Abstract

We demonstrate the pulse compression at 1554 nm using one stage of highly anomalous dispersive photonic crystal fibers with a dispersion value of 600 ps/nm∙km. A 1.64 ps pulse is compressed down to 0.357 ps with a compression factor of 4.6, which agrees reasonably well with the simulation value of 6.1. The compressor is better suited for high energy ultra-short pulse compression than conventional low dispersive single mode fibers.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Akhmediev, N. V. Mitzkevich, and F. V. Lukin, “Extremely high degree of N-soliton pulse compression in an optical fiber,” IEEE J. Quantum Electron. 27(3), 849–857 (1991).
    [CrossRef]
  2. L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental-observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45(13), 1095–1098 (1980).
    [CrossRef]
  3. G. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  4. M. A. Foster, A. L. Gaeta, Q. Cao, and R. Trebino, “Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires,” Opt. Express 13(18), 6848–6855 (2005).
    [CrossRef] [PubMed]
  5. B. Kibler, R. Fischer, R. A. Lacourt, E. Courvoisier, R. Ferriere, L. Larger, D. N. Neshev, and J. M. Dudley, “Optimized one-step compression of femtosecond fibre laser soliton pulses around 1550 nm to below 30 fs in highly nonlinear fibre,” Electron. Lett. 43(17), 915–916 (2007).
    [CrossRef]
  6. D. G. Ouzounov, C. J. Hensley, A. L. Gaeta, N. Venkateraman, M. T. Gallagher, and K. W. Koch, “Soliton pulse compression in photonic band-gap fibers,” Opt. Express 13(16), 6153–6159 (2005).
    [CrossRef] [PubMed]
  7. A. A. Amorim, M. V. Tognetti, P. Oliveira, J. L. Silva, L. M. Bernardo, F. X. Kärtner, and H. M. Crespo, “Sub-two-cycle pulses by soliton self-compression in highly nonlinear photonic crystal fibers,” Opt. Lett. 34(24), 3851–3853 (2009).
    [CrossRef] [PubMed]
  8. L. P. Shen, W. P. Huang, G. X. Chen, and S. S. Jian, “Design and optimization of photonic crystal fibers for broad-band dispersion compensation,” IEEE Photon. Technol. Lett. 15(4), 540–542 (2003).
    [CrossRef]
  9. J. A. West, N. Venkataramam, C. M. Smith, and M. T. Gallagher, “Photonic crystal fibers,” in Proc. 27th Eur. Conf. on Opt. Comm. (2001), Vol. 4, pp. 582 –585.
  10. K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, “A novel design of a dispersion compensating fiber,” IEEE Photon. Technol. Lett. 8(11), 1510–1512 (1996).
    [CrossRef]
  11. J. Broeng, S. E. Barkou, T. Søndergaard, and A. Bjarklev, “Analysis of air-guiding photonic bandgap fibers,” Opt. Lett. 25(2), 96–98 (2000).
    [CrossRef] [PubMed]
  12. A. Ferrando, E. Silvestre, J. J. Miret, P. Andrés, and M. V. Andrés, “Full-vector analysis of a realistic photonic crystal fiber,” Opt. Lett. 24(5), 276–278 (1999).
    [CrossRef] [PubMed]

2009 (1)

2007 (1)

B. Kibler, R. Fischer, R. A. Lacourt, E. Courvoisier, R. Ferriere, L. Larger, D. N. Neshev, and J. M. Dudley, “Optimized one-step compression of femtosecond fibre laser soliton pulses around 1550 nm to below 30 fs in highly nonlinear fibre,” Electron. Lett. 43(17), 915–916 (2007).
[CrossRef]

2005 (2)

2003 (1)

L. P. Shen, W. P. Huang, G. X. Chen, and S. S. Jian, “Design and optimization of photonic crystal fibers for broad-band dispersion compensation,” IEEE Photon. Technol. Lett. 15(4), 540–542 (2003).
[CrossRef]

2000 (1)

1999 (1)

1996 (1)

K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, “A novel design of a dispersion compensating fiber,” IEEE Photon. Technol. Lett. 8(11), 1510–1512 (1996).
[CrossRef]

1991 (1)

N. Akhmediev, N. V. Mitzkevich, and F. V. Lukin, “Extremely high degree of N-soliton pulse compression in an optical fiber,” IEEE J. Quantum Electron. 27(3), 849–857 (1991).
[CrossRef]

1980 (1)

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental-observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45(13), 1095–1098 (1980).
[CrossRef]

Akhmediev, N.

N. Akhmediev, N. V. Mitzkevich, and F. V. Lukin, “Extremely high degree of N-soliton pulse compression in an optical fiber,” IEEE J. Quantum Electron. 27(3), 849–857 (1991).
[CrossRef]

Amorim, A. A.

Andrés, M. V.

Andrés, P.

Barkou, S. E.

Bernardo, L. M.

Bjarklev, A.

Broeng, J.

Cao, Q.

Chen, G. X.

L. P. Shen, W. P. Huang, G. X. Chen, and S. S. Jian, “Design and optimization of photonic crystal fibers for broad-band dispersion compensation,” IEEE Photon. Technol. Lett. 15(4), 540–542 (2003).
[CrossRef]

Courvoisier, E.

B. Kibler, R. Fischer, R. A. Lacourt, E. Courvoisier, R. Ferriere, L. Larger, D. N. Neshev, and J. M. Dudley, “Optimized one-step compression of femtosecond fibre laser soliton pulses around 1550 nm to below 30 fs in highly nonlinear fibre,” Electron. Lett. 43(17), 915–916 (2007).
[CrossRef]

Crespo, H. M.

Dudley, J. M.

B. Kibler, R. Fischer, R. A. Lacourt, E. Courvoisier, R. Ferriere, L. Larger, D. N. Neshev, and J. M. Dudley, “Optimized one-step compression of femtosecond fibre laser soliton pulses around 1550 nm to below 30 fs in highly nonlinear fibre,” Electron. Lett. 43(17), 915–916 (2007).
[CrossRef]

Ferrando, A.

Ferriere, R.

B. Kibler, R. Fischer, R. A. Lacourt, E. Courvoisier, R. Ferriere, L. Larger, D. N. Neshev, and J. M. Dudley, “Optimized one-step compression of femtosecond fibre laser soliton pulses around 1550 nm to below 30 fs in highly nonlinear fibre,” Electron. Lett. 43(17), 915–916 (2007).
[CrossRef]

Fischer, R.

B. Kibler, R. Fischer, R. A. Lacourt, E. Courvoisier, R. Ferriere, L. Larger, D. N. Neshev, and J. M. Dudley, “Optimized one-step compression of femtosecond fibre laser soliton pulses around 1550 nm to below 30 fs in highly nonlinear fibre,” Electron. Lett. 43(17), 915–916 (2007).
[CrossRef]

Foster, M. A.

Gaeta, A. L.

Gallagher, M. T.

Ghatak, A. K.

K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, “A novel design of a dispersion compensating fiber,” IEEE Photon. Technol. Lett. 8(11), 1510–1512 (1996).
[CrossRef]

Gordon, J. P.

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental-observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45(13), 1095–1098 (1980).
[CrossRef]

Goyal, I. C.

K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, “A novel design of a dispersion compensating fiber,” IEEE Photon. Technol. Lett. 8(11), 1510–1512 (1996).
[CrossRef]

Hensley, C. J.

Huang, W. P.

L. P. Shen, W. P. Huang, G. X. Chen, and S. S. Jian, “Design and optimization of photonic crystal fibers for broad-band dispersion compensation,” IEEE Photon. Technol. Lett. 15(4), 540–542 (2003).
[CrossRef]

Jian, S. S.

L. P. Shen, W. P. Huang, G. X. Chen, and S. S. Jian, “Design and optimization of photonic crystal fibers for broad-band dispersion compensation,” IEEE Photon. Technol. Lett. 15(4), 540–542 (2003).
[CrossRef]

Kärtner, F. X.

Kibler, B.

B. Kibler, R. Fischer, R. A. Lacourt, E. Courvoisier, R. Ferriere, L. Larger, D. N. Neshev, and J. M. Dudley, “Optimized one-step compression of femtosecond fibre laser soliton pulses around 1550 nm to below 30 fs in highly nonlinear fibre,” Electron. Lett. 43(17), 915–916 (2007).
[CrossRef]

Koch, K. W.

Lacourt, R. A.

B. Kibler, R. Fischer, R. A. Lacourt, E. Courvoisier, R. Ferriere, L. Larger, D. N. Neshev, and J. M. Dudley, “Optimized one-step compression of femtosecond fibre laser soliton pulses around 1550 nm to below 30 fs in highly nonlinear fibre,” Electron. Lett. 43(17), 915–916 (2007).
[CrossRef]

Larger, L.

B. Kibler, R. Fischer, R. A. Lacourt, E. Courvoisier, R. Ferriere, L. Larger, D. N. Neshev, and J. M. Dudley, “Optimized one-step compression of femtosecond fibre laser soliton pulses around 1550 nm to below 30 fs in highly nonlinear fibre,” Electron. Lett. 43(17), 915–916 (2007).
[CrossRef]

Lukin, F. V.

N. Akhmediev, N. V. Mitzkevich, and F. V. Lukin, “Extremely high degree of N-soliton pulse compression in an optical fiber,” IEEE J. Quantum Electron. 27(3), 849–857 (1991).
[CrossRef]

Miret, J. J.

Mitzkevich, N. V.

N. Akhmediev, N. V. Mitzkevich, and F. V. Lukin, “Extremely high degree of N-soliton pulse compression in an optical fiber,” IEEE J. Quantum Electron. 27(3), 849–857 (1991).
[CrossRef]

Mollenauer, L. F.

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental-observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45(13), 1095–1098 (1980).
[CrossRef]

Neshev, D. N.

B. Kibler, R. Fischer, R. A. Lacourt, E. Courvoisier, R. Ferriere, L. Larger, D. N. Neshev, and J. M. Dudley, “Optimized one-step compression of femtosecond fibre laser soliton pulses around 1550 nm to below 30 fs in highly nonlinear fibre,” Electron. Lett. 43(17), 915–916 (2007).
[CrossRef]

Oliveira, P.

Ouzounov, D. G.

Palai, P.

K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, “A novel design of a dispersion compensating fiber,” IEEE Photon. Technol. Lett. 8(11), 1510–1512 (1996).
[CrossRef]

Shen, L. P.

L. P. Shen, W. P. Huang, G. X. Chen, and S. S. Jian, “Design and optimization of photonic crystal fibers for broad-band dispersion compensation,” IEEE Photon. Technol. Lett. 15(4), 540–542 (2003).
[CrossRef]

Silva, J. L.

Silvestre, E.

Søndergaard, T.

Stolen, R. H.

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental-observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45(13), 1095–1098 (1980).
[CrossRef]

Thyagarajan, K.

K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, “A novel design of a dispersion compensating fiber,” IEEE Photon. Technol. Lett. 8(11), 1510–1512 (1996).
[CrossRef]

Tognetti, M. V.

Trebino, R.

Varshney, R. K.

K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, “A novel design of a dispersion compensating fiber,” IEEE Photon. Technol. Lett. 8(11), 1510–1512 (1996).
[CrossRef]

Venkateraman, N.

Electron. Lett. (1)

B. Kibler, R. Fischer, R. A. Lacourt, E. Courvoisier, R. Ferriere, L. Larger, D. N. Neshev, and J. M. Dudley, “Optimized one-step compression of femtosecond fibre laser soliton pulses around 1550 nm to below 30 fs in highly nonlinear fibre,” Electron. Lett. 43(17), 915–916 (2007).
[CrossRef]

IEEE J. Quantum Electron. (1)

N. Akhmediev, N. V. Mitzkevich, and F. V. Lukin, “Extremely high degree of N-soliton pulse compression in an optical fiber,” IEEE J. Quantum Electron. 27(3), 849–857 (1991).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

L. P. Shen, W. P. Huang, G. X. Chen, and S. S. Jian, “Design and optimization of photonic crystal fibers for broad-band dispersion compensation,” IEEE Photon. Technol. Lett. 15(4), 540–542 (2003).
[CrossRef]

K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, “A novel design of a dispersion compensating fiber,” IEEE Photon. Technol. Lett. 8(11), 1510–1512 (1996).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental-observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45(13), 1095–1098 (1980).
[CrossRef]

Other (2)

G. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

J. A. West, N. Venkataramam, C. M. Smith, and M. T. Gallagher, “Photonic crystal fibers,” in Proc. 27th Eur. Conf. on Opt. Comm. (2001), Vol. 4, pp. 582 –585.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Transverse section of a model highly dispersive PCF. The box with dimensions D x D corresponds to the supercell used to implement boundary conditions.

Fig. 2
Fig. 2

Dispersion parameter D for dispersion enhanced PCF with various microstructure parameters (refractive index of pure silica glass n = 1.444) #1: Λ = 3.5 μm, d0 = 1.72 μm, d1 = 1.45 μm, d2 = 1.08 μm, d3 = 0.86 μm, Δn1/n = 1.9%, Δn2/n = 1.3% #2: Λ = 3.5 μm, d0 = 1.74 μm, d1 = 2.00 μm, d2 = 0.70 μm, d3 = 0.87 μm, Δn1/n = 2.0%, Δn2/n = 1.7% #3: Λ = 3.5 μm, d0 = 1.74 μm, d1 = 1.80 μm, d2 = 0.87 μm, d3 = 0.87 μm, Δn1/n = 2.0%, Δn2/n = 1.7% #4: Λ = 3.5 μm, d0 = 1.72 μm, d1 = 1.45 μm, d2 = 1.08 μm, d3 = 0.86 μm, Δn1/n = 1.9%, Δn2/n = 1.2%.

Fig. 3
Fig. 3

The simulated and measured dispersion parameter D for the highly dispersive PCF.

Fig. 4
Fig. 4

Simulated temporal evolution of a 1000 W peak power 1.64 ps hyperbolic-secant pulse at (a) 1.9 m, (b) 1.7 m, (c) 1.5 m, and (d) 1.3 m. T0 is the initial pulse width 1.64 ps.

Fig. 5
Fig. 5

Simulated 3D waterfall plot of the evolution of the field during propagation.

Fig. 6
Fig. 6

Simulated input and output spectral intensity at optimum fiber length of 1.7m. v is the frequency, v0 is the center frequency and T0 is the initial pulse width.

Fig. 7
Fig. 7

Setup for PCF compressor demonstration.

Fig. 8
Fig. 8

Measured (a) optical spectrum and (b) time domain feature of the pulse laser.

Fig. 9
Fig. 9

The measured (a) initial pulse launched into PCF, (b) output pulse compressed by a factor of 4.6. FWHM is full width half maximum.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

D= 2πc λ 2 β 2
n(ω, | E | 2 )=n(ω)+ n 2 | E | 2
L D = T 0 2 | β 2 |
L NL = 1 γ P 0
A eff = [ | F(x,y) | 2 dxdy ] 2 | F(x,y) | 4 dxdy
N 2 = L D L NL
z opt L D = π 2 ( 0.32 N + 1.1 N 2 )
F c = T 0 T comp
Q c = P comp F c
D(λ) = λ c d 2 n eff (λ) d λ 2
A(t,z) z = i β 2 2 2 A(t,z) t 2 + β 3 6 3 A(t,z) t 3 α 2 A(t,z)+iγ[ | A(t,z) | 2 A(t,z)+ i ω 0 ( | A | 2 A) t ]

Metrics