Abstract

We demonstrate a spectrally efficient digital subcarrier multiplexed (DSCM) coherent optical system for optical transport network. In the proposed system, mutually orthogonal subcarrier channels are digitally generated, which allows a high degree of flexibility in bandwidth allocation and scalability in data rate granularity. The receiver can also dynamically change the number of DSCM channels for detection without changing the system configuration. We experimentally investigate the transmission performance of a 22.2Gb/s DSCM system with 10 subcarrier channels using QPSK modulation. The impacts of channel spacing and time mismatch between subcarrier channels are also explored.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. B. Yoo, “Optical packet and burst switching technologies for the future photonic Internet,” J. Lightwave Technol. 24(12), 4468–4492 (2006).
    [CrossRef]
  2. M. Tomizawa, J. Yamawaku, Y. Takigawa, M. Koga, Y. Miyamoto, T. Morioka, and K. Hagimoto, “Terabit LAN with optical virtual concatenation for Grid applications with super-computers,” in Optical Fiber Communication Conference (OFC), 2005), OThG6.
  3. X. J. Cao, V. Anand, and C. M. Qiao, “Waveband switching in optical networks,” IEEE Commun. Mag. 41(4), 105–112 (2003).
    [CrossRef]
  4. M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-Efficient and Scalable Elastic Optical Path Network: Architecture, Benefits, and Enabling Technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
    [CrossRef]
  5. K. Christodoulopoulos, I. Tomkos, and E. A. Varvarigos, “Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks,” J. Lightwave Technol. 29(9), 1354–1366 (2011).
    [CrossRef]
  6. A. J. Lowery and J. Armstrong, “Orthogonal-frequency-division multiplexing for dispersion compensation of long-haul optical systems,” Opt. Express 14(6), 2079–2084 (2006).
    [CrossRef] [PubMed]
  7. A. F. Molisch, Wireless Communications (Wiley, 2011).
  8. T. Kobayashi, A. Sano, E. Yamada, E. Yoshida, and Y. Miyamoto, “Over 100 Gb/s Electro-Optically Multiplexed OFDM for High-Capacity Optical Transport Network,” J. Lightwave Technol. 27(16), 3714–3720 (2009).
    [CrossRef]
  9. B. Kozicki, H. Takara, Y. Tsukishima, T. Yoshimatsu, K. Yonenaga, and M. Jinno, “Experimental demonstration of spectrum-sliced elastic optical path network (SLICE),” Opt. Express 18(21), 22105–22118 (2010).
    [CrossRef] [PubMed]
  10. Y. Y. Zhang, M. O’Sullivan, and R. Q. Hui, “Theoretical and experimental investigation of compatible SSB modulation for single channel long-distance optical OFDM transmission,” Opt. Express 18(16), 16751–16764 (2010).
    [CrossRef] [PubMed]
  11. K. Roberts, C. Li, L. Strawczynski, M. O’Sullivan, and I. Hardcastle, “Electronic pre-compensation of optical nonlinearity,” IEEE Photon. Technol. Lett. 18(2), 403–405 (2006).
    [CrossRef]
  12. Y. R. Ma, Q. Yang, Y. Tang, S. M. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission over 600-km SSMF fiber with subwavelength bandwidth access,” Opt. Express 17(11), 9421–9427 (2009).
    [CrossRef] [PubMed]
  13. W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express 16(2), 841–859 (2008).
    [CrossRef] [PubMed]
  14. A. J. Viterbi and A. M. Viterbi, “Non-linear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
    [CrossRef]
  15. R. Q. Hui, B. Y. Zhu, R. X. Huang, C. T. Allen, K. R. Demarest, and D. Richards, “Subcarrier multiplexing for high-speed optical transmission,” J. Lightwave Technol. 20(3), 417–427 (2002).
    [CrossRef]
  16. G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance Limites of Nyquist-WDM and CO-OFDM in High-Speed PM-QPSK Systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
    [CrossRef]
  17. S. Chandrasekhar and X. Liu, “Experimental investigation on the performance of closely spaced multi-carrier PDM-QPSK with digital coherent detection,” Opt. Express 17(24), 21350–21361 (2009).
    [CrossRef] [PubMed]
  18. X. Liu, X. Wei, S. Chandrasekhar, and A. H. Gnauck, “Increased OSNR gains of forward-error correction in nonlinear optical transmissions,” IEEE Photon. Technol. Lett. 15(7), 999–1001 (2003).
    [CrossRef]

2011 (1)

2010 (3)

2009 (4)

2008 (1)

2006 (3)

2003 (2)

X. J. Cao, V. Anand, and C. M. Qiao, “Waveband switching in optical networks,” IEEE Commun. Mag. 41(4), 105–112 (2003).
[CrossRef]

X. Liu, X. Wei, S. Chandrasekhar, and A. H. Gnauck, “Increased OSNR gains of forward-error correction in nonlinear optical transmissions,” IEEE Photon. Technol. Lett. 15(7), 999–1001 (2003).
[CrossRef]

2002 (1)

1983 (1)

A. J. Viterbi and A. M. Viterbi, “Non-linear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[CrossRef]

Allen, C. T.

Anand, V.

X. J. Cao, V. Anand, and C. M. Qiao, “Waveband switching in optical networks,” IEEE Commun. Mag. 41(4), 105–112 (2003).
[CrossRef]

Armstrong, J.

Bao, H.

Bosco, G.

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance Limites of Nyquist-WDM and CO-OFDM in High-Speed PM-QPSK Systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
[CrossRef]

Cao, X. J.

X. J. Cao, V. Anand, and C. M. Qiao, “Waveband switching in optical networks,” IEEE Commun. Mag. 41(4), 105–112 (2003).
[CrossRef]

Carena, A.

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance Limites of Nyquist-WDM and CO-OFDM in High-Speed PM-QPSK Systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
[CrossRef]

Chandrasekhar, S.

S. Chandrasekhar and X. Liu, “Experimental investigation on the performance of closely spaced multi-carrier PDM-QPSK with digital coherent detection,” Opt. Express 17(24), 21350–21361 (2009).
[CrossRef] [PubMed]

X. Liu, X. Wei, S. Chandrasekhar, and A. H. Gnauck, “Increased OSNR gains of forward-error correction in nonlinear optical transmissions,” IEEE Photon. Technol. Lett. 15(7), 999–1001 (2003).
[CrossRef]

Chen, S. M.

Christodoulopoulos, K.

Curri, V.

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance Limites of Nyquist-WDM and CO-OFDM in High-Speed PM-QPSK Systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
[CrossRef]

Demarest, K. R.

Forghieri, F.

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance Limites of Nyquist-WDM and CO-OFDM in High-Speed PM-QPSK Systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
[CrossRef]

Gnauck, A. H.

X. Liu, X. Wei, S. Chandrasekhar, and A. H. Gnauck, “Increased OSNR gains of forward-error correction in nonlinear optical transmissions,” IEEE Photon. Technol. Lett. 15(7), 999–1001 (2003).
[CrossRef]

Hardcastle, I.

K. Roberts, C. Li, L. Strawczynski, M. O’Sullivan, and I. Hardcastle, “Electronic pre-compensation of optical nonlinearity,” IEEE Photon. Technol. Lett. 18(2), 403–405 (2006).
[CrossRef]

Huang, R. X.

Hui, R. Q.

Jinno, M.

B. Kozicki, H. Takara, Y. Tsukishima, T. Yoshimatsu, K. Yonenaga, and M. Jinno, “Experimental demonstration of spectrum-sliced elastic optical path network (SLICE),” Opt. Express 18(21), 22105–22118 (2010).
[CrossRef] [PubMed]

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-Efficient and Scalable Elastic Optical Path Network: Architecture, Benefits, and Enabling Technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[CrossRef]

Kobayashi, T.

Kozicki, B.

B. Kozicki, H. Takara, Y. Tsukishima, T. Yoshimatsu, K. Yonenaga, and M. Jinno, “Experimental demonstration of spectrum-sliced elastic optical path network (SLICE),” Opt. Express 18(21), 22105–22118 (2010).
[CrossRef] [PubMed]

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-Efficient and Scalable Elastic Optical Path Network: Architecture, Benefits, and Enabling Technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[CrossRef]

Li, C.

K. Roberts, C. Li, L. Strawczynski, M. O’Sullivan, and I. Hardcastle, “Electronic pre-compensation of optical nonlinearity,” IEEE Photon. Technol. Lett. 18(2), 403–405 (2006).
[CrossRef]

Liu, X.

S. Chandrasekhar and X. Liu, “Experimental investigation on the performance of closely spaced multi-carrier PDM-QPSK with digital coherent detection,” Opt. Express 17(24), 21350–21361 (2009).
[CrossRef] [PubMed]

X. Liu, X. Wei, S. Chandrasekhar, and A. H. Gnauck, “Increased OSNR gains of forward-error correction in nonlinear optical transmissions,” IEEE Photon. Technol. Lett. 15(7), 999–1001 (2003).
[CrossRef]

Lowery, A. J.

Ma, Y. R.

Matsuoka, S.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-Efficient and Scalable Elastic Optical Path Network: Architecture, Benefits, and Enabling Technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[CrossRef]

Miyamoto, Y.

O’Sullivan, M.

Y. Y. Zhang, M. O’Sullivan, and R. Q. Hui, “Theoretical and experimental investigation of compatible SSB modulation for single channel long-distance optical OFDM transmission,” Opt. Express 18(16), 16751–16764 (2010).
[CrossRef] [PubMed]

K. Roberts, C. Li, L. Strawczynski, M. O’Sullivan, and I. Hardcastle, “Electronic pre-compensation of optical nonlinearity,” IEEE Photon. Technol. Lett. 18(2), 403–405 (2006).
[CrossRef]

Poggiolini, P.

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance Limites of Nyquist-WDM and CO-OFDM in High-Speed PM-QPSK Systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
[CrossRef]

Qiao, C. M.

X. J. Cao, V. Anand, and C. M. Qiao, “Waveband switching in optical networks,” IEEE Commun. Mag. 41(4), 105–112 (2003).
[CrossRef]

Richards, D.

Roberts, K.

K. Roberts, C. Li, L. Strawczynski, M. O’Sullivan, and I. Hardcastle, “Electronic pre-compensation of optical nonlinearity,” IEEE Photon. Technol. Lett. 18(2), 403–405 (2006).
[CrossRef]

Sano, A.

Shieh, W.

Sone, Y.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-Efficient and Scalable Elastic Optical Path Network: Architecture, Benefits, and Enabling Technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[CrossRef]

Strawczynski, L.

K. Roberts, C. Li, L. Strawczynski, M. O’Sullivan, and I. Hardcastle, “Electronic pre-compensation of optical nonlinearity,” IEEE Photon. Technol. Lett. 18(2), 403–405 (2006).
[CrossRef]

Takara, H.

B. Kozicki, H. Takara, Y. Tsukishima, T. Yoshimatsu, K. Yonenaga, and M. Jinno, “Experimental demonstration of spectrum-sliced elastic optical path network (SLICE),” Opt. Express 18(21), 22105–22118 (2010).
[CrossRef] [PubMed]

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-Efficient and Scalable Elastic Optical Path Network: Architecture, Benefits, and Enabling Technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[CrossRef]

Tang, Y.

Tomkos, I.

Tsukishima, Y.

B. Kozicki, H. Takara, Y. Tsukishima, T. Yoshimatsu, K. Yonenaga, and M. Jinno, “Experimental demonstration of spectrum-sliced elastic optical path network (SLICE),” Opt. Express 18(21), 22105–22118 (2010).
[CrossRef] [PubMed]

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-Efficient and Scalable Elastic Optical Path Network: Architecture, Benefits, and Enabling Technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[CrossRef]

Varvarigos, E. A.

Viterbi, A. J.

A. J. Viterbi and A. M. Viterbi, “Non-linear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[CrossRef]

Viterbi, A. M.

A. J. Viterbi and A. M. Viterbi, “Non-linear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[CrossRef]

Wei, X.

X. Liu, X. Wei, S. Chandrasekhar, and A. H. Gnauck, “Increased OSNR gains of forward-error correction in nonlinear optical transmissions,” IEEE Photon. Technol. Lett. 15(7), 999–1001 (2003).
[CrossRef]

Yamada, E.

Yang, Q.

Yonenaga, K.

Yoo, S. J. B.

Yoshida, E.

Yoshimatsu, T.

Zhang, Y. Y.

Zhu, B. Y.

IEEE Commun. Mag. (2)

X. J. Cao, V. Anand, and C. M. Qiao, “Waveband switching in optical networks,” IEEE Commun. Mag. 41(4), 105–112 (2003).
[CrossRef]

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-Efficient and Scalable Elastic Optical Path Network: Architecture, Benefits, and Enabling Technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

K. Roberts, C. Li, L. Strawczynski, M. O’Sullivan, and I. Hardcastle, “Electronic pre-compensation of optical nonlinearity,” IEEE Photon. Technol. Lett. 18(2), 403–405 (2006).
[CrossRef]

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance Limites of Nyquist-WDM and CO-OFDM in High-Speed PM-QPSK Systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
[CrossRef]

X. Liu, X. Wei, S. Chandrasekhar, and A. H. Gnauck, “Increased OSNR gains of forward-error correction in nonlinear optical transmissions,” IEEE Photon. Technol. Lett. 15(7), 999–1001 (2003).
[CrossRef]

IEEE Trans. Inf. Theory (1)

A. J. Viterbi and A. M. Viterbi, “Non-linear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[CrossRef]

J. Lightwave Technol. (4)

Opt. Express (6)

Other (2)

A. F. Molisch, Wireless Communications (Wiley, 2011).

M. Tomizawa, J. Yamawaku, Y. Takigawa, M. Koga, Y. Miyamoto, T. Morioka, and K. Hagimoto, “Terabit LAN with optical virtual concatenation for Grid applications with super-computers,” in Optical Fiber Communication Conference (OFC), 2005), OThG6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

SLICE transponder using DCSM.

Fig. 2
Fig. 2

System setup block diagram.

Fig. 3
Fig. 3

Optical spectra of QPSK modulation systems.

Fig. 4
Fig. 4

Measured BER vs. OCNR in QPSK system: (a) back-to-back; (b) after 75km SMF.

Fig. 5
Fig. 5

(a) Measured BER vs. normalized channel spacing in QPSK system, and (b) Measured BER vs. time mismatch

Fig. 6
Fig. 6

BER measured as a function of the channel index for (a) when the local oscillator was tuned to channel 9, and (b) when the local oscillator was tuned to the center optical carrier.

Fig. 7
Fig. 7

OCNR penalty as a function of average fiber input power.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S I (t)= k=1 m { Q kL (t) Q kU (t) }cos( 2π Δfk 2 ) + k=1 m { I kU (t) I kL (t) }sin( 2π Δfk 2 )
S Q (t)= k=1 m { I kL (t)+ I kU (t) }cos( 2π Δfk 2 ) + k=1 m { Q kU (t)+ Q kL (t) }sin( 2π Δfk 2 )

Metrics