Abstract

The plasmonic 2D W-shape and 3D inverted pyramidal nanostructures with and without the tips are studied. The effects of the tip height and tip tilt angle on the near field enhancement and far field radiation pattern are discussed in this paper. The localized hot spots are found around the pits and the radiation pattern can be affected by the tip structures. The inverted pyramidal nanostructures with and without the tips were fabricated and their reflection spectra and surface-enhanced Raman scattering (SERS) signals for the chemical molecules thiophenol were measured. The simulation according to the geometry parameters of the fabricated structures is demonstrated. We found that the SERS of our proposed structures with the tips can have stronger light field enhancements than the inverted pyramidal nanostructures without the tips, and the far field radiation pattern can be varied by changing the tip height and tip tilt angle. The study of surface plasmon modes and charge distributions can help the understanding of how to arrange the plasmonic structures to achieve high field enhancement and preferred far field radiation pattern. Our study can be useful for the design of the strong field enhancement SERS substrate with specific far field radiation properties. It can be also applied to the portable Raman detectors for in situ and remote measurements in specific applications.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. S. Ligler, “Perspective on optical biosensors and integrated sensor systems,” Anal. Chem. 81(2), 519–526 (2009).
    [CrossRef] [PubMed]
  2. G. R. Souza, D. R. Christianson, F. I. Staquicini, M. G. Ozawa, E. Y. Snyder, R. L. Sidman, J. H. Miller, W. Arap, and R. Pasqualini, “Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents,” Proc. Natl. Acad. Sci. U.S.A. 103(5), 1215–1220 (2006).
    [CrossRef] [PubMed]
  3. M. Culha, D. Stokes, and T. Vo-Dinh, “Surface-enhanced Raman scattering for cancer diagnostics: detection of the BCL2 gene,” Expert Rev. Mol. Diagn. 3(5), 669–675 (2003).
    [CrossRef] [PubMed]
  4. W.-C. Shih, K. L. Bechtel, and M. S. Feld, “Intrinsic Raman spectroscopy for quantitative biological spectroscopy part I: theory and simulations,” Opt. Express 16(17), 12726–12736 (2008).
    [PubMed]
  5. K. L. Bechtel, W.-C. Shih, and M. S. Feld, “Intrinsic Raman spectroscopy for quantitative biological spectroscopy part II: experimental applications,” Opt. Express 16(17), 12737–12745 (2008).
    [PubMed]
  6. Y.-B. Lan, S.-Z. Wang, Y.-G. Yin, W. C. Hoffmann, and X.-Z. Zheng, “Using a surface plasmon resonance biosensor for rapid detection of salmonella typhimurium in chicken carcass,” J. Bionics Eng. 5(3), 239–246 (2008).
    [CrossRef]
  7. R. Son, G. Kim, A. Kothapalli, M. T. Morgan, and D. Ess, “Detection of salmonella enteritidis using a miniature optical surface plasmon resonance biosensor,” J. Phys.: Conf. Ser. 61, 1086–1090 (2007).
    [CrossRef]
  8. B. Yan, S. V. Boriskina, and B. M. Reinhard, “Optimizing gold nanoparticle cluster configurations (n?7) for array applications,” J. Phys. Chem. C 115(11), 4578–4583 (2011).
    [CrossRef] [PubMed]
  9. J. Wang, L. Yang, S. Boriskina, B. Yan, and B. M. Reinhard, “Spectroscopic ultra-trace detection of nitroaromatic gas vapor on rationally designed two-dimensional nanoparticle cluster arrays,” Anal. Chem. 83(6), 2243–2249 (2011).
    [CrossRef] [PubMed]
  10. K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390(1), 113–124 (2008).
    [CrossRef] [PubMed]
  11. H. Ko, S. Singamaneni, and V. V. Tsukruk, “Nanostructured surfaces and assemblies as SERS media,” Small 4(10), 1576–1599 (2008).
    [CrossRef] [PubMed]
  12. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
    [CrossRef] [PubMed]
  13. E. Katz and I. Willner, “Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications,” Angew. Chem. Int. Ed. Engl. 43(45), 6042–6108 (2004).
    [CrossRef] [PubMed]
  14. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14(18), R597–R624 (2002).
    [CrossRef]
  15. N. M. B. Perney, J. J. Baumberg, M. E. Zoorob, M. D. B. Charlton, S. Mahnkopf, and C. M. Netti, “Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering,” Opt. Express 14(2), 847–857 (2006).
    [CrossRef] [PubMed]
  16. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
    [CrossRef] [PubMed]
  17. J. T. Hugall, J. J. Baumberg, and S. Mahajan, “Surface-enhanced Raman spectroscopy of CdSe quantum dots on nanostructured plasmonic surfaces,” Appl. Phys. Lett. 95(14), 141111 (2009).
    [CrossRef]
  18. T. V. Teperik and A. G. Borisov, “Optical resonances in the scattering of light from a nanostructured metal surface: A three-dimensional numerical study,” Phys. Rev. B 79(24), 245409 (2009).
    [CrossRef]
  19. K. C. Vernon, T. J. Davis, F. H. Scholes, D. E. Gómez, and D. Lau, “Physical mechanisms behind the SERS enhancement of pyramidal pit substrates,” J. Raman Spectrosc. 41(10), 1106–1111 (2010).
    [CrossRef]
  20. H. Gao, J. Henzie, M. H. Lee, and T. W. Odom, “Screening plasmonic materials using pyramidal gratings,” Proc. Natl. Acad. Sci. U.S.A. 105(51), 20146–20151 (2008).
    [CrossRef] [PubMed]
  21. J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett. 5(11), 2262–2267 (2005).
    [CrossRef] [PubMed]
  22. N.-F. Chiu, C.-W. Lin, J.-H. Lee, C.-H. Kuan, K.-C. Wu, and C.-K. Lee, “Enhanced luminescence of organic/metal nanostructure for grating coupler active long-range surface plasmonic device,” Appl. Phys. Lett. 91(8), 083114 (2007).
    [CrossRef]
  23. D. Arbel and M. Orenstein, “Plasmonic modes in W-shaped metal-coated silicon grooves,” Opt. Express 16(5), 3114–3119 (2008).
    [CrossRef] [PubMed]
  24. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  25. Lumerical FDTD Solution, http://www.lumerical.com/ .
  26. W. Luo, W. van der Veer, P. Chu, D. L. Mills, R. M. Penner, and J. C. Hemminger, “Polarization-dependent surface enhanced Raman scattering from silver 1D nanoparticle arrays,” J. Phys. Chem. C 112(31), 11609–11613 (2008).
    [CrossRef]

2011 (2)

B. Yan, S. V. Boriskina, and B. M. Reinhard, “Optimizing gold nanoparticle cluster configurations (n?7) for array applications,” J. Phys. Chem. C 115(11), 4578–4583 (2011).
[CrossRef] [PubMed]

J. Wang, L. Yang, S. Boriskina, B. Yan, and B. M. Reinhard, “Spectroscopic ultra-trace detection of nitroaromatic gas vapor on rationally designed two-dimensional nanoparticle cluster arrays,” Anal. Chem. 83(6), 2243–2249 (2011).
[CrossRef] [PubMed]

2010 (1)

K. C. Vernon, T. J. Davis, F. H. Scholes, D. E. Gómez, and D. Lau, “Physical mechanisms behind the SERS enhancement of pyramidal pit substrates,” J. Raman Spectrosc. 41(10), 1106–1111 (2010).
[CrossRef]

2009 (3)

J. T. Hugall, J. J. Baumberg, and S. Mahajan, “Surface-enhanced Raman spectroscopy of CdSe quantum dots on nanostructured plasmonic surfaces,” Appl. Phys. Lett. 95(14), 141111 (2009).
[CrossRef]

T. V. Teperik and A. G. Borisov, “Optical resonances in the scattering of light from a nanostructured metal surface: A three-dimensional numerical study,” Phys. Rev. B 79(24), 245409 (2009).
[CrossRef]

F. S. Ligler, “Perspective on optical biosensors and integrated sensor systems,” Anal. Chem. 81(2), 519–526 (2009).
[CrossRef] [PubMed]

2008 (9)

H. Gao, J. Henzie, M. H. Lee, and T. W. Odom, “Screening plasmonic materials using pyramidal gratings,” Proc. Natl. Acad. Sci. U.S.A. 105(51), 20146–20151 (2008).
[CrossRef] [PubMed]

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390(1), 113–124 (2008).
[CrossRef] [PubMed]

H. Ko, S. Singamaneni, and V. V. Tsukruk, “Nanostructured surfaces and assemblies as SERS media,” Small 4(10), 1576–1599 (2008).
[CrossRef] [PubMed]

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

W.-C. Shih, K. L. Bechtel, and M. S. Feld, “Intrinsic Raman spectroscopy for quantitative biological spectroscopy part I: theory and simulations,” Opt. Express 16(17), 12726–12736 (2008).
[PubMed]

K. L. Bechtel, W.-C. Shih, and M. S. Feld, “Intrinsic Raman spectroscopy for quantitative biological spectroscopy part II: experimental applications,” Opt. Express 16(17), 12737–12745 (2008).
[PubMed]

Y.-B. Lan, S.-Z. Wang, Y.-G. Yin, W. C. Hoffmann, and X.-Z. Zheng, “Using a surface plasmon resonance biosensor for rapid detection of salmonella typhimurium in chicken carcass,” J. Bionics Eng. 5(3), 239–246 (2008).
[CrossRef]

D. Arbel and M. Orenstein, “Plasmonic modes in W-shaped metal-coated silicon grooves,” Opt. Express 16(5), 3114–3119 (2008).
[CrossRef] [PubMed]

W. Luo, W. van der Veer, P. Chu, D. L. Mills, R. M. Penner, and J. C. Hemminger, “Polarization-dependent surface enhanced Raman scattering from silver 1D nanoparticle arrays,” J. Phys. Chem. C 112(31), 11609–11613 (2008).
[CrossRef]

2007 (2)

N.-F. Chiu, C.-W. Lin, J.-H. Lee, C.-H. Kuan, K.-C. Wu, and C.-K. Lee, “Enhanced luminescence of organic/metal nanostructure for grating coupler active long-range surface plasmonic device,” Appl. Phys. Lett. 91(8), 083114 (2007).
[CrossRef]

R. Son, G. Kim, A. Kothapalli, M. T. Morgan, and D. Ess, “Detection of salmonella enteritidis using a miniature optical surface plasmon resonance biosensor,” J. Phys.: Conf. Ser. 61, 1086–1090 (2007).
[CrossRef]

2006 (2)

G. R. Souza, D. R. Christianson, F. I. Staquicini, M. G. Ozawa, E. Y. Snyder, R. L. Sidman, J. H. Miller, W. Arap, and R. Pasqualini, “Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents,” Proc. Natl. Acad. Sci. U.S.A. 103(5), 1215–1220 (2006).
[CrossRef] [PubMed]

N. M. B. Perney, J. J. Baumberg, M. E. Zoorob, M. D. B. Charlton, S. Mahnkopf, and C. M. Netti, “Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering,” Opt. Express 14(2), 847–857 (2006).
[CrossRef] [PubMed]

2005 (1)

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[CrossRef] [PubMed]

2004 (2)

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[CrossRef] [PubMed]

E. Katz and I. Willner, “Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications,” Angew. Chem. Int. Ed. Engl. 43(45), 6042–6108 (2004).
[CrossRef] [PubMed]

2003 (1)

M. Culha, D. Stokes, and T. Vo-Dinh, “Surface-enhanced Raman scattering for cancer diagnostics: detection of the BCL2 gene,” Expert Rev. Mol. Diagn. 3(5), 669–675 (2003).
[CrossRef] [PubMed]

2002 (1)

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14(18), R597–R624 (2002).
[CrossRef]

Abdelsalam, M. E.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[CrossRef] [PubMed]

Ackermann, K.

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390(1), 113–124 (2008).
[CrossRef] [PubMed]

Anderton, C. R.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Arap, W.

G. R. Souza, D. R. Christianson, F. I. Staquicini, M. G. Ozawa, E. Y. Snyder, R. L. Sidman, J. H. Miller, W. Arap, and R. Pasqualini, “Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents,” Proc. Natl. Acad. Sci. U.S.A. 103(5), 1215–1220 (2006).
[CrossRef] [PubMed]

Arbel, D.

Barnes, W. L.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[CrossRef] [PubMed]

Bartlett, P. N.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[CrossRef] [PubMed]

Baumberg, J. J.

J. T. Hugall, J. J. Baumberg, and S. Mahajan, “Surface-enhanced Raman spectroscopy of CdSe quantum dots on nanostructured plasmonic surfaces,” Appl. Phys. Lett. 95(14), 141111 (2009).
[CrossRef]

N. M. B. Perney, J. J. Baumberg, M. E. Zoorob, M. D. B. Charlton, S. Mahnkopf, and C. M. Netti, “Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering,” Opt. Express 14(2), 847–857 (2006).
[CrossRef] [PubMed]

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[CrossRef] [PubMed]

Bechtel, K. L.

Boriskina, S.

J. Wang, L. Yang, S. Boriskina, B. Yan, and B. M. Reinhard, “Spectroscopic ultra-trace detection of nitroaromatic gas vapor on rationally designed two-dimensional nanoparticle cluster arrays,” Anal. Chem. 83(6), 2243–2249 (2011).
[CrossRef] [PubMed]

Boriskina, S. V.

B. Yan, S. V. Boriskina, and B. M. Reinhard, “Optimizing gold nanoparticle cluster configurations (n?7) for array applications,” J. Phys. Chem. C 115(11), 4578–4583 (2011).
[CrossRef] [PubMed]

Borisov, A. G.

T. V. Teperik and A. G. Borisov, “Optical resonances in the scattering of light from a nanostructured metal surface: A three-dimensional numerical study,” Phys. Rev. B 79(24), 245409 (2009).
[CrossRef]

Charlton, M. D. B.

Chiu, N.-F.

N.-F. Chiu, C.-W. Lin, J.-H. Lee, C.-H. Kuan, K.-C. Wu, and C.-K. Lee, “Enhanced luminescence of organic/metal nanostructure for grating coupler active long-range surface plasmonic device,” Appl. Phys. Lett. 91(8), 083114 (2007).
[CrossRef]

Christianson, D. R.

G. R. Souza, D. R. Christianson, F. I. Staquicini, M. G. Ozawa, E. Y. Snyder, R. L. Sidman, J. H. Miller, W. Arap, and R. Pasqualini, “Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents,” Proc. Natl. Acad. Sci. U.S.A. 103(5), 1215–1220 (2006).
[CrossRef] [PubMed]

Chu, P.

W. Luo, W. van der Veer, P. Chu, D. L. Mills, R. M. Penner, and J. C. Hemminger, “Polarization-dependent surface enhanced Raman scattering from silver 1D nanoparticle arrays,” J. Phys. Chem. C 112(31), 11609–11613 (2008).
[CrossRef]

Cialla, D.

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390(1), 113–124 (2008).
[CrossRef] [PubMed]

Cintra, S.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[CrossRef] [PubMed]

Culha, M.

M. Culha, D. Stokes, and T. Vo-Dinh, “Surface-enhanced Raman scattering for cancer diagnostics: detection of the BCL2 gene,” Expert Rev. Mol. Diagn. 3(5), 669–675 (2003).
[CrossRef] [PubMed]

Dasari, R. R.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14(18), R597–R624 (2002).
[CrossRef]

Davis, T. J.

K. C. Vernon, T. J. Davis, F. H. Scholes, D. E. Gómez, and D. Lau, “Physical mechanisms behind the SERS enhancement of pyramidal pit substrates,” J. Raman Spectrosc. 41(10), 1106–1111 (2010).
[CrossRef]

Devaux, E.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[CrossRef] [PubMed]

Dintinger, J.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[CrossRef] [PubMed]

Dörfer, T.

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390(1), 113–124 (2008).
[CrossRef] [PubMed]

Ebbesen, T. W.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[CrossRef] [PubMed]

Ess, D.

R. Son, G. Kim, A. Kothapalli, M. T. Morgan, and D. Ess, “Detection of salmonella enteritidis using a miniature optical surface plasmon resonance biosensor,” J. Phys.: Conf. Ser. 61, 1086–1090 (2007).
[CrossRef]

Feld, M. S.

Fritzsche, W.

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390(1), 113–124 (2008).
[CrossRef] [PubMed]

Gao, H.

H. Gao, J. Henzie, M. H. Lee, and T. W. Odom, “Screening plasmonic materials using pyramidal gratings,” Proc. Natl. Acad. Sci. U.S.A. 105(51), 20146–20151 (2008).
[CrossRef] [PubMed]

Gómez, D. E.

K. C. Vernon, T. J. Davis, F. H. Scholes, D. E. Gómez, and D. Lau, “Physical mechanisms behind the SERS enhancement of pyramidal pit substrates,” J. Raman Spectrosc. 41(10), 1106–1111 (2010).
[CrossRef]

Gray, S. K.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Hemminger, J. C.

W. Luo, W. van der Veer, P. Chu, D. L. Mills, R. M. Penner, and J. C. Hemminger, “Polarization-dependent surface enhanced Raman scattering from silver 1D nanoparticle arrays,” J. Phys. Chem. C 112(31), 11609–11613 (2008).
[CrossRef]

Henzie, J.

H. Gao, J. Henzie, M. H. Lee, and T. W. Odom, “Screening plasmonic materials using pyramidal gratings,” Proc. Natl. Acad. Sci. U.S.A. 105(51), 20146–20151 (2008).
[CrossRef] [PubMed]

Hering, K.

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390(1), 113–124 (2008).
[CrossRef] [PubMed]

Hoffmann, W. C.

Y.-B. Lan, S.-Z. Wang, Y.-G. Yin, W. C. Hoffmann, and X.-Z. Zheng, “Using a surface plasmon resonance biosensor for rapid detection of salmonella typhimurium in chicken carcass,” J. Bionics Eng. 5(3), 239–246 (2008).
[CrossRef]

Hugall, J. T.

J. T. Hugall, J. J. Baumberg, and S. Mahajan, “Surface-enhanced Raman spectroscopy of CdSe quantum dots on nanostructured plasmonic surfaces,” Appl. Phys. Lett. 95(14), 141111 (2009).
[CrossRef]

Itzkan, I.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14(18), R597–R624 (2002).
[CrossRef]

Katz, E.

E. Katz and I. Willner, “Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications,” Angew. Chem. Int. Ed. Engl. 43(45), 6042–6108 (2004).
[CrossRef] [PubMed]

Kelf, T. A.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[CrossRef] [PubMed]

Kim, G.

R. Son, G. Kim, A. Kothapalli, M. T. Morgan, and D. Ess, “Detection of salmonella enteritidis using a miniature optical surface plasmon resonance biosensor,” J. Phys.: Conf. Ser. 61, 1086–1090 (2007).
[CrossRef]

Kneipp, H.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14(18), R597–R624 (2002).
[CrossRef]

Kneipp, K.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14(18), R597–R624 (2002).
[CrossRef]

Ko, H.

H. Ko, S. Singamaneni, and V. V. Tsukruk, “Nanostructured surfaces and assemblies as SERS media,” Small 4(10), 1576–1599 (2008).
[CrossRef] [PubMed]

Kothapalli, A.

R. Son, G. Kim, A. Kothapalli, M. T. Morgan, and D. Ess, “Detection of salmonella enteritidis using a miniature optical surface plasmon resonance biosensor,” J. Phys.: Conf. Ser. 61, 1086–1090 (2007).
[CrossRef]

Kuan, C.-H.

N.-F. Chiu, C.-W. Lin, J.-H. Lee, C.-H. Kuan, K.-C. Wu, and C.-K. Lee, “Enhanced luminescence of organic/metal nanostructure for grating coupler active long-range surface plasmonic device,” Appl. Phys. Lett. 91(8), 083114 (2007).
[CrossRef]

Lan, Y.-B.

Y.-B. Lan, S.-Z. Wang, Y.-G. Yin, W. C. Hoffmann, and X.-Z. Zheng, “Using a surface plasmon resonance biosensor for rapid detection of salmonella typhimurium in chicken carcass,” J. Bionics Eng. 5(3), 239–246 (2008).
[CrossRef]

Lau, D.

K. C. Vernon, T. J. Davis, F. H. Scholes, D. E. Gómez, and D. Lau, “Physical mechanisms behind the SERS enhancement of pyramidal pit substrates,” J. Raman Spectrosc. 41(10), 1106–1111 (2010).
[CrossRef]

Lee, C.-K.

N.-F. Chiu, C.-W. Lin, J.-H. Lee, C.-H. Kuan, K.-C. Wu, and C.-K. Lee, “Enhanced luminescence of organic/metal nanostructure for grating coupler active long-range surface plasmonic device,” Appl. Phys. Lett. 91(8), 083114 (2007).
[CrossRef]

Lee, J.-H.

N.-F. Chiu, C.-W. Lin, J.-H. Lee, C.-H. Kuan, K.-C. Wu, and C.-K. Lee, “Enhanced luminescence of organic/metal nanostructure for grating coupler active long-range surface plasmonic device,” Appl. Phys. Lett. 91(8), 083114 (2007).
[CrossRef]

Lee, M. H.

H. Gao, J. Henzie, M. H. Lee, and T. W. Odom, “Screening plasmonic materials using pyramidal gratings,” Proc. Natl. Acad. Sci. U.S.A. 105(51), 20146–20151 (2008).
[CrossRef] [PubMed]

Ligler, F. S.

F. S. Ligler, “Perspective on optical biosensors and integrated sensor systems,” Anal. Chem. 81(2), 519–526 (2009).
[CrossRef] [PubMed]

Lin, C.-W.

N.-F. Chiu, C.-W. Lin, J.-H. Lee, C.-H. Kuan, K.-C. Wu, and C.-K. Lee, “Enhanced luminescence of organic/metal nanostructure for grating coupler active long-range surface plasmonic device,” Appl. Phys. Lett. 91(8), 083114 (2007).
[CrossRef]

Luo, W.

W. Luo, W. van der Veer, P. Chu, D. L. Mills, R. M. Penner, and J. C. Hemminger, “Polarization-dependent surface enhanced Raman scattering from silver 1D nanoparticle arrays,” J. Phys. Chem. C 112(31), 11609–11613 (2008).
[CrossRef]

Mahajan, S.

J. T. Hugall, J. J. Baumberg, and S. Mahajan, “Surface-enhanced Raman spectroscopy of CdSe quantum dots on nanostructured plasmonic surfaces,” Appl. Phys. Lett. 95(14), 141111 (2009).
[CrossRef]

Mahnkopf, S.

Maria, J.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Mattheis, R.

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390(1), 113–124 (2008).
[CrossRef] [PubMed]

Miller, J. H.

G. R. Souza, D. R. Christianson, F. I. Staquicini, M. G. Ozawa, E. Y. Snyder, R. L. Sidman, J. H. Miller, W. Arap, and R. Pasqualini, “Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents,” Proc. Natl. Acad. Sci. U.S.A. 103(5), 1215–1220 (2006).
[CrossRef] [PubMed]

Mills, D. L.

W. Luo, W. van der Veer, P. Chu, D. L. Mills, R. M. Penner, and J. C. Hemminger, “Polarization-dependent surface enhanced Raman scattering from silver 1D nanoparticle arrays,” J. Phys. Chem. C 112(31), 11609–11613 (2008).
[CrossRef]

Möller, R.

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390(1), 113–124 (2008).
[CrossRef] [PubMed]

Morgan, M. T.

R. Son, G. Kim, A. Kothapalli, M. T. Morgan, and D. Ess, “Detection of salmonella enteritidis using a miniature optical surface plasmon resonance biosensor,” J. Phys.: Conf. Ser. 61, 1086–1090 (2007).
[CrossRef]

Murray, W. A.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[CrossRef] [PubMed]

Netti, C. M.

Nuzzo, R. G.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Odom, T. W.

H. Gao, J. Henzie, M. H. Lee, and T. W. Odom, “Screening plasmonic materials using pyramidal gratings,” Proc. Natl. Acad. Sci. U.S.A. 105(51), 20146–20151 (2008).
[CrossRef] [PubMed]

Orenstein, M.

Ozawa, M. G.

G. R. Souza, D. R. Christianson, F. I. Staquicini, M. G. Ozawa, E. Y. Snyder, R. L. Sidman, J. H. Miller, W. Arap, and R. Pasqualini, “Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents,” Proc. Natl. Acad. Sci. U.S.A. 103(5), 1215–1220 (2006).
[CrossRef] [PubMed]

Pasqualini, R.

G. R. Souza, D. R. Christianson, F. I. Staquicini, M. G. Ozawa, E. Y. Snyder, R. L. Sidman, J. H. Miller, W. Arap, and R. Pasqualini, “Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents,” Proc. Natl. Acad. Sci. U.S.A. 103(5), 1215–1220 (2006).
[CrossRef] [PubMed]

Penner, R. M.

W. Luo, W. van der Veer, P. Chu, D. L. Mills, R. M. Penner, and J. C. Hemminger, “Polarization-dependent surface enhanced Raman scattering from silver 1D nanoparticle arrays,” J. Phys. Chem. C 112(31), 11609–11613 (2008).
[CrossRef]

Perney, N. M. B.

Popp, J.

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390(1), 113–124 (2008).
[CrossRef] [PubMed]

Reinhard, B. M.

B. Yan, S. V. Boriskina, and B. M. Reinhard, “Optimizing gold nanoparticle cluster configurations (n?7) for array applications,” J. Phys. Chem. C 115(11), 4578–4583 (2011).
[CrossRef] [PubMed]

J. Wang, L. Yang, S. Boriskina, B. Yan, and B. M. Reinhard, “Spectroscopic ultra-trace detection of nitroaromatic gas vapor on rationally designed two-dimensional nanoparticle cluster arrays,” Anal. Chem. 83(6), 2243–2249 (2011).
[CrossRef] [PubMed]

Rogers, J. A.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Rösch, P.

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390(1), 113–124 (2008).
[CrossRef] [PubMed]

Russell, A. E.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[CrossRef] [PubMed]

Schneidewind, H.

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390(1), 113–124 (2008).
[CrossRef] [PubMed]

Scholes, F. H.

K. C. Vernon, T. J. Davis, F. H. Scholes, D. E. Gómez, and D. Lau, “Physical mechanisms behind the SERS enhancement of pyramidal pit substrates,” J. Raman Spectrosc. 41(10), 1106–1111 (2010).
[CrossRef]

Shih, W.-C.

Sidman, R. L.

G. R. Souza, D. R. Christianson, F. I. Staquicini, M. G. Ozawa, E. Y. Snyder, R. L. Sidman, J. H. Miller, W. Arap, and R. Pasqualini, “Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents,” Proc. Natl. Acad. Sci. U.S.A. 103(5), 1215–1220 (2006).
[CrossRef] [PubMed]

Singamaneni, S.

H. Ko, S. Singamaneni, and V. V. Tsukruk, “Nanostructured surfaces and assemblies as SERS media,” Small 4(10), 1576–1599 (2008).
[CrossRef] [PubMed]

Snyder, E. Y.

G. R. Souza, D. R. Christianson, F. I. Staquicini, M. G. Ozawa, E. Y. Snyder, R. L. Sidman, J. H. Miller, W. Arap, and R. Pasqualini, “Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents,” Proc. Natl. Acad. Sci. U.S.A. 103(5), 1215–1220 (2006).
[CrossRef] [PubMed]

Son, R.

R. Son, G. Kim, A. Kothapalli, M. T. Morgan, and D. Ess, “Detection of salmonella enteritidis using a miniature optical surface plasmon resonance biosensor,” J. Phys.: Conf. Ser. 61, 1086–1090 (2007).
[CrossRef]

Souza, G. R.

G. R. Souza, D. R. Christianson, F. I. Staquicini, M. G. Ozawa, E. Y. Snyder, R. L. Sidman, J. H. Miller, W. Arap, and R. Pasqualini, “Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents,” Proc. Natl. Acad. Sci. U.S.A. 103(5), 1215–1220 (2006).
[CrossRef] [PubMed]

Staquicini, F. I.

G. R. Souza, D. R. Christianson, F. I. Staquicini, M. G. Ozawa, E. Y. Snyder, R. L. Sidman, J. H. Miller, W. Arap, and R. Pasqualini, “Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents,” Proc. Natl. Acad. Sci. U.S.A. 103(5), 1215–1220 (2006).
[CrossRef] [PubMed]

Stewart, M. E.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Stokes, D.

M. Culha, D. Stokes, and T. Vo-Dinh, “Surface-enhanced Raman scattering for cancer diagnostics: detection of the BCL2 gene,” Expert Rev. Mol. Diagn. 3(5), 669–675 (2003).
[CrossRef] [PubMed]

Sugawara, Y.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[CrossRef] [PubMed]

Teperik, T. V.

T. V. Teperik and A. G. Borisov, “Optical resonances in the scattering of light from a nanostructured metal surface: A three-dimensional numerical study,” Phys. Rev. B 79(24), 245409 (2009).
[CrossRef]

Thompson, L. B.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Tsukruk, V. V.

H. Ko, S. Singamaneni, and V. V. Tsukruk, “Nanostructured surfaces and assemblies as SERS media,” Small 4(10), 1576–1599 (2008).
[CrossRef] [PubMed]

van der Veer, W.

W. Luo, W. van der Veer, P. Chu, D. L. Mills, R. M. Penner, and J. C. Hemminger, “Polarization-dependent surface enhanced Raman scattering from silver 1D nanoparticle arrays,” J. Phys. Chem. C 112(31), 11609–11613 (2008).
[CrossRef]

Vernon, K. C.

K. C. Vernon, T. J. Davis, F. H. Scholes, D. E. Gómez, and D. Lau, “Physical mechanisms behind the SERS enhancement of pyramidal pit substrates,” J. Raman Spectrosc. 41(10), 1106–1111 (2010).
[CrossRef]

Vo-Dinh, T.

M. Culha, D. Stokes, and T. Vo-Dinh, “Surface-enhanced Raman scattering for cancer diagnostics: detection of the BCL2 gene,” Expert Rev. Mol. Diagn. 3(5), 669–675 (2003).
[CrossRef] [PubMed]

Wang, J.

J. Wang, L. Yang, S. Boriskina, B. Yan, and B. M. Reinhard, “Spectroscopic ultra-trace detection of nitroaromatic gas vapor on rationally designed two-dimensional nanoparticle cluster arrays,” Anal. Chem. 83(6), 2243–2249 (2011).
[CrossRef] [PubMed]

Wang, S.-Z.

Y.-B. Lan, S.-Z. Wang, Y.-G. Yin, W. C. Hoffmann, and X.-Z. Zheng, “Using a surface plasmon resonance biosensor for rapid detection of salmonella typhimurium in chicken carcass,” J. Bionics Eng. 5(3), 239–246 (2008).
[CrossRef]

Willner, I.

E. Katz and I. Willner, “Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications,” Angew. Chem. Int. Ed. Engl. 43(45), 6042–6108 (2004).
[CrossRef] [PubMed]

Wu, K.-C.

N.-F. Chiu, C.-W. Lin, J.-H. Lee, C.-H. Kuan, K.-C. Wu, and C.-K. Lee, “Enhanced luminescence of organic/metal nanostructure for grating coupler active long-range surface plasmonic device,” Appl. Phys. Lett. 91(8), 083114 (2007).
[CrossRef]

Yan, B.

J. Wang, L. Yang, S. Boriskina, B. Yan, and B. M. Reinhard, “Spectroscopic ultra-trace detection of nitroaromatic gas vapor on rationally designed two-dimensional nanoparticle cluster arrays,” Anal. Chem. 83(6), 2243–2249 (2011).
[CrossRef] [PubMed]

B. Yan, S. V. Boriskina, and B. M. Reinhard, “Optimizing gold nanoparticle cluster configurations (n?7) for array applications,” J. Phys. Chem. C 115(11), 4578–4583 (2011).
[CrossRef] [PubMed]

Yang, L.

J. Wang, L. Yang, S. Boriskina, B. Yan, and B. M. Reinhard, “Spectroscopic ultra-trace detection of nitroaromatic gas vapor on rationally designed two-dimensional nanoparticle cluster arrays,” Anal. Chem. 83(6), 2243–2249 (2011).
[CrossRef] [PubMed]

Yin, Y.-G.

Y.-B. Lan, S.-Z. Wang, Y.-G. Yin, W. C. Hoffmann, and X.-Z. Zheng, “Using a surface plasmon resonance biosensor for rapid detection of salmonella typhimurium in chicken carcass,” J. Bionics Eng. 5(3), 239–246 (2008).
[CrossRef]

Zheng, X.-Z.

Y.-B. Lan, S.-Z. Wang, Y.-G. Yin, W. C. Hoffmann, and X.-Z. Zheng, “Using a surface plasmon resonance biosensor for rapid detection of salmonella typhimurium in chicken carcass,” J. Bionics Eng. 5(3), 239–246 (2008).
[CrossRef]

Zoorob, M. E.

Anal. Bioanal. Chem. (1)

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390(1), 113–124 (2008).
[CrossRef] [PubMed]

Anal. Chem. (2)

J. Wang, L. Yang, S. Boriskina, B. Yan, and B. M. Reinhard, “Spectroscopic ultra-trace detection of nitroaromatic gas vapor on rationally designed two-dimensional nanoparticle cluster arrays,” Anal. Chem. 83(6), 2243–2249 (2011).
[CrossRef] [PubMed]

F. S. Ligler, “Perspective on optical biosensors and integrated sensor systems,” Anal. Chem. 81(2), 519–526 (2009).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

E. Katz and I. Willner, “Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications,” Angew. Chem. Int. Ed. Engl. 43(45), 6042–6108 (2004).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

J. T. Hugall, J. J. Baumberg, and S. Mahajan, “Surface-enhanced Raman spectroscopy of CdSe quantum dots on nanostructured plasmonic surfaces,” Appl. Phys. Lett. 95(14), 141111 (2009).
[CrossRef]

N.-F. Chiu, C.-W. Lin, J.-H. Lee, C.-H. Kuan, K.-C. Wu, and C.-K. Lee, “Enhanced luminescence of organic/metal nanostructure for grating coupler active long-range surface plasmonic device,” Appl. Phys. Lett. 91(8), 083114 (2007).
[CrossRef]

Chem. Rev. (1)

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Expert Rev. Mol. Diagn. (1)

M. Culha, D. Stokes, and T. Vo-Dinh, “Surface-enhanced Raman scattering for cancer diagnostics: detection of the BCL2 gene,” Expert Rev. Mol. Diagn. 3(5), 669–675 (2003).
[CrossRef] [PubMed]

J. Bionics Eng. (1)

Y.-B. Lan, S.-Z. Wang, Y.-G. Yin, W. C. Hoffmann, and X.-Z. Zheng, “Using a surface plasmon resonance biosensor for rapid detection of salmonella typhimurium in chicken carcass,” J. Bionics Eng. 5(3), 239–246 (2008).
[CrossRef]

J. Phys. Chem. C (2)

B. Yan, S. V. Boriskina, and B. M. Reinhard, “Optimizing gold nanoparticle cluster configurations (n?7) for array applications,” J. Phys. Chem. C 115(11), 4578–4583 (2011).
[CrossRef] [PubMed]

W. Luo, W. van der Veer, P. Chu, D. L. Mills, R. M. Penner, and J. C. Hemminger, “Polarization-dependent surface enhanced Raman scattering from silver 1D nanoparticle arrays,” J. Phys. Chem. C 112(31), 11609–11613 (2008).
[CrossRef]

J. Phys. Condens. Matter (1)

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14(18), R597–R624 (2002).
[CrossRef]

J. Phys.: Conf. Ser. (1)

R. Son, G. Kim, A. Kothapalli, M. T. Morgan, and D. Ess, “Detection of salmonella enteritidis using a miniature optical surface plasmon resonance biosensor,” J. Phys.: Conf. Ser. 61, 1086–1090 (2007).
[CrossRef]

J. Raman Spectrosc. (1)

K. C. Vernon, T. J. Davis, F. H. Scholes, D. E. Gómez, and D. Lau, “Physical mechanisms behind the SERS enhancement of pyramidal pit substrates,” J. Raman Spectrosc. 41(10), 1106–1111 (2010).
[CrossRef]

Nano Lett. (1)

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[CrossRef] [PubMed]

Opt. Express (4)

Phys. Rev. B (1)

T. V. Teperik and A. G. Borisov, “Optical resonances in the scattering of light from a nanostructured metal surface: A three-dimensional numerical study,” Phys. Rev. B 79(24), 245409 (2009).
[CrossRef]

Phys. Rev. Lett. (1)

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

H. Gao, J. Henzie, M. H. Lee, and T. W. Odom, “Screening plasmonic materials using pyramidal gratings,” Proc. Natl. Acad. Sci. U.S.A. 105(51), 20146–20151 (2008).
[CrossRef] [PubMed]

G. R. Souza, D. R. Christianson, F. I. Staquicini, M. G. Ozawa, E. Y. Snyder, R. L. Sidman, J. H. Miller, W. Arap, and R. Pasqualini, “Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents,” Proc. Natl. Acad. Sci. U.S.A. 103(5), 1215–1220 (2006).
[CrossRef] [PubMed]

Small (1)

H. Ko, S. Singamaneni, and V. V. Tsukruk, “Nanostructured surfaces and assemblies as SERS media,” Small 4(10), 1576–1599 (2008).
[CrossRef] [PubMed]

Other (2)

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

Lumerical FDTD Solution, http://www.lumerical.com/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

(a) The three-dimensional view of the structure with the tips inside the inverted pyramidal nanostructures and (b) is the cross view with the defined parameters, where t is the thickness of the gold material, h is the tip height from the bottom of the inverted pyramid to the top of the tip, α is the tilt angle of the tip, and w and p are the width and the period of the inverted pyramidal nanostructure.

Fig. 2
Fig. 2

The reflection maps for different angle of incidence and the illuminated light wavelength for the 2D W-shape nanostructures with the tip height h from 0 nm to 1070 nm. The tip tilt angle α is zero. The solid lines in each figure are for λ = 632.8 nm and the dash lines are for λ = 677 nm .The polarization is along the unit side. For better visualization, the scale for reflection intensities has been saturated from 0.5 to 1.

Fig. 3
Fig. 3

(a) and (b) are the far field intensity for the 2D W-shape nanostructures with different tip heights h for the incident light wavelength λ = 632.8 nm and 677 nm, respectively. The tip tilt angle α is zero. For comparison, the bottom figure is the far field intensity for the V-shape nanostructure without the tip. (c)-(e) for λ = 632.8 nm and (f)-(h) for λ = 677 nm are the near field intensities for the tip height h = 0 nm (no tip), h = 270 nm, and h = 870 nm, respectively. To be easy for visualization, (c)-(h) are in logarithmic scale and limited from 0 to 3. The maximums in (c)-(h) are 260.5, 32.6, 214.7, 47.5, 22.9, and 77.0, respectively. The pump light is at normal incidence with the polarization along the unit side.

Fig. 4
Fig. 4

(a) and (b) are the far field intensities for the 2D W-shape nanostructures with different tip tilt angle α for the incident light wavelength λ = 632.8 nm and 677 nm, respectively. (c)-(e) for λ = 632.8 nm and (f)-(h) for λ = 677 nm are the near field intensities for the tip tilt angle α = 10°, α = 20°, α = 30°, respectively. The tip height is 870 nm. To be easy for visualization, (c)-(h) are in logarithmic scale and limited from 0 to 3. The maximums in (c)-(h) are 153.5, 147.5, 122.8, 68.4, 67.0, and 79.1, respectively. Notice that Fig. 3(e) and (h) are the cases of α = 0°. The pump light is at normal incidence with the polarization along the unit side.

Fig. 5
Fig. 5

The reflection maps for different angle of incidence and the illuminated light wavelength for the inverted pyramidal nanostructures with the tip height h from 0 nm to 1070 nm. The tip tilt angle α is zero. The solid lines in each figure are for λ = 632.8 nm and the dash lines are for λ = 677 nm. The polarization is along the unit side. For better visualization, the scale for reflection intensities has been saturated from 0.5 to 1.

Fig. 6
Fig. 6

The near field and far field intensities for the 3D inverted pyramidal nanostructures with tip height from h = 0 nm to h = 1070 nm. The maximums of near field intensities for λ = 632.8 nm in (a), (e), (i), (m), (q), and (u) are 49.1, 53.0, 198.3, 1113.4, 257.0, and 221.9. The maximums of near field intensities for λ = 677 nm in (c), (g), (k), (o), (s), and (w) are 44.0, 43.6, 60.0, 600.8, 124.1, and 113.9. The corresponding far field intensities are in right-hand sides of each near field intensity figure. The pump light is at normal incidence with the polarization along the unit side. The scale bar for near field intensities is in logarithmic scale and limited from 0 to 3.

Fig. 7
Fig. 7

The near field and far field intensities for the 3D inverted pyramidal nanostructures with different tip tilt angle α = 10°, α = 20°, α = 30°, respectively. For λ = 632.8 nm, (a), (e) and (i) are the near field intensity and their corresponding far field intensities are in (b), (f), and (j). For λ = 677 nm, (c), (g) and (k) are the near field intensities and their corresponding far field intensities are in (d), (h), and (l). The scale bar for near field intensities is in logarithmic scale and limited from 0 to 3. The tip height h is 670 nm. The maximums in (a), (e) and (i) are 473.9, 1513.6, and 3373.4, and the maximums in (c), (g) and (k) are 2687.8, 5185.8, and 1720.2. The pump light is at normal incidence with the polarization along the unit side.

Fig. 8
Fig. 8

The near field and far field intensities of diagonal polarization for the 3D inverted pyramidal nanostructures with different tip tilt angle α = 10°, α = 20°, α = 30°, respectively. For λ = 632.8 nm, (a), (e) and (i) are the near field intensities and their corresponding far field intensities are in (b), (f), and (j). For λ = 677 nm, (c), (g) and (k) are the near field intensities and their corresponding far field intensities are in (d), (h), and (l). The scale bar for near field intensities is in logarithmic scale and limited from 0 to 3. The tip height h is 670 nm. The maximums in (a), (e) and (i) are 477.9, 1514.0, and 3380.9, and the maximums in (c), (g) and (k) are 2688.7, 5186.9, and 1763.2. The pump light is at normal incidence with the polarization along the diagonal direction.

Fig. 9
Fig. 9

The fabrication process for the inverted pyramidal nanostructures with the tips.

Fig. 10
Fig. 10

The scanning electron microscopy (SEM) images, where (a) and (b) are the inverted pyramidal nanostructures with and without the tips, respectively. The scale bars are 5 μm. Insets: respective zoom-in figure and the corresponding scale bar is 0.5 μm.

Fig. 11
Fig. 11

The AFM images of inverted pyramidal nanostructures with and without the tips in (a) and (b), respectively. The cross section and the dimensions are given in (c) and (d).

Fig. 12
Fig. 12

The SERS spectra of adsorbed thiophenol on three different kinds of substrates. The red line is inverted pyramidal nanostructures with the tips, the blue line is the inverted pyramidal nanostructures without the tip, and the green line is the reference flat gold substrate.

Fig. 13
Fig. 13

(a) and (b) show the reflection spectra of inverted pyramidal nanostructures with and without the tips in Fig. 10 (a) and (b), respectively.

Fig. 14
Fig. 14

The simulated near field and far field intensities for the fabricated 3D inverted pyramidal nanostructures with and without the tips in Fig. 10. Figures (a) and (e) are the near field intensities for λ = 632.8 nm and their corresponding far field intensities are in (b) and (f). Figures (c) and (g) are the near field intensities for λ = 677 nm and their far field intensities are in (d) and (h). The scale bar for near field intensities is in logarithmic scale and limited from 0 to 3. The maximums in (a), (c), (e), and (g) are 350.6, 259.2, 51.7, and 146.0, respectively. The pump light is at normal incidence with the polarization along the unit side.

Metrics