Abstract

Sharp and highly-selective tunable optical band-pass filters, based on stimulated Brillouin scattering (SBS) amplification in standard fibers, are described and demonstrated. Polarization pulling of the SBS-amplified signal wave is used to increase the selectivity of the filters to 30 dB. Pump broadening via synthesized direct modulation was used to provide a tunable, sharp and uniform amplification window: Pass-band widths of 700 MHz at half maximum and 1GHz at the −20dB points were obtained. The central frequency, bandwidth and shape of the filter can be arbitrarily set. Compared with scalar SBS-based filters, the polarization-enhanced design provides a higher selectivity and an elevated depletion threshold.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Fiber-Optic communication systems, third edition, (Wiley, 2002), Chapter 8, pp.330–403.
  2. J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-time optical processing of microwave signals,” J. Lightwave Technol. 23(2), 702–723 (2005).
    [CrossRef]
  3. T. A. Strasser and T. Erdogan, “Fiber grating devices in high performance optical communication systems,” chapter 10 of Optical fiber telecommunications IVA – components. I. P. Kaminow, and T. Li (editors), San Diego, CA: Academic press, 2002.
  4. A. Yariv, chapter 4 in Optoelectronics, pp. 110–116, Orlando FL: Saunders College Publishing, 4th Edition, 1991.
  5. C. R. Doerr, “Planar lightwave devices for WDM,” chapter 9 of Optical fiber telecommunications IVA – components. I. P. Kaminow, and T. Li (editors), San Diego, CA: Academic press, 2002.
  6. T. Tanemura, Y. Takushima, and K. Kikuchi, “Narrowband optical filter, with a variable transmission spectrum, using stimulated Brillouin scattering in optical fiber,” Opt. Lett. 27(17), 1552–1554 (2002).
    [CrossRef] [PubMed]
  7. A. Zadok, A. Eyal, and M. Tur, “GHz-wide optically reconfigurable filters using stimulated Brillouin scattering,” J. Lightwave Technol. 25(8), 2168–2174 (2007).[REMOVED IF= FIELD]
    [CrossRef]
  8. R. W. Boyd, Nonlinear Optics, third edition, (Academic Press, 2008).
  9. M. Nikles, L. Thévenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
    [CrossRef]
  10. J. C. Yong, L. Thévenaz, and B. Y. Kim, “Brillouin fiber laser pumped by a DFB laser diode,” J. Lightwave Technol. 21(2), 546–554 (2003).
    [CrossRef]
  11. A. Loayssa and F. J. Lahoz, “Broadband RF photonic phase shifter based on stimulated Brillouin scattering and single side-band modulation,” IEEE Photon. Technol. Lett. 18(1), 208–210 (2006).
    [CrossRef]
  12. A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett. 18(16), 1744–1746 (2006).
    [CrossRef]
  13. Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007).
    [CrossRef] [PubMed]
  14. L. Thevenaz, “Slow and Fast Light Using Stimulated Brillouin Scattering: A Highly Flexible Approach,” in Slow Light – Science and Applications, J. B. Khurgin and R. S. Tucker Eds. (CRC press, 2009), pp. 173–193.
  15. A. Zadok, A. Eyal, and M. Tur, “Stimulated Brillouin scattering slow light in optical fibers,” Appl. Opt. 50(25), E38–E49 (2011).
    [CrossRef]
  16. A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16(26), 21692–21707 (2008).
    [CrossRef] [PubMed]
  17. A. Zadok, S. Chin, L. Thévenaz, E. Zilka, A. Eyal, and M. Tur, “Polarization-induced distortion in stimulated Brillouin scattering slow-light systems,” Opt. Lett. 34(16), 2530–2532 (2009).
    [CrossRef] [PubMed]
  18. M. Wuilpart, “Distributed measurement of polarization properties in single-mode optical fibres using a reflectometry technique”, Ph.D. Thesis, Faculte Polytechnique de Mons (2003).
  19. H. Sunnerud, C. Xie, M. Karlsson, R. Samuelsson, and P. Andrekson, “A comparison between different PMD compensation techniques,” J. Lightwave Technol. 20(3), 368–378 (2002).
    [CrossRef]
  20. C. Y. Wong, R. S. Cheng, K. B. Letaief, and R. D. Murch, “Multiuser OFDM with adaptive subcarrier, bit, and power allocation,” IEEE J. Sel. Areas Comm. 17(10), 1747–1758 (1999).
    [CrossRef]
  21. M. Sagues and A. Loayssa, “Orthogonally polarized optical single sideband modulation for microwave photonics processing using stimulated Brillouin scattering,” Opt. Express 18(22), 22906–22914 (2010).
    [CrossRef] [PubMed]

2011 (1)

2010 (1)

2009 (1)

2008 (1)

2007 (2)

A. Zadok, A. Eyal, and M. Tur, “GHz-wide optically reconfigurable filters using stimulated Brillouin scattering,” J. Lightwave Technol. 25(8), 2168–2174 (2007).[REMOVED IF= FIELD]
[CrossRef]

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007).
[CrossRef] [PubMed]

2006 (2)

A. Loayssa and F. J. Lahoz, “Broadband RF photonic phase shifter based on stimulated Brillouin scattering and single side-band modulation,” IEEE Photon. Technol. Lett. 18(1), 208–210 (2006).
[CrossRef]

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett. 18(16), 1744–1746 (2006).
[CrossRef]

2005 (1)

2003 (1)

2002 (2)

1999 (1)

C. Y. Wong, R. S. Cheng, K. B. Letaief, and R. D. Murch, “Multiuser OFDM with adaptive subcarrier, bit, and power allocation,” IEEE J. Sel. Areas Comm. 17(10), 1747–1758 (1999).
[CrossRef]

1997 (1)

M. Nikles, L. Thévenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[CrossRef]

Andrekson, P.

Boyd, R. W.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007).
[CrossRef] [PubMed]

Capmany, J.

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett. 18(16), 1744–1746 (2006).
[CrossRef]

J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-time optical processing of microwave signals,” J. Lightwave Technol. 23(2), 702–723 (2005).
[CrossRef]

Cheng, R. S.

C. Y. Wong, R. S. Cheng, K. B. Letaief, and R. D. Murch, “Multiuser OFDM with adaptive subcarrier, bit, and power allocation,” IEEE J. Sel. Areas Comm. 17(10), 1747–1758 (1999).
[CrossRef]

Chin, S.

Eyal, A.

Gauthier, D. J.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007).
[CrossRef] [PubMed]

Karlsson, M.

Kikuchi, K.

Kim, B. Y.

Lahoz, F. J.

A. Loayssa and F. J. Lahoz, “Broadband RF photonic phase shifter based on stimulated Brillouin scattering and single side-band modulation,” IEEE Photon. Technol. Lett. 18(1), 208–210 (2006).
[CrossRef]

Letaief, K. B.

C. Y. Wong, R. S. Cheng, K. B. Letaief, and R. D. Murch, “Multiuser OFDM with adaptive subcarrier, bit, and power allocation,” IEEE J. Sel. Areas Comm. 17(10), 1747–1758 (1999).
[CrossRef]

Loayssa, A.

M. Sagues and A. Loayssa, “Orthogonally polarized optical single sideband modulation for microwave photonics processing using stimulated Brillouin scattering,” Opt. Express 18(22), 22906–22914 (2010).
[CrossRef] [PubMed]

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett. 18(16), 1744–1746 (2006).
[CrossRef]

A. Loayssa and F. J. Lahoz, “Broadband RF photonic phase shifter based on stimulated Brillouin scattering and single side-band modulation,” IEEE Photon. Technol. Lett. 18(1), 208–210 (2006).
[CrossRef]

Mora, J.

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett. 18(16), 1744–1746 (2006).
[CrossRef]

Murch, R. D.

C. Y. Wong, R. S. Cheng, K. B. Letaief, and R. D. Murch, “Multiuser OFDM with adaptive subcarrier, bit, and power allocation,” IEEE J. Sel. Areas Comm. 17(10), 1747–1758 (1999).
[CrossRef]

Nikles, M.

M. Nikles, L. Thévenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[CrossRef]

Ortega, B.

Pastor, D.

Robert, P.

M. Nikles, L. Thévenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[CrossRef]

Sagues, M.

M. Sagues and A. Loayssa, “Orthogonally polarized optical single sideband modulation for microwave photonics processing using stimulated Brillouin scattering,” Opt. Express 18(22), 22906–22914 (2010).
[CrossRef] [PubMed]

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett. 18(16), 1744–1746 (2006).
[CrossRef]

Sales, S.

Samuelsson, R.

Sunnerud, H.

Takushima, Y.

Tanemura, T.

Thévenaz, L.

Tur, M.

Wong, C. Y.

C. Y. Wong, R. S. Cheng, K. B. Letaief, and R. D. Murch, “Multiuser OFDM with adaptive subcarrier, bit, and power allocation,” IEEE J. Sel. Areas Comm. 17(10), 1747–1758 (1999).
[CrossRef]

Xie, C.

Yong, J. C.

Zadok, A.

Zhu, Z.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007).
[CrossRef] [PubMed]

Zilka, E.

Appl. Opt. (1)

IEEE J. Sel. Areas Comm. (1)

C. Y. Wong, R. S. Cheng, K. B. Letaief, and R. D. Murch, “Multiuser OFDM with adaptive subcarrier, bit, and power allocation,” IEEE J. Sel. Areas Comm. 17(10), 1747–1758 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

A. Loayssa and F. J. Lahoz, “Broadband RF photonic phase shifter based on stimulated Brillouin scattering and single side-band modulation,” IEEE Photon. Technol. Lett. 18(1), 208–210 (2006).
[CrossRef]

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett. 18(16), 1744–1746 (2006).
[CrossRef]

J. Lightwave Technol. (5)

Opt. Express (2)

Opt. Lett. (2)

Science (1)

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007).
[CrossRef] [PubMed]

Other (7)

L. Thevenaz, “Slow and Fast Light Using Stimulated Brillouin Scattering: A Highly Flexible Approach,” in Slow Light – Science and Applications, J. B. Khurgin and R. S. Tucker Eds. (CRC press, 2009), pp. 173–193.

M. Wuilpart, “Distributed measurement of polarization properties in single-mode optical fibres using a reflectometry technique”, Ph.D. Thesis, Faculte Polytechnique de Mons (2003).

T. A. Strasser and T. Erdogan, “Fiber grating devices in high performance optical communication systems,” chapter 10 of Optical fiber telecommunications IVA – components. I. P. Kaminow, and T. Li (editors), San Diego, CA: Academic press, 2002.

A. Yariv, chapter 4 in Optoelectronics, pp. 110–116, Orlando FL: Saunders College Publishing, 4th Edition, 1991.

C. R. Doerr, “Planar lightwave devices for WDM,” chapter 9 of Optical fiber telecommunications IVA – components. I. P. Kaminow, and T. Li (editors), San Diego, CA: Academic press, 2002.

G. P. Agrawal, Fiber-Optic communication systems, third edition, (Wiley, 2002), Chapter 8, pp.330–403.

R. W. Boyd, Nonlinear Optics, third edition, (Academic Press, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Simulation results for the signal power gain at the output of an SBS amplification process, using a 3.6 km-long highly nonlinear fiber (HNLF) and a 0.7 GHz-wide, 13.5 dBm pump. The pump is assumed to be undepleted. In the lower curve (a), the input signal's SOP was chosen with equal projections on the states of maximum and minimum SBS amplification ( a=b=1/ 2 , see text), and an output polarizer was aligned for maximal rejection of unamplified signal components ( p max,min = ±1 / 2 , see text). The upper curve (b) shows the corresponding power gain with no output polarizer, and with the input signal SOP aligned for maximum amplification (a = 1).

Fig. 2
Fig. 2

Experimental setup for measuring the power transfer function of a polarization-enhanced SBS filter. The SBS signal wave is generated at the upper branch, using a tunable laser that is externally modulated. The electro-optic modulator (EOM) is driven by a radio-frequency tone in the range of 13.5-16.5 GHz, which in turn was amplitude-modulated by a 1 MHz sine wave. The optical polarization was adjusted by polarization controllers (PC). The signal was launched into the fiber under test (FUT) through an isolator. The middle branch is used to realize a 0.7 GHz broadband pump wave, through the direct modulation of a DFB laser by a properly programmed arbitrary waveform generator (AWG). The pump power is amplified and adjusted to 13.5 dBm by an EDFA and a Variable Optical Attenuator (VOA), and directed into the FUT by a circulator. The lower branch includes a 5 GHz-wide FBG for selecting a single sideband of the signal wave, an output polarizer and a photo-detector. The detected signal was analyzed by a radio frequency spectrum analyzer (RFSA).

Fig. 3
Fig. 3

The direct current modulation waveform used in the spectral broadening of the SBS pump wave.

Fig. 4
Fig. 4

Measured PSD of the pump wave, as a function of the offset from its central frequency.

Fig. 5
Fig. 5

The generation of the SBS signal wave. (a-b): Schematic spectrum of double-sideband modulated tunable laser. The radio-frequency (RF) modulation waveform is a swept sine-wave ΩRF in the 2π⋅13.5 to 2π⋅16.5 GHz range. Depending on ΩRF, the upper modulation sideband could fall within the SBS amplification spectral region induced by the pump (a), or outside that region (b). (c): Spectrum of signal wave following propagation in the FUT and after filtering by a 5 GHz-wide FBG, which retains the upper modulation sideband only. The additional 1MHz amplitude modulation of the carrier is not shown.

Fig. 6
Fig. 6

Relative sideband power gain of a scalar SBS-based filter, without polarization enhancement. Input signal power levels: (a) −3.1 dBm, (b) −8.2 dBm and (c) −13.1 dBm. A 13.5 dBm, 0.7 GHz-wide pump signal was used (Fig. 3).

Fig. 7
Fig. 7

Comparison between the relative optical power gain of SBS-based tunable bandpass filters without (a, c) and with (b, d) polarization enhancement, using equal pump (13.5 dBm) and signal (−3.1, −13.1 dBm) power levels. Curves (a, c) are identical to Fig. 6(a, c).

Metrics