% of the total incident flux. (c) The scattering matrix decomposition of the three-port circulator. Arrows indicate distinct modes at boundaries. (d) The transmission spectra of the three-port circulator excited from Port 1.The finite element simulation (solid curves) agrees well with the scattering matrix calculation (circles).

Fig. 5
Fig. 5

Four-port circulator. (a) Steady-state electrical-field distribution of a four-port circulator excited from Port 1 at ω=0.548(2πc/a) , with full transmission to Port 2. (b) Steady-state field distribution with excitation from Port 4 at ω=0.548(2πc/a) . Full transmission is seen at Port 1. (c) Scattering matrix decomposition of the four-port circulator. (d, e) Transmission spectra of the four-port circulator. Finite element simulation (curves) shows good agreement with scattering matrix calculation (circles). The input is at port 1 in (d) and port 4 in (e). (f) Finite-element-simulated transmission spectra for three circulators with various lengths for the vertical sections of the one-way waveguide (curves). The finite-element-simulated transmission spectrum with an absorber is inserted in the one-way waveguide between Port 1 and Port 2 (circles).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

μ=[ μ i μ 0 i μ μ 0 0 0 1 ]
{ d a 1 dz =j β 1 a 1 + κ 12 a 2 d a 2 dz =j β 2 a 2 + κ 21 a 1
k 1,2 = β 1 + β 2 2 ± ( β 1 β 2 2 ) 2 + κ 2
T= κ 2 ( β 1 β 2 2 ) 2 + κ 2
L= π k 1 k 2 = π 2 ( β 1 β 2 2 ) 2 + κ 2

Metrics