Abstract

Group-index independent coupling to a silicon-on-insulator (SOI) based band-engineered photonic crystal (PCW) waveguide is presented. A single hole size is used for designing both the PCW coupler and the band-engineered PCW to improve fabrication yield. Efficiency of several types of PCW couplers is numerically investigated. An on-chip integrated Fourier transform spectral interferometry device is used to experimentally determine the group-index while excluding the effect of the couplers. A low-loss, low-dispersion slow light transmission over 18nm bandwidth under the silica light line with a group index of 26.5 is demonstrated, that corresponds to the largest slow-down factor of 0.31 ever demonstrated for a PCW with oxide bottom cladding.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Solja?i?, S. G. Johnson, S. H. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19(9), 2052–2059 (2002).
    [CrossRef]
  2. R. Iliew, C. Etrich, T. Pertsch, and F. Lederer, “Slow-light enhanced collinear second-harmonic generation in two dimensional photonic crystals,” Phys. Rev. B 77(11), 115124 (2008).
    [CrossRef]
  3. Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87(22), 221105 (2005).
    [CrossRef]
  4. W.-C. Lai, S. Chakravarty, X. Wang, C. Lin, and R. T. Chen, “On-chip methane sensing by near-IR absorption signatures in a photonic crystal slot waveguide,” Opt. Lett. 36(6), 984–986 (2011).
    [CrossRef] [PubMed]
  5. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
    [CrossRef] [PubMed]
  6. H. C. Nguyen, Y. Sakai, M. Shinkawa, N. Ishikura, and T. Baba, “10 Gb/s operation of photonic crystal silicon optical modulators,” Opt. Express 19(14), 13000–13007 (2011).
    [CrossRef] [PubMed]
  7. A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85(21), 4866–4868 (2004).
    [CrossRef]
  8. J. M. Brosi, J. Leuthold, and W. G. Freude, “Microwave-frequency experiments validate optical simulation tools and demonstrate novel dispersion-tailored photonic crystal waveguides,” J. Lightwave Technol. 25(9), 2502–2510 (2007).
    [CrossRef]
  9. M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, “Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth,” Opt. Express 15(1), 219–226 (2007).
    [CrossRef] [PubMed]
  10. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14(20), 9444–9450 (2006).
    [CrossRef] [PubMed]
  11. S. Kubo, D. Mori, and T. Baba, “Low-group-velocity and low-dispersion slow light in photonic crystal waveguides,” Opt. Lett. 32(20), 2981–2983 (2007).
    [CrossRef] [PubMed]
  12. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16(9), 6227–6232 (2008).
    [CrossRef] [PubMed]
  13. Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett. 34(7), 1072–1074 (2009).
    [CrossRef] [PubMed]
  14. D. Mori and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Express 13(23), 9398–9408 (2005).
    [CrossRef] [PubMed]
  15. Y.-S. Chen, Y. Zhao, A. Hosseini, D. Kwong, W. Jiang, S. R. Bank, E. Tutuc, and R. T. Chen, “Delay time enhanced flat band photonic crystal waveguides with capsule-shaped holes on silicon nanomembrane,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1510–1514 (2009).
    [CrossRef]
  16. M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Structural tuning of guiding modes of line defect waveguides of silicon on insulator photonic crystal slabs,” IEEE J. Quantum Electron. 38(7), 736 (2002).
    [CrossRef]
  17. M. G. Scullion, T. F. Krauss, and A. Di Falco, “High efficiency interference for coupling into slotted photonic crystal waveguide,” IEEE Photonics J. 3(2), 203–208 (2011).
    [CrossRef]
  18. R. Hao, E. Cassan, X. Le Roux, D. Gao, V. Do Khanh, L. Vivien, D. Marris-Morini, and X. Zhang, “Improvement of delay-bandwidth product in photonic crystal slow-light waveguides,” Opt. Express 18(16), 16309–16319 (2010).
    [CrossRef] [PubMed]
  19. A. Hosseini, X. Xu, D. N. Kwong, H. Subbaraman, W. Jiang, and R. T. Chen, “On the role of evanescent modes and group index tapering in slow light photonic crystal waveguide coupling efficiency,” Appl. Phys. Lett. 98(3), 031107 (2011).
    [CrossRef]
  20. A. Gomez-Iglesias, D. O’Brien, L. O’Faolain, A. Miller, and T. F. Krauss, “Direct measurements of the group index of photonic crystal waveguide via Fourier transform spectral interferometry,” Appl. Phys. Lett. 90(26), 261107 (2007).
    [CrossRef]
  21. S. A. Schulz, L. O'Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12(10), 104004 (2010).
    [CrossRef]
  22. J. Nocedal and S. Wright, Numerical Optimization (Springer-Verlag, 1999).
  23. S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066608 (2002).
    [CrossRef] [PubMed]
  24. P. Pottier, M. Gnan, and R. M. De La Rue, “Efficient coupling into slow-light photonic crystal channel guides using photonic crystal tapers,” Opt. Express 15(11), 6569–6575 (2007).
    [CrossRef] [PubMed]
  25. C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W.-C. Lai, and R. T. Chen, “Wideband group velocity independent coupling into slow light silicon photonic crystal waveguide,” Appl. Phys. Lett. 97(18), 183302 (2010).
    [CrossRef]
  26. J. P. Hugonin, P. Lalanne, T. P. White, and T. F. Krauss, “Coupling into slow-mode photonic crystal waveguides,” Opt. Lett. 32(18), 2638–2640 (2007).
    [CrossRef] [PubMed]
  27. N. Ozaki, Y. Kitagawa, Y. Takata, N. Ikeda, Y. Watanabe, A. Mizutani, Y. Sugimoto, and K. Asakawa, “High transmission recovery of slow light in a photonic crystal waveguide using a hetero groupvelocity waveguide,” Opt. Express 15(13), 7974–7983 (2007).
    [CrossRef] [PubMed]
  28. C. Martijn de Sterke, K. B. Dossou, T. P. White, L. C. Botten, and R. C. McPhedran, “Efficient coupling into slow light photonic crystal waveguide without transition region: role of evanescent modes,” Opt. Express 17(20), 17338–17343 (2009).
    [CrossRef] [PubMed]
  29. Y. Cui, K. Liu, D. L. MacFarlane, and J. B. Lee, “Thermo-optically tunable silicon photonic crystal light modulator,” Opt. Lett. 35(21), 3613–3615 (2010).
    [CrossRef] [PubMed]
  30. Y. A. Vlasov and S. J. McNab, “Coupling into the slow light mode in slab-type photonic crystal waveguides,” Opt. Lett. 31(1), 50–52 (2006).
    [CrossRef] [PubMed]
  31. R. Jacobsen, A. Lavrinenko, L. Frandsen, C. Peucheret, B. Zsigri, G. Moulin, J. Fage-Pedersen, and P. Borel, “Direct experimental and numerical determination of extremely high group indices in photonic crystal waveguides,” Opt. Express 13(20), 7861–7871 (2005).
    [CrossRef] [PubMed]
  32. W. Song, R. A. Integlia, and W. Jiang, “Slow light loss due to roughness in photonic crystal waveguides: An analytic approach,” Phys. Rev. B 82(23), 235306 (2010).
    [CrossRef]

2011

W.-C. Lai, S. Chakravarty, X. Wang, C. Lin, and R. T. Chen, “On-chip methane sensing by near-IR absorption signatures in a photonic crystal slot waveguide,” Opt. Lett. 36(6), 984–986 (2011).
[CrossRef] [PubMed]

H. C. Nguyen, Y. Sakai, M. Shinkawa, N. Ishikura, and T. Baba, “10 Gb/s operation of photonic crystal silicon optical modulators,” Opt. Express 19(14), 13000–13007 (2011).
[CrossRef] [PubMed]

M. G. Scullion, T. F. Krauss, and A. Di Falco, “High efficiency interference for coupling into slotted photonic crystal waveguide,” IEEE Photonics J. 3(2), 203–208 (2011).
[CrossRef]

A. Hosseini, X. Xu, D. N. Kwong, H. Subbaraman, W. Jiang, and R. T. Chen, “On the role of evanescent modes and group index tapering in slow light photonic crystal waveguide coupling efficiency,” Appl. Phys. Lett. 98(3), 031107 (2011).
[CrossRef]

2010

S. A. Schulz, L. O'Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12(10), 104004 (2010).
[CrossRef]

C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W.-C. Lai, and R. T. Chen, “Wideband group velocity independent coupling into slow light silicon photonic crystal waveguide,” Appl. Phys. Lett. 97(18), 183302 (2010).
[CrossRef]

Y. Cui, K. Liu, D. L. MacFarlane, and J. B. Lee, “Thermo-optically tunable silicon photonic crystal light modulator,” Opt. Lett. 35(21), 3613–3615 (2010).
[CrossRef] [PubMed]

W. Song, R. A. Integlia, and W. Jiang, “Slow light loss due to roughness in photonic crystal waveguides: An analytic approach,” Phys. Rev. B 82(23), 235306 (2010).
[CrossRef]

R. Hao, E. Cassan, X. Le Roux, D. Gao, V. Do Khanh, L. Vivien, D. Marris-Morini, and X. Zhang, “Improvement of delay-bandwidth product in photonic crystal slow-light waveguides,” Opt. Express 18(16), 16309–16319 (2010).
[CrossRef] [PubMed]

2009

2008

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16(9), 6227–6232 (2008).
[CrossRef] [PubMed]

R. Iliew, C. Etrich, T. Pertsch, and F. Lederer, “Slow-light enhanced collinear second-harmonic generation in two dimensional photonic crystals,” Phys. Rev. B 77(11), 115124 (2008).
[CrossRef]

2007

J. M. Brosi, J. Leuthold, and W. G. Freude, “Microwave-frequency experiments validate optical simulation tools and demonstrate novel dispersion-tailored photonic crystal waveguides,” J. Lightwave Technol. 25(9), 2502–2510 (2007).
[CrossRef]

M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, “Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth,” Opt. Express 15(1), 219–226 (2007).
[CrossRef] [PubMed]

S. Kubo, D. Mori, and T. Baba, “Low-group-velocity and low-dispersion slow light in photonic crystal waveguides,” Opt. Lett. 32(20), 2981–2983 (2007).
[CrossRef] [PubMed]

P. Pottier, M. Gnan, and R. M. De La Rue, “Efficient coupling into slow-light photonic crystal channel guides using photonic crystal tapers,” Opt. Express 15(11), 6569–6575 (2007).
[CrossRef] [PubMed]

J. P. Hugonin, P. Lalanne, T. P. White, and T. F. Krauss, “Coupling into slow-mode photonic crystal waveguides,” Opt. Lett. 32(18), 2638–2640 (2007).
[CrossRef] [PubMed]

N. Ozaki, Y. Kitagawa, Y. Takata, N. Ikeda, Y. Watanabe, A. Mizutani, Y. Sugimoto, and K. Asakawa, “High transmission recovery of slow light in a photonic crystal waveguide using a hetero groupvelocity waveguide,” Opt. Express 15(13), 7974–7983 (2007).
[CrossRef] [PubMed]

A. Gomez-Iglesias, D. O’Brien, L. O’Faolain, A. Miller, and T. F. Krauss, “Direct measurements of the group index of photonic crystal waveguide via Fourier transform spectral interferometry,” Appl. Phys. Lett. 90(26), 261107 (2007).
[CrossRef]

2006

2005

2004

A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85(21), 4866–4868 (2004).
[CrossRef]

2002

M. Solja?i?, S. G. Johnson, S. H. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19(9), 2052–2059 (2002).
[CrossRef]

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Structural tuning of guiding modes of line defect waveguides of silicon on insulator photonic crystal slabs,” IEEE J. Quantum Electron. 38(7), 736 (2002).
[CrossRef]

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066608 (2002).
[CrossRef] [PubMed]

2001

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

Asakawa, K.

Baba, T.

Bank, S. R.

Y.-S. Chen, Y. Zhao, A. Hosseini, D. Kwong, W. Jiang, S. R. Bank, E. Tutuc, and R. T. Chen, “Delay time enhanced flat band photonic crystal waveguides with capsule-shaped holes on silicon nanomembrane,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1510–1514 (2009).
[CrossRef]

Beggs, D. M.

S. A. Schulz, L. O'Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12(10), 104004 (2010).
[CrossRef]

Bienstman, P.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066608 (2002).
[CrossRef] [PubMed]

Borel, P.

Borel, P. I.

Botten, L. C.

Brosi, J. M.

Cassan, E.

Chakravarty, S.

W.-C. Lai, S. Chakravarty, X. Wang, C. Lin, and R. T. Chen, “On-chip methane sensing by near-IR absorption signatures in a photonic crystal slot waveguide,” Opt. Lett. 36(6), 984–986 (2011).
[CrossRef] [PubMed]

C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W.-C. Lai, and R. T. Chen, “Wideband group velocity independent coupling into slow light silicon photonic crystal waveguide,” Appl. Phys. Lett. 97(18), 183302 (2010).
[CrossRef]

Chen, R. T.

A. Hosseini, X. Xu, D. N. Kwong, H. Subbaraman, W. Jiang, and R. T. Chen, “On the role of evanescent modes and group index tapering in slow light photonic crystal waveguide coupling efficiency,” Appl. Phys. Lett. 98(3), 031107 (2011).
[CrossRef]

W.-C. Lai, S. Chakravarty, X. Wang, C. Lin, and R. T. Chen, “On-chip methane sensing by near-IR absorption signatures in a photonic crystal slot waveguide,” Opt. Lett. 36(6), 984–986 (2011).
[CrossRef] [PubMed]

C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W.-C. Lai, and R. T. Chen, “Wideband group velocity independent coupling into slow light silicon photonic crystal waveguide,” Appl. Phys. Lett. 97(18), 183302 (2010).
[CrossRef]

Y.-S. Chen, Y. Zhao, A. Hosseini, D. Kwong, W. Jiang, S. R. Bank, E. Tutuc, and R. T. Chen, “Delay time enhanced flat band photonic crystal waveguides with capsule-shaped holes on silicon nanomembrane,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1510–1514 (2009).
[CrossRef]

Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87(22), 221105 (2005).
[CrossRef]

Chen, X.

Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87(22), 221105 (2005).
[CrossRef]

Chen, Y.-S.

Y.-S. Chen, Y. Zhao, A. Hosseini, D. Kwong, W. Jiang, S. R. Bank, E. Tutuc, and R. T. Chen, “Delay time enhanced flat band photonic crystal waveguides with capsule-shaped holes on silicon nanomembrane,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1510–1514 (2009).
[CrossRef]

Cui, Y.

De La Rue, R. M.

Di Falco, A.

M. G. Scullion, T. F. Krauss, and A. Di Falco, “High efficiency interference for coupling into slotted photonic crystal waveguide,” IEEE Photonics J. 3(2), 203–208 (2011).
[CrossRef]

Do Khanh, V.

Dossou, K. B.

Eich, M.

A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85(21), 4866–4868 (2004).
[CrossRef]

Engelen, R. J. P.

Etrich, C.

R. Iliew, C. Etrich, T. Pertsch, and F. Lederer, “Slow-light enhanced collinear second-harmonic generation in two dimensional photonic crystals,” Phys. Rev. B 77(11), 115124 (2008).
[CrossRef]

Fage-Pedersen, J.

Fan, S. H.

Frandsen, L.

Frandsen, L. H.

Freude, W. G.

Gao, D.

Gnan, M.

Gomez-Iglesias, A.

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16(9), 6227–6232 (2008).
[CrossRef] [PubMed]

A. Gomez-Iglesias, D. O’Brien, L. O’Faolain, A. Miller, and T. F. Krauss, “Direct measurements of the group index of photonic crystal waveguide via Fourier transform spectral interferometry,” Appl. Phys. Lett. 90(26), 261107 (2007).
[CrossRef]

Gu, L.

Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87(22), 221105 (2005).
[CrossRef]

Hamachi, Y.

Hao, R.

Hosseini, A.

A. Hosseini, X. Xu, D. N. Kwong, H. Subbaraman, W. Jiang, and R. T. Chen, “On the role of evanescent modes and group index tapering in slow light photonic crystal waveguide coupling efficiency,” Appl. Phys. Lett. 98(3), 031107 (2011).
[CrossRef]

Y.-S. Chen, Y. Zhao, A. Hosseini, D. Kwong, W. Jiang, S. R. Bank, E. Tutuc, and R. T. Chen, “Delay time enhanced flat band photonic crystal waveguides with capsule-shaped holes on silicon nanomembrane,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1510–1514 (2009).
[CrossRef]

Hugonin, J. P.

Ibanescu, M.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066608 (2002).
[CrossRef] [PubMed]

M. Solja?i?, S. G. Johnson, S. H. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19(9), 2052–2059 (2002).
[CrossRef]

Ikeda, N.

Iliew, R.

R. Iliew, C. Etrich, T. Pertsch, and F. Lederer, “Slow-light enhanced collinear second-harmonic generation in two dimensional photonic crystals,” Phys. Rev. B 77(11), 115124 (2008).
[CrossRef]

Integlia, R. A.

W. Song, R. A. Integlia, and W. Jiang, “Slow light loss due to roughness in photonic crystal waveguides: An analytic approach,” Phys. Rev. B 82(23), 235306 (2010).
[CrossRef]

Ippen, E.

Ishikura, N.

Jacobsen, R.

Jiang, W.

A. Hosseini, X. Xu, D. N. Kwong, H. Subbaraman, W. Jiang, and R. T. Chen, “On the role of evanescent modes and group index tapering in slow light photonic crystal waveguide coupling efficiency,” Appl. Phys. Lett. 98(3), 031107 (2011).
[CrossRef]

W. Song, R. A. Integlia, and W. Jiang, “Slow light loss due to roughness in photonic crystal waveguides: An analytic approach,” Phys. Rev. B 82(23), 235306 (2010).
[CrossRef]

Y.-S. Chen, Y. Zhao, A. Hosseini, D. Kwong, W. Jiang, S. R. Bank, E. Tutuc, and R. T. Chen, “Delay time enhanced flat band photonic crystal waveguides with capsule-shaped holes on silicon nanomembrane,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1510–1514 (2009).
[CrossRef]

Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87(22), 221105 (2005).
[CrossRef]

Jiang, Y.

Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87(22), 221105 (2005).
[CrossRef]

Joannopoulos, J. D.

M. Solja?i?, S. G. Johnson, S. H. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19(9), 2052–2059 (2002).
[CrossRef]

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066608 (2002).
[CrossRef] [PubMed]

Johnson, S. G.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066608 (2002).
[CrossRef] [PubMed]

M. Solja?i?, S. G. Johnson, S. H. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19(9), 2052–2059 (2002).
[CrossRef]

Kitagawa, Y.

Krauss, T. F.

M. G. Scullion, T. F. Krauss, and A. Di Falco, “High efficiency interference for coupling into slotted photonic crystal waveguide,” IEEE Photonics J. 3(2), 203–208 (2011).
[CrossRef]

S. A. Schulz, L. O'Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12(10), 104004 (2010).
[CrossRef]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16(9), 6227–6232 (2008).
[CrossRef] [PubMed]

M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, “Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth,” Opt. Express 15(1), 219–226 (2007).
[CrossRef] [PubMed]

A. Gomez-Iglesias, D. O’Brien, L. O’Faolain, A. Miller, and T. F. Krauss, “Direct measurements of the group index of photonic crystal waveguide via Fourier transform spectral interferometry,” Appl. Phys. Lett. 90(26), 261107 (2007).
[CrossRef]

J. P. Hugonin, P. Lalanne, T. P. White, and T. F. Krauss, “Coupling into slow-mode photonic crystal waveguides,” Opt. Lett. 32(18), 2638–2640 (2007).
[CrossRef] [PubMed]

Kubo, S.

Kuipers, L.

Kwong, D.

Y.-S. Chen, Y. Zhao, A. Hosseini, D. Kwong, W. Jiang, S. R. Bank, E. Tutuc, and R. T. Chen, “Delay time enhanced flat band photonic crystal waveguides with capsule-shaped holes on silicon nanomembrane,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1510–1514 (2009).
[CrossRef]

Kwong, D. N.

A. Hosseini, X. Xu, D. N. Kwong, H. Subbaraman, W. Jiang, and R. T. Chen, “On the role of evanescent modes and group index tapering in slow light photonic crystal waveguide coupling efficiency,” Appl. Phys. Lett. 98(3), 031107 (2011).
[CrossRef]

Lai, W.-C.

W.-C. Lai, S. Chakravarty, X. Wang, C. Lin, and R. T. Chen, “On-chip methane sensing by near-IR absorption signatures in a photonic crystal slot waveguide,” Opt. Lett. 36(6), 984–986 (2011).
[CrossRef] [PubMed]

C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W.-C. Lai, and R. T. Chen, “Wideband group velocity independent coupling into slow light silicon photonic crystal waveguide,” Appl. Phys. Lett. 97(18), 183302 (2010).
[CrossRef]

Lalanne, P.

Lavrinenko, A.

Lavrinenko, A. V.

Le Roux, X.

Lederer, F.

R. Iliew, C. Etrich, T. Pertsch, and F. Lederer, “Slow-light enhanced collinear second-harmonic generation in two dimensional photonic crystals,” Phys. Rev. B 77(11), 115124 (2008).
[CrossRef]

Lee, B. S.

C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W.-C. Lai, and R. T. Chen, “Wideband group velocity independent coupling into slow light silicon photonic crystal waveguide,” Appl. Phys. Lett. 97(18), 183302 (2010).
[CrossRef]

Lee, J. B.

Leuthold, J.

Li, J.

Lidorikis, E.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066608 (2002).
[CrossRef] [PubMed]

Lin, C.

Lin, C.-Y.

C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W.-C. Lai, and R. T. Chen, “Wideband group velocity independent coupling into slow light silicon photonic crystal waveguide,” Appl. Phys. Lett. 97(18), 183302 (2010).
[CrossRef]

Liu, K.

MacFarlane, D. L.

Marris-Morini, D.

Martijn de Sterke, C.

McNab, S. J.

McPhedran, R. C.

Melloni, A.

S. A. Schulz, L. O'Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12(10), 104004 (2010).
[CrossRef]

Michaeli, A.

Miller, A.

A. Gomez-Iglesias, D. O’Brien, L. O’Faolain, A. Miller, and T. F. Krauss, “Direct measurements of the group index of photonic crystal waveguide via Fourier transform spectral interferometry,” Appl. Phys. Lett. 90(26), 261107 (2007).
[CrossRef]

Mizutani, A.

Mori, D.

Moulin, G.

Nguyen, H. C.

Notomi, M.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Structural tuning of guiding modes of line defect waveguides of silicon on insulator photonic crystal slabs,” IEEE J. Quantum Electron. 38(7), 736 (2002).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

O’Brien, D.

A. Gomez-Iglesias, D. O’Brien, L. O’Faolain, A. Miller, and T. F. Krauss, “Direct measurements of the group index of photonic crystal waveguide via Fourier transform spectral interferometry,” Appl. Phys. Lett. 90(26), 261107 (2007).
[CrossRef]

O’Faolain, L.

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16(9), 6227–6232 (2008).
[CrossRef] [PubMed]

A. Gomez-Iglesias, D. O’Brien, L. O’Faolain, A. Miller, and T. F. Krauss, “Direct measurements of the group index of photonic crystal waveguide via Fourier transform spectral interferometry,” Appl. Phys. Lett. 90(26), 261107 (2007).
[CrossRef]

O'Faolain, L.

S. A. Schulz, L. O'Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12(10), 104004 (2010).
[CrossRef]

Ozaki, N.

Pertsch, T.

R. Iliew, C. Etrich, T. Pertsch, and F. Lederer, “Slow-light enhanced collinear second-harmonic generation in two dimensional photonic crystals,” Phys. Rev. B 77(11), 115124 (2008).
[CrossRef]

Petrov, A. Y.

A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85(21), 4866–4868 (2004).
[CrossRef]

Peucheret, C.

Pottier, P.

Sakai, Y.

Salib, M.

Schulz, S. A.

S. A. Schulz, L. O'Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12(10), 104004 (2010).
[CrossRef]

Scullion, M. G.

M. G. Scullion, T. F. Krauss, and A. Di Falco, “High efficiency interference for coupling into slotted photonic crystal waveguide,” IEEE Photonics J. 3(2), 203–208 (2011).
[CrossRef]

Settle, M. D.

Shinkawa, M.

Shinya, A.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Structural tuning of guiding modes of line defect waveguides of silicon on insulator photonic crystal slabs,” IEEE J. Quantum Electron. 38(7), 736 (2002).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

Skorobogatiy, M. A.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066608 (2002).
[CrossRef] [PubMed]

Soljacic, M.

Song, W.

W. Song, R. A. Integlia, and W. Jiang, “Slow light loss due to roughness in photonic crystal waveguides: An analytic approach,” Phys. Rev. B 82(23), 235306 (2010).
[CrossRef]

Subbaraman, H.

A. Hosseini, X. Xu, D. N. Kwong, H. Subbaraman, W. Jiang, and R. T. Chen, “On the role of evanescent modes and group index tapering in slow light photonic crystal waveguide coupling efficiency,” Appl. Phys. Lett. 98(3), 031107 (2011).
[CrossRef]

Sugimoto, Y.

Takahashi, C.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Structural tuning of guiding modes of line defect waveguides of silicon on insulator photonic crystal slabs,” IEEE J. Quantum Electron. 38(7), 736 (2002).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

Takahashi, J.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Structural tuning of guiding modes of line defect waveguides of silicon on insulator photonic crystal slabs,” IEEE J. Quantum Electron. 38(7), 736 (2002).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

Takata, Y.

Tutuc, E.

Y.-S. Chen, Y. Zhao, A. Hosseini, D. Kwong, W. Jiang, S. R. Bank, E. Tutuc, and R. T. Chen, “Delay time enhanced flat band photonic crystal waveguides with capsule-shaped holes on silicon nanomembrane,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1510–1514 (2009).
[CrossRef]

Vivien, L.

Vlasov, Y. A.

Wang, X.

W.-C. Lai, S. Chakravarty, X. Wang, C. Lin, and R. T. Chen, “On-chip methane sensing by near-IR absorption signatures in a photonic crystal slot waveguide,” Opt. Lett. 36(6), 984–986 (2011).
[CrossRef] [PubMed]

C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W.-C. Lai, and R. T. Chen, “Wideband group velocity independent coupling into slow light silicon photonic crystal waveguide,” Appl. Phys. Lett. 97(18), 183302 (2010).
[CrossRef]

Watanabe, Y.

White, T. P.

Xu, X.

A. Hosseini, X. Xu, D. N. Kwong, H. Subbaraman, W. Jiang, and R. T. Chen, “On the role of evanescent modes and group index tapering in slow light photonic crystal waveguide coupling efficiency,” Appl. Phys. Lett. 98(3), 031107 (2011).
[CrossRef]

Yamada, K.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Structural tuning of guiding modes of line defect waveguides of silicon on insulator photonic crystal slabs,” IEEE J. Quantum Electron. 38(7), 736 (2002).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

Yokohama, I.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Structural tuning of guiding modes of line defect waveguides of silicon on insulator photonic crystal slabs,” IEEE J. Quantum Electron. 38(7), 736 (2002).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

Zhang, X.

Zhao, Y.

Y.-S. Chen, Y. Zhao, A. Hosseini, D. Kwong, W. Jiang, S. R. Bank, E. Tutuc, and R. T. Chen, “Delay time enhanced flat band photonic crystal waveguides with capsule-shaped holes on silicon nanomembrane,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1510–1514 (2009).
[CrossRef]

Zsigri, B.

Appl. Phys. Lett.

Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87(22), 221105 (2005).
[CrossRef]

A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85(21), 4866–4868 (2004).
[CrossRef]

A. Hosseini, X. Xu, D. N. Kwong, H. Subbaraman, W. Jiang, and R. T. Chen, “On the role of evanescent modes and group index tapering in slow light photonic crystal waveguide coupling efficiency,” Appl. Phys. Lett. 98(3), 031107 (2011).
[CrossRef]

A. Gomez-Iglesias, D. O’Brien, L. O’Faolain, A. Miller, and T. F. Krauss, “Direct measurements of the group index of photonic crystal waveguide via Fourier transform spectral interferometry,” Appl. Phys. Lett. 90(26), 261107 (2007).
[CrossRef]

C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W.-C. Lai, and R. T. Chen, “Wideband group velocity independent coupling into slow light silicon photonic crystal waveguide,” Appl. Phys. Lett. 97(18), 183302 (2010).
[CrossRef]

IEEE J. Quantum Electron.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Structural tuning of guiding modes of line defect waveguides of silicon on insulator photonic crystal slabs,” IEEE J. Quantum Electron. 38(7), 736 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

Y.-S. Chen, Y. Zhao, A. Hosseini, D. Kwong, W. Jiang, S. R. Bank, E. Tutuc, and R. T. Chen, “Delay time enhanced flat band photonic crystal waveguides with capsule-shaped holes on silicon nanomembrane,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1510–1514 (2009).
[CrossRef]

IEEE Photonics J.

M. G. Scullion, T. F. Krauss, and A. Di Falco, “High efficiency interference for coupling into slotted photonic crystal waveguide,” IEEE Photonics J. 3(2), 203–208 (2011).
[CrossRef]

J. Lightwave Technol.

J. Opt.

S. A. Schulz, L. O'Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12(10), 104004 (2010).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, “Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth,” Opt. Express 15(1), 219–226 (2007).
[CrossRef] [PubMed]

L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14(20), 9444–9450 (2006).
[CrossRef] [PubMed]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16(9), 6227–6232 (2008).
[CrossRef] [PubMed]

H. C. Nguyen, Y. Sakai, M. Shinkawa, N. Ishikura, and T. Baba, “10 Gb/s operation of photonic crystal silicon optical modulators,” Opt. Express 19(14), 13000–13007 (2011).
[CrossRef] [PubMed]

D. Mori and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Express 13(23), 9398–9408 (2005).
[CrossRef] [PubMed]

R. Hao, E. Cassan, X. Le Roux, D. Gao, V. Do Khanh, L. Vivien, D. Marris-Morini, and X. Zhang, “Improvement of delay-bandwidth product in photonic crystal slow-light waveguides,” Opt. Express 18(16), 16309–16319 (2010).
[CrossRef] [PubMed]

N. Ozaki, Y. Kitagawa, Y. Takata, N. Ikeda, Y. Watanabe, A. Mizutani, Y. Sugimoto, and K. Asakawa, “High transmission recovery of slow light in a photonic crystal waveguide using a hetero groupvelocity waveguide,” Opt. Express 15(13), 7974–7983 (2007).
[CrossRef] [PubMed]

C. Martijn de Sterke, K. B. Dossou, T. P. White, L. C. Botten, and R. C. McPhedran, “Efficient coupling into slow light photonic crystal waveguide without transition region: role of evanescent modes,” Opt. Express 17(20), 17338–17343 (2009).
[CrossRef] [PubMed]

R. Jacobsen, A. Lavrinenko, L. Frandsen, C. Peucheret, B. Zsigri, G. Moulin, J. Fage-Pedersen, and P. Borel, “Direct experimental and numerical determination of extremely high group indices in photonic crystal waveguides,” Opt. Express 13(20), 7861–7871 (2005).
[CrossRef] [PubMed]

P. Pottier, M. Gnan, and R. M. De La Rue, “Efficient coupling into slow-light photonic crystal channel guides using photonic crystal tapers,” Opt. Express 15(11), 6569–6575 (2007).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. B

R. Iliew, C. Etrich, T. Pertsch, and F. Lederer, “Slow-light enhanced collinear second-harmonic generation in two dimensional photonic crystals,” Phys. Rev. B 77(11), 115124 (2008).
[CrossRef]

W. Song, R. A. Integlia, and W. Jiang, “Slow light loss due to roughness in photonic crystal waveguides: An analytic approach,” Phys. Rev. B 82(23), 235306 (2010).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066608 (2002).
[CrossRef] [PubMed]

Phys. Rev. Lett.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

Other

J. Nocedal and S. Wright, Numerical Optimization (Springer-Verlag, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of band engineered PCW and PCW taper. Longitudinal (parallel to the defect line) and lateral (perpendicular to the defect line) lattice shifting are depicted by red (solid) and yellow (dashed) arrows, respectively. The directions of the arrows indicate the positive direction assumed in this paper.

Fig. 2
Fig. 2

PWC band structures with (a) 0.15a longitudinal lattice shifting, (b) 0.15a lateral lattice shifting. For each defect mode curve, at most only one lattice row (on each side of the line defect) is shifted. (c) Band structures of the designed band-engineered PCW, dW = 0, s1 = 0, s2 = −0.05a, s3 = 0.25a, step coupler (r = 0.27a, dW = 0.15a, s1 = s2 = s3 = 0), and an engineered step coupler (r = 0.27a, dW = 0.15a, s1 = 0, s2 = −0.05a, s3 = 0.25a). The low-dispersion bandwidth is highlighted by a black line on the defect mode of the designed band-engineered PCW. (d) FDTD simulations of a single interface between different fast-light PCW and the designed band-engineered PCW. Vertical dashed line indicates the band-edge of the designed PCW defect mode. Vertical dotted lines indicate the boundaries of the low-dispersion bandwidth. Step coupler, Engineered step, Expanded lattice, Reduced hole-size couplers refer to (a = 392nm, r = 0.27a, dW = 0.15a, s1 = s2 = s3 = 0), (a = 392nm, r = 0.27a, dW = 0.15a, s1 = 0, s2 = −0.05a, s3 = 0.25a), (a = 420nm, r = 0.27a, dW = 0, s1 = s2 = s3 = 0), and (a = 392nm, r = 0.23a, dW = 0.15a, s1 = s2 = s3 = 0), respectively. In the case of the group index taper, the hole sizes of a W1 PCW (a = 392nm, r = 0.27a, dW = 0.0a, s1 = s2 = s3 = 0) at the interface with the slow light PCW are parabolically reduced to r = 0.23a at the interface with the ridge waveguide. In all cases, the coupler (or taper) length is 8 periods.

Fig. 3
Fig. 3

A microscope image of the fabricated on-chip group index measurement device. The top device contains the PCW and PCW couplers in one arm of the Mach-Zehnder structure and a delay line and PCW couplers in the other arm. In the bottom device, the PCW is replaced with a ridge waveguide.

Fig. 4
Fig. 4

(a) SEM pictures of the fabricated PCW device showing the PCW coupler and high ng region, (b) close up of the PCW air holes, (c) 1x2 MMI device employed for splitting and merging the signal coming from two arms of MZI device.

Fig. 5
Fig. 5

(a) Output spectrum of PCW device (red curve), ridge waveguide (blue curve) and their interference (black curve). (b) Output spectrum of PCW device (red curve) and the calculated group index based on FT method (blue curve). The PCW transmission curve is also provided as a reference.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I(ω)=S(ω)+R(ω)+ S(ω)R(ω) exp(iφ(ω)iωτ)+c.c.
n g (ω)=(Δ T PCW (ω)Δ T RW (ω))c/L+ n RW (ω)

Metrics