Abstract

A novel 1×4 reconfigurable optical splitter/combiner structure based on Opto-VLSI processor and 4-f imaging system with high resolution is proposed and experimentally demonstrated. By uploading optimized multicasting phase holograms onto the software-driven Opto-VLSI processor, an input optical signal is dynamically split into different output fiber ports with user-defined splitting ratios. Also, multiple input optical signals are dynamically combined with arbitrary user-defined weights.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Queller, “Dynamic power distribution in PON/FTTP networks,” Lightwave 21(7), 29–31 (2004) http://www.lightwaveonline.com/about-us/lightwave-issue-archives/issue/dynamic-power-distribution-in-ponfttp-networks-53906787.html .
  2. M. D. Vaughn, D. Kozischek, D. Meis, A. Boskovic, and R. E. Wagner, “Value of reach-and-split ratio increase in FTTH access networks,” J. Lightwave Technol. 22(11), 2617–2622 (2004).
    [CrossRef]
  3. D. V. Thourhout, P. Bernasconi, B. Miller, W. Yang, L. Zhang, N. Sauer, L. Stulz, and S. Cabot, “Novel Geometry for an Integrated Channel Selector,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1211–1214 (2002).
    [CrossRef]
  4. F. Xiao, B. Juswardy, K. Alameh, and Y. T. Lee, “Novel broadband reconfigurable optical add-drop multiplexer employing custom fiber arrays and Opto-VLSI processors,” Opt. Express 16(16), 11703–11708 (2008).
    [CrossRef] [PubMed]
  5. P. Bernasconi, C. R. Doerr, C. Dragone, M. Cappuzzo, E. Laskowski, and A. Paunescu, “Large N× N waveguide grating routers,” J. Lightwave Technol. 18(7), 985–991 (2000).
    [CrossRef]
  6. N. Kikuchi, Y. Shibata, H. Okamoto, Y. Kawaguchi, S. Oku, H. Ishii, Y. Yoshikuni, and Y. Tohmori, “Monolithically integrated 64-channel WDM channel selector with novel configuration,” Electron. Lett. 38(7), 331–332 (2002).
    [CrossRef]
  7. J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-Time Optical Processing of Microwave signals,” J. Lightwave Technol. 23(2), 702–723 (2005).
  8. J. Capmany, B. Ortega, and D. Pastor, “A Tutorial on Microwave Photonic Filters,” J. Lightwave Technol. 24(1), 201–229 (2006).
  9. R. A. Minasian, K. E. Alameh, and E. H. W. Chan, “photonic based interference mitigation filters,” IEEE Trans. Microw. Theory Tech. 49(10), 1894–1899 (2001).
    [CrossRef]
  10. F. Xiao, B. Juswardy, and K. Alameh, “Tunable photonic microwave filters based on Opto-VLSI processors,” IEEE Photon. Technol. Lett. 21(11), 751–753 (2009).
    [CrossRef]
  11. T. Sugiyama, M. Suzuki, and S. Kubota, “An Integrated Interference Suppression Scheme with an Adaptive Equalizer for Digital Satellite Communication Systems,” IEICE Trans. Commun E 79-B(2), 191–196 (1996).
  12. P. S. Mudhar, D. A. H. Mace, J. Singh, M. A. Fisher, and M. J. Adams, “Active optical combiner switch,” IEE Proceedings-J. 139(1), 79–82 (1992).
  13. F. Ratovelomanana, N. Vodjdani, A. Enard, G. Glastre, D. Rondi, and R. Blondeau, “Active Lossless Monolithic One-by-Four Splitters/Combiners Using Optical Gates on InP,” IEEE Photon. Technol. Lett. 7(5), 511–513 (1995).
    [CrossRef]
  14. Z. Yun, L. Wen, C. Long, L. Yong, and X. Qingming, “A 1×2 Variable Optical Splitter development,” J. Lightwave Technol. 24(3), 1566–1570 (2006).
    [CrossRef]
  15. S. S. Choi, J. P. Donnelly, S. H. Groves, R. E. Reeder, R. J. Bailey, P. J. Taylor, and A. Napoleone,andW. D. Goodhue, “All-active InGaAsP-InP optical tapered-amplifier 1×N power splitters,” IEEE Photon. Technol. Lett. 12(8), 974–976 (2000).
    [CrossRef]
  16. X. Zhao and S. Jose, “Dynamic power optical splitter,” Patent No US 7 068 939 B2, June 2006.
  17. R. Zheng, Z. Wang, K. E. Alameh, and W. A. Crossland, “An Opto-VLSI Reconfigurable Broad-Band Optical Splitter,” IEEE Photon. Technol. Lett. 17(2), 339–341 (2005).
    [CrossRef]
  18. H. A. B. Mustafa, F. Xiao, and K. Alameh, “Adaptive Optical Splitter employing an Opto-VLSI processors and 4-f Imaging System,” J. Lightwave Technol. 28(19), 2761–2765 (2010).
    [CrossRef]
  19. F. Xiao, K. Alameh, and T. T. Lee, “Opto-VLSI-based tunable single-mode fiber laser,” Opt. Express 17(21), 18676–18680 (2009).
    [CrossRef] [PubMed]
  20. S. T. Ahderom, M. Raisi, K. Alameh, and K. Eshraghian, “Testing and Analysis of Computer Generated Holograms for MicroPhotonics Devices,” in Proceeding of the second IEEE international Workshop on Electronic design, Test and applications (DELTA’04), Perth, Australia, Jan. 28–30, 2004, pp. 47–52.1.

2010

2009

F. Xiao, K. Alameh, and T. T. Lee, “Opto-VLSI-based tunable single-mode fiber laser,” Opt. Express 17(21), 18676–18680 (2009).
[CrossRef] [PubMed]

F. Xiao, B. Juswardy, and K. Alameh, “Tunable photonic microwave filters based on Opto-VLSI processors,” IEEE Photon. Technol. Lett. 21(11), 751–753 (2009).
[CrossRef]

2008

2006

2005

J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-Time Optical Processing of Microwave signals,” J. Lightwave Technol. 23(2), 702–723 (2005).

R. Zheng, Z. Wang, K. E. Alameh, and W. A. Crossland, “An Opto-VLSI Reconfigurable Broad-Band Optical Splitter,” IEEE Photon. Technol. Lett. 17(2), 339–341 (2005).
[CrossRef]

2004

A. Queller, “Dynamic power distribution in PON/FTTP networks,” Lightwave 21(7), 29–31 (2004) http://www.lightwaveonline.com/about-us/lightwave-issue-archives/issue/dynamic-power-distribution-in-ponfttp-networks-53906787.html .

M. D. Vaughn, D. Kozischek, D. Meis, A. Boskovic, and R. E. Wagner, “Value of reach-and-split ratio increase in FTTH access networks,” J. Lightwave Technol. 22(11), 2617–2622 (2004).
[CrossRef]

2002

D. V. Thourhout, P. Bernasconi, B. Miller, W. Yang, L. Zhang, N. Sauer, L. Stulz, and S. Cabot, “Novel Geometry for an Integrated Channel Selector,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1211–1214 (2002).
[CrossRef]

N. Kikuchi, Y. Shibata, H. Okamoto, Y. Kawaguchi, S. Oku, H. Ishii, Y. Yoshikuni, and Y. Tohmori, “Monolithically integrated 64-channel WDM channel selector with novel configuration,” Electron. Lett. 38(7), 331–332 (2002).
[CrossRef]

2001

R. A. Minasian, K. E. Alameh, and E. H. W. Chan, “photonic based interference mitigation filters,” IEEE Trans. Microw. Theory Tech. 49(10), 1894–1899 (2001).
[CrossRef]

2000

S. S. Choi, J. P. Donnelly, S. H. Groves, R. E. Reeder, R. J. Bailey, P. J. Taylor, and A. Napoleone,andW. D. Goodhue, “All-active InGaAsP-InP optical tapered-amplifier 1×N power splitters,” IEEE Photon. Technol. Lett. 12(8), 974–976 (2000).
[CrossRef]

S. S. Choi, J. P. Donnelly, S. H. Groves, R. E. Reeder, R. J. Bailey, P. J. Taylor, and A. Napoleone,andW. D. Goodhue, “All-active InGaAsP-InP optical tapered-amplifier 1×N power splitters,” IEEE Photon. Technol. Lett. 12(8), 974–976 (2000).
[CrossRef]

P. Bernasconi, C. R. Doerr, C. Dragone, M. Cappuzzo, E. Laskowski, and A. Paunescu, “Large N× N waveguide grating routers,” J. Lightwave Technol. 18(7), 985–991 (2000).
[CrossRef]

1996

T. Sugiyama, M. Suzuki, and S. Kubota, “An Integrated Interference Suppression Scheme with an Adaptive Equalizer for Digital Satellite Communication Systems,” IEICE Trans. Commun E 79-B(2), 191–196 (1996).

1995

F. Ratovelomanana, N. Vodjdani, A. Enard, G. Glastre, D. Rondi, and R. Blondeau, “Active Lossless Monolithic One-by-Four Splitters/Combiners Using Optical Gates on InP,” IEEE Photon. Technol. Lett. 7(5), 511–513 (1995).
[CrossRef]

1992

P. S. Mudhar, D. A. H. Mace, J. Singh, M. A. Fisher, and M. J. Adams, “Active optical combiner switch,” IEE Proceedings-J. 139(1), 79–82 (1992).

Adams, M. J.

P. S. Mudhar, D. A. H. Mace, J. Singh, M. A. Fisher, and M. J. Adams, “Active optical combiner switch,” IEE Proceedings-J. 139(1), 79–82 (1992).

Alameh, K.

Alameh, K. E.

R. Zheng, Z. Wang, K. E. Alameh, and W. A. Crossland, “An Opto-VLSI Reconfigurable Broad-Band Optical Splitter,” IEEE Photon. Technol. Lett. 17(2), 339–341 (2005).
[CrossRef]

R. A. Minasian, K. E. Alameh, and E. H. W. Chan, “photonic based interference mitigation filters,” IEEE Trans. Microw. Theory Tech. 49(10), 1894–1899 (2001).
[CrossRef]

Bailey, R. J.

S. S. Choi, J. P. Donnelly, S. H. Groves, R. E. Reeder, R. J. Bailey, P. J. Taylor, and A. Napoleone,andW. D. Goodhue, “All-active InGaAsP-InP optical tapered-amplifier 1×N power splitters,” IEEE Photon. Technol. Lett. 12(8), 974–976 (2000).
[CrossRef]

Bernasconi, P.

D. V. Thourhout, P. Bernasconi, B. Miller, W. Yang, L. Zhang, N. Sauer, L. Stulz, and S. Cabot, “Novel Geometry for an Integrated Channel Selector,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1211–1214 (2002).
[CrossRef]

P. Bernasconi, C. R. Doerr, C. Dragone, M. Cappuzzo, E. Laskowski, and A. Paunescu, “Large N× N waveguide grating routers,” J. Lightwave Technol. 18(7), 985–991 (2000).
[CrossRef]

Blondeau, R.

F. Ratovelomanana, N. Vodjdani, A. Enard, G. Glastre, D. Rondi, and R. Blondeau, “Active Lossless Monolithic One-by-Four Splitters/Combiners Using Optical Gates on InP,” IEEE Photon. Technol. Lett. 7(5), 511–513 (1995).
[CrossRef]

Boskovic, A.

Cabot, S.

D. V. Thourhout, P. Bernasconi, B. Miller, W. Yang, L. Zhang, N. Sauer, L. Stulz, and S. Cabot, “Novel Geometry for an Integrated Channel Selector,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1211–1214 (2002).
[CrossRef]

Capmany, J.

Cappuzzo, M.

Chan, E. H. W.

R. A. Minasian, K. E. Alameh, and E. H. W. Chan, “photonic based interference mitigation filters,” IEEE Trans. Microw. Theory Tech. 49(10), 1894–1899 (2001).
[CrossRef]

Choi, S. S.

S. S. Choi, J. P. Donnelly, S. H. Groves, R. E. Reeder, R. J. Bailey, P. J. Taylor, and A. Napoleone,andW. D. Goodhue, “All-active InGaAsP-InP optical tapered-amplifier 1×N power splitters,” IEEE Photon. Technol. Lett. 12(8), 974–976 (2000).
[CrossRef]

Crossland, W. A.

R. Zheng, Z. Wang, K. E. Alameh, and W. A. Crossland, “An Opto-VLSI Reconfigurable Broad-Band Optical Splitter,” IEEE Photon. Technol. Lett. 17(2), 339–341 (2005).
[CrossRef]

Doerr, C. R.

Donnelly, J. P.

S. S. Choi, J. P. Donnelly, S. H. Groves, R. E. Reeder, R. J. Bailey, P. J. Taylor, and A. Napoleone,andW. D. Goodhue, “All-active InGaAsP-InP optical tapered-amplifier 1×N power splitters,” IEEE Photon. Technol. Lett. 12(8), 974–976 (2000).
[CrossRef]

Dragone, C.

Enard, A.

F. Ratovelomanana, N. Vodjdani, A. Enard, G. Glastre, D. Rondi, and R. Blondeau, “Active Lossless Monolithic One-by-Four Splitters/Combiners Using Optical Gates on InP,” IEEE Photon. Technol. Lett. 7(5), 511–513 (1995).
[CrossRef]

Fisher, M. A.

P. S. Mudhar, D. A. H. Mace, J. Singh, M. A. Fisher, and M. J. Adams, “Active optical combiner switch,” IEE Proceedings-J. 139(1), 79–82 (1992).

Glastre, G.

F. Ratovelomanana, N. Vodjdani, A. Enard, G. Glastre, D. Rondi, and R. Blondeau, “Active Lossless Monolithic One-by-Four Splitters/Combiners Using Optical Gates on InP,” IEEE Photon. Technol. Lett. 7(5), 511–513 (1995).
[CrossRef]

Goodhue, W. D.

S. S. Choi, J. P. Donnelly, S. H. Groves, R. E. Reeder, R. J. Bailey, P. J. Taylor, and A. Napoleone,andW. D. Goodhue, “All-active InGaAsP-InP optical tapered-amplifier 1×N power splitters,” IEEE Photon. Technol. Lett. 12(8), 974–976 (2000).
[CrossRef]

Groves, S. H.

S. S. Choi, J. P. Donnelly, S. H. Groves, R. E. Reeder, R. J. Bailey, P. J. Taylor, and A. Napoleone,andW. D. Goodhue, “All-active InGaAsP-InP optical tapered-amplifier 1×N power splitters,” IEEE Photon. Technol. Lett. 12(8), 974–976 (2000).
[CrossRef]

Ishii, H.

N. Kikuchi, Y. Shibata, H. Okamoto, Y. Kawaguchi, S. Oku, H. Ishii, Y. Yoshikuni, and Y. Tohmori, “Monolithically integrated 64-channel WDM channel selector with novel configuration,” Electron. Lett. 38(7), 331–332 (2002).
[CrossRef]

Juswardy, B.

F. Xiao, B. Juswardy, and K. Alameh, “Tunable photonic microwave filters based on Opto-VLSI processors,” IEEE Photon. Technol. Lett. 21(11), 751–753 (2009).
[CrossRef]

F. Xiao, B. Juswardy, K. Alameh, and Y. T. Lee, “Novel broadband reconfigurable optical add-drop multiplexer employing custom fiber arrays and Opto-VLSI processors,” Opt. Express 16(16), 11703–11708 (2008).
[CrossRef] [PubMed]

Kawaguchi, Y.

N. Kikuchi, Y. Shibata, H. Okamoto, Y. Kawaguchi, S. Oku, H. Ishii, Y. Yoshikuni, and Y. Tohmori, “Monolithically integrated 64-channel WDM channel selector with novel configuration,” Electron. Lett. 38(7), 331–332 (2002).
[CrossRef]

Kikuchi, N.

N. Kikuchi, Y. Shibata, H. Okamoto, Y. Kawaguchi, S. Oku, H. Ishii, Y. Yoshikuni, and Y. Tohmori, “Monolithically integrated 64-channel WDM channel selector with novel configuration,” Electron. Lett. 38(7), 331–332 (2002).
[CrossRef]

Kozischek, D.

Kubota, S.

T. Sugiyama, M. Suzuki, and S. Kubota, “An Integrated Interference Suppression Scheme with an Adaptive Equalizer for Digital Satellite Communication Systems,” IEICE Trans. Commun E 79-B(2), 191–196 (1996).

Laskowski, E.

Lee, T. T.

Lee, Y. T.

Long, C.

Mace, D. A. H.

P. S. Mudhar, D. A. H. Mace, J. Singh, M. A. Fisher, and M. J. Adams, “Active optical combiner switch,” IEE Proceedings-J. 139(1), 79–82 (1992).

Meis, D.

Miller, B.

D. V. Thourhout, P. Bernasconi, B. Miller, W. Yang, L. Zhang, N. Sauer, L. Stulz, and S. Cabot, “Novel Geometry for an Integrated Channel Selector,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1211–1214 (2002).
[CrossRef]

Minasian, R. A.

R. A. Minasian, K. E. Alameh, and E. H. W. Chan, “photonic based interference mitigation filters,” IEEE Trans. Microw. Theory Tech. 49(10), 1894–1899 (2001).
[CrossRef]

Mudhar, P. S.

P. S. Mudhar, D. A. H. Mace, J. Singh, M. A. Fisher, and M. J. Adams, “Active optical combiner switch,” IEE Proceedings-J. 139(1), 79–82 (1992).

Mustafa, H. A. B.

Napoleone, A.

S. S. Choi, J. P. Donnelly, S. H. Groves, R. E. Reeder, R. J. Bailey, P. J. Taylor, and A. Napoleone,andW. D. Goodhue, “All-active InGaAsP-InP optical tapered-amplifier 1×N power splitters,” IEEE Photon. Technol. Lett. 12(8), 974–976 (2000).
[CrossRef]

Okamoto, H.

N. Kikuchi, Y. Shibata, H. Okamoto, Y. Kawaguchi, S. Oku, H. Ishii, Y. Yoshikuni, and Y. Tohmori, “Monolithically integrated 64-channel WDM channel selector with novel configuration,” Electron. Lett. 38(7), 331–332 (2002).
[CrossRef]

Oku, S.

N. Kikuchi, Y. Shibata, H. Okamoto, Y. Kawaguchi, S. Oku, H. Ishii, Y. Yoshikuni, and Y. Tohmori, “Monolithically integrated 64-channel WDM channel selector with novel configuration,” Electron. Lett. 38(7), 331–332 (2002).
[CrossRef]

Ortega, B.

Pastor, D.

Paunescu, A.

Qingming, X.

Queller, A.

A. Queller, “Dynamic power distribution in PON/FTTP networks,” Lightwave 21(7), 29–31 (2004) http://www.lightwaveonline.com/about-us/lightwave-issue-archives/issue/dynamic-power-distribution-in-ponfttp-networks-53906787.html .

Ratovelomanana, F.

F. Ratovelomanana, N. Vodjdani, A. Enard, G. Glastre, D. Rondi, and R. Blondeau, “Active Lossless Monolithic One-by-Four Splitters/Combiners Using Optical Gates on InP,” IEEE Photon. Technol. Lett. 7(5), 511–513 (1995).
[CrossRef]

Reeder, R. E.

S. S. Choi, J. P. Donnelly, S. H. Groves, R. E. Reeder, R. J. Bailey, P. J. Taylor, and A. Napoleone,andW. D. Goodhue, “All-active InGaAsP-InP optical tapered-amplifier 1×N power splitters,” IEEE Photon. Technol. Lett. 12(8), 974–976 (2000).
[CrossRef]

Rondi, D.

F. Ratovelomanana, N. Vodjdani, A. Enard, G. Glastre, D. Rondi, and R. Blondeau, “Active Lossless Monolithic One-by-Four Splitters/Combiners Using Optical Gates on InP,” IEEE Photon. Technol. Lett. 7(5), 511–513 (1995).
[CrossRef]

Sales, S.

Sauer, N.

D. V. Thourhout, P. Bernasconi, B. Miller, W. Yang, L. Zhang, N. Sauer, L. Stulz, and S. Cabot, “Novel Geometry for an Integrated Channel Selector,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1211–1214 (2002).
[CrossRef]

Shibata, Y.

N. Kikuchi, Y. Shibata, H. Okamoto, Y. Kawaguchi, S. Oku, H. Ishii, Y. Yoshikuni, and Y. Tohmori, “Monolithically integrated 64-channel WDM channel selector with novel configuration,” Electron. Lett. 38(7), 331–332 (2002).
[CrossRef]

Singh, J.

P. S. Mudhar, D. A. H. Mace, J. Singh, M. A. Fisher, and M. J. Adams, “Active optical combiner switch,” IEE Proceedings-J. 139(1), 79–82 (1992).

Stulz, L.

D. V. Thourhout, P. Bernasconi, B. Miller, W. Yang, L. Zhang, N. Sauer, L. Stulz, and S. Cabot, “Novel Geometry for an Integrated Channel Selector,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1211–1214 (2002).
[CrossRef]

Sugiyama, T.

T. Sugiyama, M. Suzuki, and S. Kubota, “An Integrated Interference Suppression Scheme with an Adaptive Equalizer for Digital Satellite Communication Systems,” IEICE Trans. Commun E 79-B(2), 191–196 (1996).

Suzuki, M.

T. Sugiyama, M. Suzuki, and S. Kubota, “An Integrated Interference Suppression Scheme with an Adaptive Equalizer for Digital Satellite Communication Systems,” IEICE Trans. Commun E 79-B(2), 191–196 (1996).

Taylor, P. J.

S. S. Choi, J. P. Donnelly, S. H. Groves, R. E. Reeder, R. J. Bailey, P. J. Taylor, and A. Napoleone,andW. D. Goodhue, “All-active InGaAsP-InP optical tapered-amplifier 1×N power splitters,” IEEE Photon. Technol. Lett. 12(8), 974–976 (2000).
[CrossRef]

Thourhout, D. V.

D. V. Thourhout, P. Bernasconi, B. Miller, W. Yang, L. Zhang, N. Sauer, L. Stulz, and S. Cabot, “Novel Geometry for an Integrated Channel Selector,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1211–1214 (2002).
[CrossRef]

Tohmori, Y.

N. Kikuchi, Y. Shibata, H. Okamoto, Y. Kawaguchi, S. Oku, H. Ishii, Y. Yoshikuni, and Y. Tohmori, “Monolithically integrated 64-channel WDM channel selector with novel configuration,” Electron. Lett. 38(7), 331–332 (2002).
[CrossRef]

Vaughn, M. D.

Vodjdani, N.

F. Ratovelomanana, N. Vodjdani, A. Enard, G. Glastre, D. Rondi, and R. Blondeau, “Active Lossless Monolithic One-by-Four Splitters/Combiners Using Optical Gates on InP,” IEEE Photon. Technol. Lett. 7(5), 511–513 (1995).
[CrossRef]

Wagner, R. E.

Wang, Z.

R. Zheng, Z. Wang, K. E. Alameh, and W. A. Crossland, “An Opto-VLSI Reconfigurable Broad-Band Optical Splitter,” IEEE Photon. Technol. Lett. 17(2), 339–341 (2005).
[CrossRef]

Wen, L.

Xiao, F.

Yang, W.

D. V. Thourhout, P. Bernasconi, B. Miller, W. Yang, L. Zhang, N. Sauer, L. Stulz, and S. Cabot, “Novel Geometry for an Integrated Channel Selector,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1211–1214 (2002).
[CrossRef]

Yong, L.

Yoshikuni, Y.

N. Kikuchi, Y. Shibata, H. Okamoto, Y. Kawaguchi, S. Oku, H. Ishii, Y. Yoshikuni, and Y. Tohmori, “Monolithically integrated 64-channel WDM channel selector with novel configuration,” Electron. Lett. 38(7), 331–332 (2002).
[CrossRef]

Yun, Z.

Zhang, L.

D. V. Thourhout, P. Bernasconi, B. Miller, W. Yang, L. Zhang, N. Sauer, L. Stulz, and S. Cabot, “Novel Geometry for an Integrated Channel Selector,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1211–1214 (2002).
[CrossRef]

Zheng, R.

R. Zheng, Z. Wang, K. E. Alameh, and W. A. Crossland, “An Opto-VLSI Reconfigurable Broad-Band Optical Splitter,” IEEE Photon. Technol. Lett. 17(2), 339–341 (2005).
[CrossRef]

Electron. Lett.

N. Kikuchi, Y. Shibata, H. Okamoto, Y. Kawaguchi, S. Oku, H. Ishii, Y. Yoshikuni, and Y. Tohmori, “Monolithically integrated 64-channel WDM channel selector with novel configuration,” Electron. Lett. 38(7), 331–332 (2002).
[CrossRef]

IEE Proceedings-J.

P. S. Mudhar, D. A. H. Mace, J. Singh, M. A. Fisher, and M. J. Adams, “Active optical combiner switch,” IEE Proceedings-J. 139(1), 79–82 (1992).

IEEE J. Sel. Top. Quantum Electron.

D. V. Thourhout, P. Bernasconi, B. Miller, W. Yang, L. Zhang, N. Sauer, L. Stulz, and S. Cabot, “Novel Geometry for an Integrated Channel Selector,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1211–1214 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

F. Xiao, B. Juswardy, and K. Alameh, “Tunable photonic microwave filters based on Opto-VLSI processors,” IEEE Photon. Technol. Lett. 21(11), 751–753 (2009).
[CrossRef]

F. Ratovelomanana, N. Vodjdani, A. Enard, G. Glastre, D. Rondi, and R. Blondeau, “Active Lossless Monolithic One-by-Four Splitters/Combiners Using Optical Gates on InP,” IEEE Photon. Technol. Lett. 7(5), 511–513 (1995).
[CrossRef]

S. S. Choi, J. P. Donnelly, S. H. Groves, R. E. Reeder, R. J. Bailey, P. J. Taylor, and A. Napoleone,andW. D. Goodhue, “All-active InGaAsP-InP optical tapered-amplifier 1×N power splitters,” IEEE Photon. Technol. Lett. 12(8), 974–976 (2000).
[CrossRef]

R. Zheng, Z. Wang, K. E. Alameh, and W. A. Crossland, “An Opto-VLSI Reconfigurable Broad-Band Optical Splitter,” IEEE Photon. Technol. Lett. 17(2), 339–341 (2005).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

R. A. Minasian, K. E. Alameh, and E. H. W. Chan, “photonic based interference mitigation filters,” IEEE Trans. Microw. Theory Tech. 49(10), 1894–1899 (2001).
[CrossRef]

IEICE Trans. Commun E

T. Sugiyama, M. Suzuki, and S. Kubota, “An Integrated Interference Suppression Scheme with an Adaptive Equalizer for Digital Satellite Communication Systems,” IEICE Trans. Commun E 79-B(2), 191–196 (1996).

J. Lightwave Technol.

Lightwave

A. Queller, “Dynamic power distribution in PON/FTTP networks,” Lightwave 21(7), 29–31 (2004) http://www.lightwaveonline.com/about-us/lightwave-issue-archives/issue/dynamic-power-distribution-in-ponfttp-networks-53906787.html .

Opt. Express

Other

S. T. Ahderom, M. Raisi, K. Alameh, and K. Eshraghian, “Testing and Analysis of Computer Generated Holograms for MicroPhotonics Devices,” in Proceeding of the second IEEE international Workshop on Electronic design, Test and applications (DELTA’04), Perth, Australia, Jan. 28–30, 2004, pp. 47–52.1.

X. Zhao and S. Jose, “Dynamic power optical splitter,” Patent No US 7 068 939 B2, June 2006.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The top figure illustrates the capability of the Opto-VLSI processor to perform optical beam multicasting through phased holograms. The bottom figure illustrates the phase modulation of the light through the application of voltage across the liquid crystal cells.

Fig. 2
Fig. 2

(a) Schematic diagram of the reconfigurable optical splitter/combiner using an Opto-VLSI processor and a 4-f imaging systems. (b) and (c) Optical beam propagation for splitting and combining modes, respectively.

Fig. 3
Fig. 3

(a) Measured optical power coupled into the output fiber Ports when varying the weight of Port 1 while keeping the splitting ratios for others output fiber ports constant. (b) Measured optical power coupled into the output fiber Ports when varying the weights of Port 1and Port 4 while keeping the splitting ratios for Port 2 and Port 3 weights unchanged.

Fig. 4
Fig. 4

Input signals launched into Ports 1, 2, 3, and 4, and output combined optical signal at Port 5 for phase holograms corresponding to splitting ratios of (a) 1.0:1.0:1.0:1.0, (b) 1.0:1.0:0.01:1.0, (c) 1.0:0.0:0.0:1.0 and (d) 1.0:0.5:0.5:1.0.

Fig. 5
Fig. 5

Measured optical spectra at Ports 1-4 of the reconfigurable optical splitter for a uniform splitting profile of 1.0:1.0:1.0:1.0. Input signal launched at Port 5 is the Amplified Spontaneous Emission (ASE) of an Erbium-Doped Fiber Amplifier (EDFA).

Tables (1)

Tables Icon

Table 1 Different splitting profiles corresponding to optimised multicasting holograms uploaded onto the Opto-VLSI processor, and the corresponding measured output optical power levels at Ports 1-4

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α=arcsin( λ N×d )

Metrics