Abstract

Fibers with asymmetrical bend compensation offer to completely remove the tradeoff between mode area and single-modedness, with potentially huge impact on high-power amplification. These fibers would be difficult to fabricate, but are the only fundamental-mode strategy that can remove the bend-distortion limitations on mode-area scaling. Here, we show that even imperfect fibers can achieve essentially complete HOM suppression for areas of 2000 square microns or larger. Ultimate performance limits due to finite cladding size and fabrication imperfections are calculated.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. O'Connor, V. Gapontsev, V. Fomin, M. Abramov, and A. Ferin, “Power Scaling of SM Fiber Lasers toward 10kW,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CThA3.
  2. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-17-13240 .
    [CrossRef] [PubMed]
  3. M. E. Fermann, “Single-mode excitation of multimode fibers with ultrashort pulses,” Opt. Lett. 23(1), 52–54 (1998).
    [CrossRef] [PubMed]
  4. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett. 25(7), 442–444 (2000).
    [CrossRef] [PubMed]
  5. J. Bromage, J. M. Fini, C. Dorrer, and J. D. Zuegel, “Characterization and optimization of Yb-doped photonic-crystal fiber rod amplifiers using spatially resolved spectral interferometry,” Appl. Opt. 50(14), 2001–2007 (2011).
    [CrossRef] [PubMed]
  6. J. M. Fini, “Bend-resistant design of conventional and microstructure fibers with very large mode area,” Opt. Express 14(1), 69–81 (2006).
    [CrossRef] [PubMed]
  7. R. L. Farrow, D. A. V. Kliner, G. R. Hadley, and A. V. Smith, “Peak-power limits on fiber amplifiers imposed by self-focusing,” Opt. Lett. 31(23), 3423–3425 (2006).
    [CrossRef] [PubMed]
  8. J. W. Nicholson, J. M. Fini, A. D. Yablon, P. S. Westbrook, K. Feder, and C. Headley, “Demonstration of bend-induced nonlinearities in large-mode-area fibers,” Opt. Lett. 32(17), 2562–2564 (2007).
    [CrossRef] [PubMed]
  9. O. Schmidt, J. Rothhardt, T. Eidam, F. Röser, J. Limpert, A. Tünnermann, K. P. Hansen, C. Jakobsen, and J. Broeng, “Single-polarization ultra-large-mode-area Yb-doped photonic crystal fiber,” Opt. Express 16(6), 3918–3923 (2008).
    [CrossRef] [PubMed]
  10. L. Dong, H. A. Mckay, A. Marcinkevicius, L. Fu, J. Li, B. K. Thomas, and M. E. Fermann, “Extending Effective Area of Fundamental Mode in Optical Fibers,” J. Lightwave Technol. 27, 1565–1570 (2009).
  11. H.-W. Chen, T. Sosnowski, C.-H. Liu, L. J. Chen, J. R. Birge, A. Galvanauskas, F. X. Kärtner, and G. Chang, “Chirally-coupled-core Yb-fiber laser delivering 80-fs pulses with diffraction-limited beam quality warranted by a high-dispersion mirror based compressor,” Opt. Express 18(24), 24699–24705 (2010).
    [CrossRef] [PubMed]
  12. S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Lett. 31(12), 1797–1799 (2006).
    [CrossRef] [PubMed]
  13. J. M. Fini and S. Ramachandran, “Natural bend-distortion immunity of higher-order-mode large-mode-area fibers,” Opt. Lett. 32(7), 748–750 (2007).
    [CrossRef] [PubMed]
  14. J. W. Nicholson, J. M. Fini, A. M. DeSantolo, E. Monberg, F. DiMarcello, J. Fleming, C. Headley, D. J. DiGiovanni, S. Ghalmi, and S. Ramachandran, “A higher-order-mode erbium-doped-fiber amplifier,” Opt. Express 18(17), 17651–17657 (2010).
    [CrossRef] [PubMed]
  15. J. M. Fini, “Large Mode Area Fiber Design With Asymmetric Bend Compensation,” in CLEO:2011- Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JWA30.
  16. J. M. Oh, C. Headley, M. J. Andrejco, A. D. Yablon, and D. J. DiGiovanni, Increased Amplifier Efficiency by Matching the Area of the Doped Fiber Region with the Fundamental Fiber Mode,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OThC6.
  17. J. M. Fini, “Design of large-mode-area amplifier fibers resistant to bend-induced distortion,” J. Opt. Soc. Am. B 24(8), 1669–1676 (2007).
    [CrossRef]
  18. D. Marcuse, “Influence of curvature on the losses of doubly clad fibers,” Appl. Opt. 21(23), 4208–4213 (1982).
    [CrossRef] [PubMed]
  19. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Springer 1983).
  20. L. Dong, X. Peng, and J. Li, “Leakage channel optical fibers with large effective area,” J. Opt. Soc. Am. B 24(8), 1689–1697 (2007).
    [CrossRef]
  21. L. Dong, J. Li, and X. Peng, “Bend-resistant fundamental mode operation in ytterbium-doped leakage channel fibers with effective areas up to 3160 µm 2,” Opt. Express 14(24), 11512–11519 (2006).
    [CrossRef] [PubMed]

2011 (1)

2010 (2)

2009 (1)

2008 (2)

2007 (4)

2006 (4)

2000 (1)

1998 (1)

1982 (1)

Barty, C. P. J.

Beach, R. J.

Birge, J. R.

Broeng, J.

Bromage, J.

Chang, G.

Chen, H.-W.

Chen, L. J.

Dawson, J. W.

DeSantolo, A. M.

DiGiovanni, D. J.

DiMarcello, F.

Dimarcello, F. V.

Dong, L.

Dorrer, C.

Eidam, T.

Farrow, R. L.

Feder, K.

Fermann, M. E.

Fini, J. M.

Fleming, J.

Fu, L.

Galvanauskas, A.

Ghalmi, S.

Goldberg, L.

Hadley, G. R.

Hansen, K. P.

Headley, C.

Heebner, J. E.

Jakobsen, C.

Kärtner, F. X.

Kliner, D. A. V.

Koplow, J. P.

Li, J.

Limpert, J.

Liu, C.-H.

Marcinkevicius, A.

Marcuse, D.

Mckay, H. A.

Messerly, M. J.

Monberg, E.

Nicholson, J. W.

Pax, P. H.

Peng, X.

Ramachandran, S.

Röser, F.

Rothhardt, J.

Schmidt, O.

Shverdin, M. Y.

Siders, C. W.

Smith, A. V.

Sosnowski, T.

Sridharan, A. K.

Stappaerts, E. A.

Thomas, B. K.

Tünnermann, A.

Westbrook, P. S.

Wisk, P.

Yablon, A. D.

Yan, M. F.

Zuegel, J. D.

Appl. Opt. (2)

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Opt. Express (6)

L. Dong, J. Li, and X. Peng, “Bend-resistant fundamental mode operation in ytterbium-doped leakage channel fibers with effective areas up to 3160 µm 2,” Opt. Express 14(24), 11512–11519 (2006).
[CrossRef] [PubMed]

J. W. Nicholson, J. M. Fini, A. M. DeSantolo, E. Monberg, F. DiMarcello, J. Fleming, C. Headley, D. J. DiGiovanni, S. Ghalmi, and S. Ramachandran, “A higher-order-mode erbium-doped-fiber amplifier,” Opt. Express 18(17), 17651–17657 (2010).
[CrossRef] [PubMed]

H.-W. Chen, T. Sosnowski, C.-H. Liu, L. J. Chen, J. R. Birge, A. Galvanauskas, F. X. Kärtner, and G. Chang, “Chirally-coupled-core Yb-fiber laser delivering 80-fs pulses with diffraction-limited beam quality warranted by a high-dispersion mirror based compressor,” Opt. Express 18(24), 24699–24705 (2010).
[CrossRef] [PubMed]

O. Schmidt, J. Rothhardt, T. Eidam, F. Röser, J. Limpert, A. Tünnermann, K. P. Hansen, C. Jakobsen, and J. Broeng, “Single-polarization ultra-large-mode-area Yb-doped photonic crystal fiber,” Opt. Express 16(6), 3918–3923 (2008).
[CrossRef] [PubMed]

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-17-13240 .
[CrossRef] [PubMed]

J. M. Fini, “Bend-resistant design of conventional and microstructure fibers with very large mode area,” Opt. Express 14(1), 69–81 (2006).
[CrossRef] [PubMed]

Opt. Lett. (6)

Other (4)

M. O'Connor, V. Gapontsev, V. Fomin, M. Abramov, and A. Ferin, “Power Scaling of SM Fiber Lasers toward 10kW,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CThA3.

J. M. Fini, “Large Mode Area Fiber Design With Asymmetric Bend Compensation,” in CLEO:2011- Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JWA30.

J. M. Oh, C. Headley, M. J. Andrejco, A. D. Yablon, and D. J. DiGiovanni, Increased Amplifier Efficiency by Matching the Area of the Doped Fiber Region with the Fundamental Fiber Mode,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OThC6.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Springer 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Scaling fiber designs to very large core area gives diminishing increases in mode area for a coiled configuration (bend radii 15cm and 48cm are shown). Mode images are shown for 15cm bend radius.

Fig. 2
Fig. 2

The asymmetrical bend compensated (ABC) fiber design strategy incorporates a material index gradient that cancels the bend perturbation.

Fig. 3
Fig. 3

The fabricated refractive index (left) and equivalent index of the coiled fiber (bend radius 15cm) illustrates how a desired step-index profile (dashed red) can be approximated with a structure that is reasonable to fabricate.

Fig. 4
Fig. 4

The basic performance tradeoff for single-moded LMA fiber can be plotted (a) as HOM suppression vs mode area (for fixed bend loss 0.1dB/m). Ideal conventional designs are limited in area by a strict tradeoff, but this tradeoff is essentially removed for ABC fibers (in the limit of ideal fabrication). The core contrast and effective area are plotted (b) vs. core radius for the SIF family.

Fig. 5
Fig. 5

Mode intensity profiles for two illustrative fibers: leakage channel (left) and ABC (right).

Fig. 6
Fig. 6

Fabrication sensitivity is shown by repeating the performance tradeoff of Fig. 5 for three fiber designs along with four perturbed versions of each (green dots).

Fig. 7
Fig. 7

Fundamental mode intensity is shown for the four perturbed versions of the 2160µm2-area fiber.

Metrics