Abstract

The collective effects in a periodic array of plasmonic double-antenna meta-molecules are studied. We experimentally observe that the collective behavior in this structure substantially differs from the one observed in their single-antenna counterparts. This behavior is explained using an analytical dipole model. We find that in the double-antenna case the effective dipole-dipole interaction is significantly modified and the transverse long-range interaction is suppressed, giving rise to the disappearance of Wood’s anomalies. Numerical calculations also show that such suppression of long-range interaction results in an anomalous spatial dispersion of the electric-dipolar mode, making it insensitive to the angle of incidence. In contrast, the quadrupolar mode of the antenna pair experiences strong spatial dispersion. These results show that collective effects in plasmonic metamaterials are very sensitive to the design and topology of meta-molecules. Our findings envision the possibility of suppressing the spatial dispersion effects to weaken the dependence of the metamaterials’ response on the incidence angle.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London)424, 824–830 (2003).
    [CrossRef]
  2. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9, 205–213 (2010).
    [CrossRef]
  3. N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
    [CrossRef] [PubMed]
  4. R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl Acad. Sci. U.S.A. 106, 19227–19232 (2009).
    [CrossRef] [PubMed]
  5. A. Yanik, A. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. B. Khanikaev, J. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl Acad. Sci. U.S.A. 108, 11784–11789 (2011).
    [CrossRef] [PubMed]
  6. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon. 1, 641–648 (2007).
    [CrossRef]
  7. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London)391, 667–669 (1998).
    [CrossRef]
  8. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
    [CrossRef] [PubMed]
  9. W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70, 125429 (2004).
    [CrossRef]
  10. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
    [CrossRef] [PubMed]
  11. G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B 80, 201401 (2009).
    [CrossRef]
  12. J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
    [CrossRef] [PubMed]
  13. F. J. García de Abajo and J. J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett. 95, 233901 (2005).
    [CrossRef]
  14. S. H. Mousavi, A. B. Khanikaev, B. Neuner, Y. Avitzour, D. Korobkin, G. Ferro, and G. Shvets, “Highly confined hybrid spoof surface plasmons in ultrathin metal-dielectric heterostructures,” Phys. Rev. Lett. 105, 176803 (2010).
    [CrossRef]
  15. S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
    [CrossRef] [PubMed]
  16. S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys. 121, 12606–12612 (2004).
    [CrossRef] [PubMed]
  17. W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat Nano 6, 423–427 (2011).
    [CrossRef]
  18. Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93, 181108 (2008).
  19. V.G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely Narrow Plasmon Resonances Based on Diffraction Coupling of Localized Plasmons in Arrays of Metallic Nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
    [CrossRef] [PubMed]
  20. A. Alù and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Phys. Rev. B 74, 205436 (2006).
    [CrossRef]
  21. F. J. García de Abajo, “Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
    [CrossRef]
  22. R. W. Wood, “Films of minute metallic particles,” Phil. Mag. 4, 396 (1902).
  23. P. W. Kolb, T. D. Corrigan, H. D. Drew, A. B. Sushkov, R. J. Phaneuf, A. Khanikaev, S. H. Mousavi, and G. Shvets, “Bianisotropy and spatial dispersion in highly anisotropic near-infrared resonator arrays,” Opt. Express 18, 24025–24036 (2010).
    [CrossRef] [PubMed]
  24. J. Aizpurua, G. W. Bryant, L. J. Richter, and F. J. García de Abajo, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
    [CrossRef]
  25. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
    [CrossRef] [PubMed]
  26. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
    [CrossRef] [PubMed]
  27. C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106, 107403 (2011).
    [CrossRef] [PubMed]
  28. K. Kempa, R. Ruppin, and J. B. Pendry, “Electromagnetic response of a point-dipole crystal,” Phys.Rev. B 72, 205103 (2005).
    [CrossRef]
  29. D. H. Dawes, R. C. McPhedran, and L. B. Whitbourn, “Thin capacitive meshes on a dielectric boundary: theory and experiment,” Appl. Opt. 28, 3498–3510 (1989).
    [CrossRef] [PubMed]
  30. A. Alù and N. Engheta, “Guided Propagation along Quadrupolar Chains of Plasmonic Nanoparticles,” Phys. Rev. B 79, 235412 (2009).
    [CrossRef]
  31. A. Alù and N. Engheta, “Dynamical theory of artificial optical magnetism produced by rings of plasmonic nanoparticles,” Phys. Rev. B 78, 085112 (2008).
    [CrossRef]
  32. A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Let. 105, 126804 (2010).
    [CrossRef]
  33. A. Alù and N. Engheta, “The quest for magnetic plasmons at optical frequencies,” Opt. Express 17, 5723–5730 (2009).
    [CrossRef] [PubMed]
  34. X. M. Bendana and F. J. García de Abajo, “Confined collective excitations of self-standing and supported planar periodic particle arrays,” Opt. Express 17, 18826–18835 (2009).
    [CrossRef]
  35. B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: critical role of the substrate,” Phys. Rev. B 82, 155447 (2010).
    [CrossRef]
  36. G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102, 146807 (2009).
    [CrossRef] [PubMed]
  37. V. Giannini, G. Vecchi, and J. Gómez Rivas, “Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas,” Phys. Rev. Lett. 105, 266801 (2010).
    [CrossRef]

2011 (4)

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
[CrossRef] [PubMed]

A. Yanik, A. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. B. Khanikaev, J. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl Acad. Sci. U.S.A. 108, 11784–11789 (2011).
[CrossRef] [PubMed]

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat Nano 6, 423–427 (2011).
[CrossRef]

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106, 107403 (2011).
[CrossRef] [PubMed]

2010 (6)

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Let. 105, 126804 (2010).
[CrossRef]

B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: critical role of the substrate,” Phys. Rev. B 82, 155447 (2010).
[CrossRef]

V. Giannini, G. Vecchi, and J. Gómez Rivas, “Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas,” Phys. Rev. Lett. 105, 266801 (2010).
[CrossRef]

P. W. Kolb, T. D. Corrigan, H. D. Drew, A. B. Sushkov, R. J. Phaneuf, A. Khanikaev, S. H. Mousavi, and G. Shvets, “Bianisotropy and spatial dispersion in highly anisotropic near-infrared resonator arrays,” Opt. Express 18, 24025–24036 (2010).
[CrossRef] [PubMed]

S. H. Mousavi, A. B. Khanikaev, B. Neuner, Y. Avitzour, D. Korobkin, G. Ferro, and G. Shvets, “Highly confined hybrid spoof surface plasmons in ultrathin metal-dielectric heterostructures,” Phys. Rev. Lett. 105, 176803 (2010).
[CrossRef]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9, 205–213 (2010).
[CrossRef]

2009 (7)

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B 80, 201401 (2009).
[CrossRef]

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl Acad. Sci. U.S.A. 106, 19227–19232 (2009).
[CrossRef] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “The quest for magnetic plasmons at optical frequencies,” Opt. Express 17, 5723–5730 (2009).
[CrossRef] [PubMed]

X. M. Bendana and F. J. García de Abajo, “Confined collective excitations of self-standing and supported planar periodic particle arrays,” Opt. Express 17, 18826–18835 (2009).
[CrossRef]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102, 146807 (2009).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Guided Propagation along Quadrupolar Chains of Plasmonic Nanoparticles,” Phys. Rev. B 79, 235412 (2009).
[CrossRef]

2008 (3)

A. Alù and N. Engheta, “Dynamical theory of artificial optical magnetism produced by rings of plasmonic nanoparticles,” Phys. Rev. B 78, 085112 (2008).
[CrossRef]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[CrossRef] [PubMed]

V.G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely Narrow Plasmon Resonances Based on Diffraction Coupling of Localized Plasmons in Arrays of Metallic Nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
[CrossRef] [PubMed]

2007 (3)

F. J. García de Abajo, “Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
[CrossRef]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon. 1, 641–648 (2007).
[CrossRef]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef] [PubMed]

2006 (1)

A. Alù and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Phys. Rev. B 74, 205436 (2006).
[CrossRef]

2005 (3)

F. J. García de Abajo and J. J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett. 95, 233901 (2005).
[CrossRef]

J. Aizpurua, G. W. Bryant, L. J. Richter, and F. J. García de Abajo, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[CrossRef]

K. Kempa, R. Ruppin, and J. B. Pendry, “Electromagnetic response of a point-dipole crystal,” Phys.Rev. B 72, 205103 (2005).
[CrossRef]

2004 (4)

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
[CrossRef] [PubMed]

S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys. 121, 12606–12612 (2004).
[CrossRef] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef] [PubMed]

W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70, 125429 (2004).
[CrossRef]

2001 (1)

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

1989 (1)

1902 (1)

R. W. Wood, “Films of minute metallic particles,” Phil. Mag. 4, 396 (1902).

Adato, R.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl Acad. Sci. U.S.A. 106, 19227–19232 (2009).
[CrossRef] [PubMed]

Aizpurua, J.

J. Aizpurua, G. W. Bryant, L. J. Richter, and F. J. García de Abajo, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Alivisatos, A. P.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
[CrossRef] [PubMed]

Altug, H.

A. Yanik, A. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. B. Khanikaev, J. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl Acad. Sci. U.S.A. 108, 11784–11789 (2011).
[CrossRef] [PubMed]

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl Acad. Sci. U.S.A. 106, 19227–19232 (2009).
[CrossRef] [PubMed]

Alù, A.

A. Alù and N. Engheta, “Guided Propagation along Quadrupolar Chains of Plasmonic Nanoparticles,” Phys. Rev. B 79, 235412 (2009).
[CrossRef]

A. Alù and N. Engheta, “The quest for magnetic plasmons at optical frequencies,” Opt. Express 17, 5723–5730 (2009).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Dynamical theory of artificial optical magnetism produced by rings of plasmonic nanoparticles,” Phys. Rev. B 78, 085112 (2008).
[CrossRef]

A. Alù and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Phys. Rev. B 74, 205436 (2006).
[CrossRef]

Amsden, J. J.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl Acad. Sci. U.S.A. 106, 19227–19232 (2009).
[CrossRef] [PubMed]

Artar, A.

A. Yanik, A. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. B. Khanikaev, J. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl Acad. Sci. U.S.A. 108, 11784–11789 (2011).
[CrossRef] [PubMed]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9, 205–213 (2010).
[CrossRef]

Auguié, B.

B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: critical role of the substrate,” Phys. Rev. B 82, 155447 (2010).
[CrossRef]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[CrossRef] [PubMed]

Avitzour, Y.

S. H. Mousavi, A. B. Khanikaev, B. Neuner, Y. Avitzour, D. Korobkin, G. Ferro, and G. Shvets, “Highly confined hybrid spoof surface plasmons in ultrathin metal-dielectric heterostructures,” Phys. Rev. Lett. 105, 176803 (2010).
[CrossRef]

Barnes, W. L.

B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: critical role of the substrate,” Phys. Rev. B 82, 155447 (2010).
[CrossRef]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London)424, 824–830 (2003).
[CrossRef]

Bendana, X. M.

Bendaña, X. M.

B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: critical role of the substrate,” Phys. Rev. B 82, 155447 (2010).
[CrossRef]

Bryant, G. W.

J. Aizpurua, G. W. Bryant, L. J. Richter, and F. J. García de Abajo, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Cetin, A.

A. Yanik, A. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. B. Khanikaev, J. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl Acad. Sci. U.S.A. 108, 11784–11789 (2011).
[CrossRef] [PubMed]

Chu, Y.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93, 181108 (2008).

Connor, J.

A. Yanik, A. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. B. Khanikaev, J. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl Acad. Sci. U.S.A. 108, 11784–11789 (2011).
[CrossRef] [PubMed]

Corrigan, T. D.

Crozier, K. B.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93, 181108 (2008).

Dawes, D. H.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London)424, 824–830 (2003).
[CrossRef]

Drew, H. D.

Ebbesen, T. W.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London)424, 824–830 (2003).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London)391, 667–669 (1998).
[CrossRef]

Engheta, N.

A. Alù and N. Engheta, “The quest for magnetic plasmons at optical frequencies,” Opt. Express 17, 5723–5730 (2009).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Guided Propagation along Quadrupolar Chains of Plasmonic Nanoparticles,” Phys. Rev. B 79, 235412 (2009).
[CrossRef]

A. Alù and N. Engheta, “Dynamical theory of artificial optical magnetism produced by rings of plasmonic nanoparticles,” Phys. Rev. B 78, 085112 (2008).
[CrossRef]

A. Alù and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Phys. Rev. B 74, 205436 (2006).
[CrossRef]

Erramilli, S.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl Acad. Sci. U.S.A. 106, 19227–19232 (2009).
[CrossRef] [PubMed]

Ferro, G.

S. H. Mousavi, A. B. Khanikaev, B. Neuner, Y. Avitzour, D. Korobkin, G. Ferro, and G. Shvets, “Highly confined hybrid spoof surface plasmons in ultrathin metal-dielectric heterostructures,” Phys. Rev. Lett. 105, 176803 (2010).
[CrossRef]

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[CrossRef] [PubMed]

Ford, G. W.

W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70, 125429 (2004).
[CrossRef]

García de Abajo, F. J.

B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: critical role of the substrate,” Phys. Rev. B 82, 155447 (2010).
[CrossRef]

X. M. Bendana and F. J. García de Abajo, “Confined collective excitations of self-standing and supported planar periodic particle arrays,” Opt. Express 17, 18826–18835 (2009).
[CrossRef]

F. J. García de Abajo, “Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
[CrossRef]

F. J. García de Abajo and J. J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett. 95, 233901 (2005).
[CrossRef]

J. Aizpurua, G. W. Bryant, L. J. Richter, and F. J. García de Abajo, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[CrossRef]

García-Vidal, F. J.

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London)391, 667–669 (1998).
[CrossRef]

Giannini, V.

V. Giannini, G. Vecchi, and J. Gómez Rivas, “Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas,” Phys. Rev. Lett. 105, 266801 (2010).
[CrossRef]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B 80, 201401 (2009).
[CrossRef]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102, 146807 (2009).
[CrossRef] [PubMed]

Giessen, H.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
[CrossRef] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[CrossRef] [PubMed]

Gómez Rivas, J.

V. Giannini, G. Vecchi, and J. Gómez Rivas, “Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas,” Phys. Rev. Lett. 105, 266801 (2010).
[CrossRef]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B 80, 201401 (2009).
[CrossRef]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102, 146807 (2009).
[CrossRef] [PubMed]

Grigorenko, A. N.

V.G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely Narrow Plasmon Resonances Based on Diffraction Coupling of Localized Plasmons in Arrays of Metallic Nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
[CrossRef] [PubMed]

Halas, N. J.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon. 1, 641–648 (2007).
[CrossRef]

Hentschel, M.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
[CrossRef] [PubMed]

Hong, M. K.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl Acad. Sci. U.S.A. 106, 19227–19232 (2009).
[CrossRef] [PubMed]

Huang, M.

A. Yanik, A. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. B. Khanikaev, J. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl Acad. Sci. U.S.A. 108, 11784–11789 (2011).
[CrossRef] [PubMed]

Janel, N.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
[CrossRef] [PubMed]

Kaplan, D. L.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl Acad. Sci. U.S.A. 106, 19227–19232 (2009).
[CrossRef] [PubMed]

Kästel, J.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[CrossRef] [PubMed]

Kempa, K.

K. Kempa, R. Ruppin, and J. B. Pendry, “Electromagnetic response of a point-dipole crystal,” Phys.Rev. B 72, 205103 (2005).
[CrossRef]

Khanikaev, A.

Khanikaev, A. B.

A. Yanik, A. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. B. Khanikaev, J. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl Acad. Sci. U.S.A. 108, 11784–11789 (2011).
[CrossRef] [PubMed]

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106, 107403 (2011).
[CrossRef] [PubMed]

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Let. 105, 126804 (2010).
[CrossRef]

S. H. Mousavi, A. B. Khanikaev, B. Neuner, Y. Avitzour, D. Korobkin, G. Ferro, and G. Shvets, “Highly confined hybrid spoof surface plasmons in ultrathin metal-dielectric heterostructures,” Phys. Rev. Lett. 105, 176803 (2010).
[CrossRef]

Kivshar, Y. S.

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Let. 105, 126804 (2010).
[CrossRef]

Kolb, P. W.

Korobkin, D.

S. H. Mousavi, A. B. Khanikaev, B. Neuner, Y. Avitzour, D. Korobkin, G. Ferro, and G. Shvets, “Highly confined hybrid spoof surface plasmons in ultrathin metal-dielectric heterostructures,” Phys. Rev. Lett. 105, 176803 (2010).
[CrossRef]

Kravets, V.G.

V.G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely Narrow Plasmon Resonances Based on Diffraction Coupling of Localized Plasmons in Arrays of Metallic Nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
[CrossRef] [PubMed]

Lal, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon. 1, 641–648 (2007).
[CrossRef]

Langguth, L.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[CrossRef] [PubMed]

Lezec, H. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London)391, 667–669 (1998).
[CrossRef]

Link, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon. 1, 641–648 (2007).
[CrossRef]

Liu, N.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
[CrossRef] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[CrossRef] [PubMed]

Martín-Moreno, L.

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

McPhedran, R. C.

Mousavi, S. H.

A. Yanik, A. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. B. Khanikaev, J. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl Acad. Sci. U.S.A. 108, 11784–11789 (2011).
[CrossRef] [PubMed]

P. W. Kolb, T. D. Corrigan, H. D. Drew, A. B. Sushkov, R. J. Phaneuf, A. Khanikaev, S. H. Mousavi, and G. Shvets, “Bianisotropy and spatial dispersion in highly anisotropic near-infrared resonator arrays,” Opt. Express 18, 24025–24036 (2010).
[CrossRef] [PubMed]

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Let. 105, 126804 (2010).
[CrossRef]

S. H. Mousavi, A. B. Khanikaev, B. Neuner, Y. Avitzour, D. Korobkin, G. Ferro, and G. Shvets, “Highly confined hybrid spoof surface plasmons in ultrathin metal-dielectric heterostructures,” Phys. Rev. Lett. 105, 176803 (2010).
[CrossRef]

Neuner, B.

S. H. Mousavi, A. B. Khanikaev, B. Neuner, Y. Avitzour, D. Korobkin, G. Ferro, and G. Shvets, “Highly confined hybrid spoof surface plasmons in ultrathin metal-dielectric heterostructures,” Phys. Rev. Lett. 105, 176803 (2010).
[CrossRef]

Novotny, L.

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef] [PubMed]

Odom, T. W.

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat Nano 6, 423–427 (2011).
[CrossRef]

Omenetto, F. G.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl Acad. Sci. U.S.A. 106, 19227–19232 (2009).
[CrossRef] [PubMed]

Pellerin, K. M.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

Pendry, J. B.

K. Kempa, R. Ruppin, and J. B. Pendry, “Electromagnetic response of a point-dipole crystal,” Phys.Rev. B 72, 205103 (2005).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[CrossRef] [PubMed]

Phaneuf, R. J.

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9, 205–213 (2010).
[CrossRef]

Richter, L. J.

J. Aizpurua, G. W. Bryant, L. J. Richter, and F. J. García de Abajo, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Ruppin, R.

K. Kempa, R. Ruppin, and J. B. Pendry, “Electromagnetic response of a point-dipole crystal,” Phys.Rev. B 72, 205103 (2005).
[CrossRef]

Sáenz, J. J.

F. J. García de Abajo and J. J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett. 95, 233901 (2005).
[CrossRef]

Schatz, G. C.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
[CrossRef] [PubMed]

S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys. 121, 12606–12612 (2004).
[CrossRef] [PubMed]

Schedin, F.

V.G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely Narrow Plasmon Resonances Based on Diffraction Coupling of Localized Plasmons in Arrays of Metallic Nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
[CrossRef] [PubMed]

Schonbrun, E.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93, 181108 (2008).

Shvets, G.

A. Yanik, A. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. B. Khanikaev, J. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl Acad. Sci. U.S.A. 108, 11784–11789 (2011).
[CrossRef] [PubMed]

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106, 107403 (2011).
[CrossRef] [PubMed]

S. H. Mousavi, A. B. Khanikaev, B. Neuner, Y. Avitzour, D. Korobkin, G. Ferro, and G. Shvets, “Highly confined hybrid spoof surface plasmons in ultrathin metal-dielectric heterostructures,” Phys. Rev. Lett. 105, 176803 (2010).
[CrossRef]

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Let. 105, 126804 (2010).
[CrossRef]

P. W. Kolb, T. D. Corrigan, H. D. Drew, A. B. Sushkov, R. J. Phaneuf, A. Khanikaev, S. H. Mousavi, and G. Shvets, “Bianisotropy and spatial dispersion in highly anisotropic near-infrared resonator arrays,” Opt. Express 18, 24025–24036 (2010).
[CrossRef] [PubMed]

Sushkov, A. B.

Tang, M. L.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
[CrossRef] [PubMed]

Thio, T.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London)391, 667–669 (1998).
[CrossRef]

Vecchi, G.

V. Giannini, G. Vecchi, and J. Gómez Rivas, “Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas,” Phys. Rev. Lett. 105, 266801 (2010).
[CrossRef]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B 80, 201401 (2009).
[CrossRef]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102, 146807 (2009).
[CrossRef] [PubMed]

Weber, W. H.

W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70, 125429 (2004).
[CrossRef]

Weiss, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[CrossRef] [PubMed]

Whitbourn, L. B.

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London)391, 667–669 (1998).
[CrossRef]

Wood, R. W.

R. W. Wood, “Films of minute metallic particles,” Phil. Mag. 4, 396 (1902).

Wu, C.

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106, 107403 (2011).
[CrossRef] [PubMed]

Yang, T.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93, 181108 (2008).

Yanik, A.

A. Yanik, A. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. B. Khanikaev, J. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl Acad. Sci. U.S.A. 108, 11784–11789 (2011).
[CrossRef] [PubMed]

Yanik, A. A.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl Acad. Sci. U.S.A. 106, 19227–19232 (2009).
[CrossRef] [PubMed]

Zhou, W.

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat Nano 6, 423–427 (2011).
[CrossRef]

Zou, S.

S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys. 121, 12606–12612 (2004).
[CrossRef] [PubMed]

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93, 181108 (2008).

J. Chem. Phys. (2)

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
[CrossRef] [PubMed]

S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys. 121, 12606–12612 (2004).
[CrossRef] [PubMed]

Nat Nano (1)

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat Nano 6, 423–427 (2011).
[CrossRef]

Nat. Mater. (2)

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
[CrossRef] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[CrossRef] [PubMed]

Nat. Photon. (1)

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon. 1, 641–648 (2007).
[CrossRef]

Nature Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9, 205–213 (2010).
[CrossRef]

Opt. Express (3)

Phil. Mag. (1)

R. W. Wood, “Films of minute metallic particles,” Phil. Mag. 4, 396 (1902).

Phys. Rev. B (7)

J. Aizpurua, G. W. Bryant, L. J. Richter, and F. J. García de Abajo, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[CrossRef]

A. Alù and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Phys. Rev. B 74, 205436 (2006).
[CrossRef]

A. Alù and N. Engheta, “Guided Propagation along Quadrupolar Chains of Plasmonic Nanoparticles,” Phys. Rev. B 79, 235412 (2009).
[CrossRef]

A. Alù and N. Engheta, “Dynamical theory of artificial optical magnetism produced by rings of plasmonic nanoparticles,” Phys. Rev. B 78, 085112 (2008).
[CrossRef]

B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: critical role of the substrate,” Phys. Rev. B 82, 155447 (2010).
[CrossRef]

W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70, 125429 (2004).
[CrossRef]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B 80, 201401 (2009).
[CrossRef]

Phys. Rev. Let. (1)

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Let. 105, 126804 (2010).
[CrossRef]

Phys. Rev. Lett. (9)

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106, 107403 (2011).
[CrossRef] [PubMed]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef] [PubMed]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102, 146807 (2009).
[CrossRef] [PubMed]

V. Giannini, G. Vecchi, and J. Gómez Rivas, “Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas,” Phys. Rev. Lett. 105, 266801 (2010).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

F. J. García de Abajo and J. J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett. 95, 233901 (2005).
[CrossRef]

S. H. Mousavi, A. B. Khanikaev, B. Neuner, Y. Avitzour, D. Korobkin, G. Ferro, and G. Shvets, “Highly confined hybrid spoof surface plasmons in ultrathin metal-dielectric heterostructures,” Phys. Rev. Lett. 105, 176803 (2010).
[CrossRef]

V.G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely Narrow Plasmon Resonances Based on Diffraction Coupling of Localized Plasmons in Arrays of Metallic Nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
[CrossRef] [PubMed]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[CrossRef] [PubMed]

Phys.Rev. B (1)

K. Kempa, R. Ruppin, and J. B. Pendry, “Electromagnetic response of a point-dipole crystal,” Phys.Rev. B 72, 205103 (2005).
[CrossRef]

Proc. Natl Acad. Sci. U.S.A. (2)

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl Acad. Sci. U.S.A. 106, 19227–19232 (2009).
[CrossRef] [PubMed]

A. Yanik, A. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. B. Khanikaev, J. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl Acad. Sci. U.S.A. 108, 11784–11789 (2011).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

F. J. García de Abajo, “Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
[CrossRef]

Science (1)

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef] [PubMed]

Other (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London)424, 824–830 (2003).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London)391, 667–669 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematics of a double-antenna meta-surface on a substrate. (b) SEM image of the sample grown on CaF2 (ɛ = n2 = 1.96). The structure dimensions are ay = 1.8 μm, ax = 0.3 μm, P = Px = Py = 2.25 μm, and d = 0.8 μm.

Fig. 2
Fig. 2

Calculated transmission spectra for s-polarized light in (a,c) SAM and (b,d) DAM perfectly conducting antennas on CaF2 substrate. In (a,b), color arrows indicate the spectral position of the onset of the substrate-side (−1,0) diffraction order where the Wood’s anomaly for SAM is observed while for DAM it is suppressed. Offset between different curves is 0.7. In (c,d) dashed lines show spectral position of substrate-side (gray) and air-side (blue) Wood’s anomalies. Structure parameters are given in Fig. 1.

Fig. 3
Fig. 3

Experimental s-polarized transmission spectra for (a,c) SAM (b,d) DAM structures made of 75-nm thick gold (Au) antennas. In (a,b) color arrows indicate the expected spectral position of the onset of the substrate-side (−1,0) diffraction order where the Wood’s anomaly for SAM is observed while for DAM it is suppressed. Offset between different curves is 0.2. In (c,d) dashed lines show spectral position of substrate-side (gray) and air-side (blue) Wood’s anomalies. The structure parameters are given in Fig. 1.

Fig. 4
Fig. 4

Theoretical (a) and experimental (b) near-IR s-polarized transmission spectra for 75-nm thick plasmonic (Ag) DAM on glass (SiO2) substrate. Vertical color arrows indicate the expected spectral position of the onset of the substrate-side (−1,0) diffraction order. The offset between different curves is 0.2. Structure parameters are ay = 350 nm, ax = 105 nm, ɛSiO2 = 2.25, Px = Py = 600 nm, and d = 230 nm.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

α eff ( k || , ω ) = 1 α 1 ( ω ) S 0 ( k || , ω ) , S 0 ( k || , ω ) = m 0 g y y ( R m ) exp ( i k || R m ) , g y y = e i k r r { k 2 ( 1 y 2 r 2 ) + i k r ( 1 3 y 2 r 2 ) 1 r 2 ( 1 3 y 2 r 2 ) } ,
r = 2 π i k P x P y α eff , t = 1 + r .
S 0 ( k x , ω ) k 2 m 0 e i k | x m | | x m | e i k x x m = k 2 m > 0 e ikm P x m P x { e i k x m P x + e i k x m P x } .
[ α 1 S 0 S + S α 1 S 0 ] [ p 1 p 2 ] = E ext [ e i k x d / 2 e + i k x d / 2 ] ,
[ α 1 S 0 + Δ i κ i κ α 1 S 0 Δ ] [ p sup p sub ] = E ext [ 2 0 ] ,
D = 1 + Δ / X α 1 ( S 0 X ) E ext ,
Q = i κ / X α 1 ( S 0 + X ) E ext ,
r = 2 π i k P x P y P sup = 2 π i k P x P y ( D i δ Q ) , t = 1 + r .
p 1 = e i k x d 2 { 1 i δ 2 ( D + Q ) } ,
p 2 = e i k x d 2 { 1 + i δ 2 ( D Q ) } .
S 0 = ( l , q ) A ( l , q ) k z ( l , q ) + S 0 non singular , S ± = ( l , q ) A ( l , q ) k z ( l , q ) exp [ i ( k x + 2 π l P x ) d ] , Δ = ( l , q ) A ( l , q ) k z ( l , q ) cos ( 2 π l P x d ) , κ = ( l , q ) A ( l , q ) k z ( l , q ) sin ( 2 π l P x d ) .
S 0 A ( 1 , 0 ) k z ( 1 , 0 ) , Δ A ( 1 , 0 ) k z ( 1 , 0 ) cos ( 2 π P x d ) , κ A ( 1 , 0 ) k z ( 1 , 0 ) sin ( 2 π P x d ) , X A ( 1 , 0 ) k z ( 1 , 0 ) , δ 1 + cos ( 2 π d / P x ) sin ( 2 π d / P x ) = tan [ π / 2 2 π d / P x ] .
r WA = 2 π i k P x P y ( α 1 S 0 + X ) [ 1 cos ( 2 π d P x ) ] .
{ α 1 ( ω c ) S 0 ( k || , ω c ) } = 0 .
[ α 1 ( S 0 + p 2 p 1 S + ) ] p 1 = e i k x d 2 E ext .
S 1 = m 0 g y y ( x m ) e i k x x m + p 2 p 1 m g y y ( x m + d ) e i k x x m .
g y y ( x m ) + p 2 p 1 g yy ( x m + d ) e ik x m x m + p 2 p 1 e i k ( x m + d ) x m + d = e i k x m x m { 1 + p 2 p 1 e i k d } + O ( d / x m ) 2 .
g y y ( x m ) + p 2 p 1 g y y ( x m + d ) 1 x m 2 .

Metrics