Abstract

The emission and waveguiding properties of individual GaN microwires as well as devices based on an n-GaN microwire / p-Si (100) junction were studied for relevance in optoelectronics and optical circuits. Pulsed photoluminescence of the GaN microwire excited in the transverse or longitudinal direction demonstrated gain. These n-type GaN microwires were positioned mechanically or by dielectrophoretic force onto pre-patterned electrodes on a p-type Si (100) substrate. Electroluminescence from this p-n point junction was characteristic of a heterostructure light-emitting diode. Additionally, waveguiding was observed along the length of the microwire for light originating from photoluminescence as well as from electroluminescence generated at the p-n junction.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large?band?gap SiC, III?V nitride, and II?VI ZnSe?based semiconductor device technologies,” J. Appl. Phys. 76(3), 1363–1398 (1994).
  2. M. Fukuda, Optical Semiconductor Devices (WILEY, New York, 1999).
  3. Y. Huang, X. Duan, and C. M. Lieber, “Nanowires for integrated multicolor nanophotonics,” Small 1(1), 142–147 (2005).
  4. Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006).
  5. F. Qian, S. Grade?ak, Y. Li, C.-Y. Wen, and C. M. Lieber, “Core/Multishell Nanowire Heterostructures as Multicolor, High-Efficiency Light-Emitting Diodes,” Nano Lett. 5(11), 2287–2291 (2005).
  6. K. Tomioka and T. Fukui, “Tunnel field-effect transistor using InAs nanowire/Si heterojunction,” Appl. Phys. Lett. 98(8), 083114 (2011).
  7. C.-H. Chen, S.-J. Chang, S.-P. Chang, M.-J. Li, I.-C. Chen, T.-J. Hsueh, and C.-L. Hsu, “Novel fabrication of UV photodetector based on ZnO nanowire/p-GaN heterojunction,” Chem. Phys. Lett. 476(1–3), 69–72 (2009).
  8. C.-H. Chen, S.-J. Chang, S.-P. Chang, M.-J. Li, I.-C. Chen, T.-J. Hsueh, and C.-L. Hsu, “Electroluminescence from n-ZnO nanowires/p-GaN heterostructure light-emitting diodes,” Appl. Phys. Lett. 95(22), 223101 (2009).
  9. J. Ahn, M. A. Mastro, J. Hite, C. R. Eddy, and J. Kim, “Violet electroluminescence from p-GaN thin film/n-GaN nanowire homojunction,” Appl. Phys. Lett. 96(13), 132105 (2010).
  10. J. Ahn, M. A. Mastro, J. Hite, C. R. Eddy, and J. Kim, “Electroluminescence from ZnO nanoflowers/GaN thin film p-n heterojunction,” Appl. Phys. Lett. 97(8), 082111 (2010).
  11. K. Kim, T. Moon, J. Kim, and S. Kim, “Electrically driven lasing in light-emitting devices composed of n-ZnO and p-Si nanowires,” Nanotechnology 22(24), 245203 (2011).
  12. H. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nat. Photonics 2(10), 622–626 (2008).
  13. T. H. Kim, S. Y. Lee, N. K. Cho, H. K. Seong, H. J. Choi, S. W. Jung, and S. K. Lee, “Dielectrophoretic alignment of gallium nitride nanowires (GaN NWs) for use in device applications,” Nanotechnology 17(14), 3394–3399 (2006).
  14. X. Li, B. Zhang, X. Dong, Y. Zhang, X. Xia, W. Zhao, and G. Du, “Room temperature electroluminescence from ZnO/Si heterojunction devices grown by metal–organic chemical vapor deposition,” J. Lumin. 129(1), 86–89 (2009).
  15. J. Bao, M. A. Zimmler, F. Capasso, X. Wang, and Z. F. Ren, “Broadband ZnO single-nanowire light-emitting diode,” Nano Lett. 6(8), 1719–1722 (2006).
  16. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
  17. M. A. Zimmler, F. Capasso, S. Müller, and C. Ronnin, “Optically Pumped Nanowire Lasers: Invited Review,” Semicond. Sci. Technol. 25(2), 024001 (2010).
  18. S. J. Xu, G. Li, S. J. Chua, X. C. Wang, and W. Wang, “Observation of Optically, Active Metastable Defects in Undoped GaN epilayers,” Appl. Phys. Lett. 72(19), 2451–2453 (1998).
  19. Q. Li and G. T. Wang, “Spatial distribution of defect luminescence in GaN nanowires,” Nano Lett. 10(5), 1554–1558 (2010).
  20. S. M. Sze, Physics of Semiconductor Devices (WILEY, New York, 2007).
  21. H. Morkoç, Handbook of Nitride Semiconductors and devices (WILEY, Weinheim, 2008).

2011 (2)

K. Tomioka and T. Fukui, “Tunnel field-effect transistor using InAs nanowire/Si heterojunction,” Appl. Phys. Lett. 98(8), 083114 (2011).

K. Kim, T. Moon, J. Kim, and S. Kim, “Electrically driven lasing in light-emitting devices composed of n-ZnO and p-Si nanowires,” Nanotechnology 22(24), 245203 (2011).

2010 (4)

M. A. Zimmler, F. Capasso, S. Müller, and C. Ronnin, “Optically Pumped Nanowire Lasers: Invited Review,” Semicond. Sci. Technol. 25(2), 024001 (2010).

Q. Li and G. T. Wang, “Spatial distribution of defect luminescence in GaN nanowires,” Nano Lett. 10(5), 1554–1558 (2010).

J. Ahn, M. A. Mastro, J. Hite, C. R. Eddy, and J. Kim, “Violet electroluminescence from p-GaN thin film/n-GaN nanowire homojunction,” Appl. Phys. Lett. 96(13), 132105 (2010).

J. Ahn, M. A. Mastro, J. Hite, C. R. Eddy, and J. Kim, “Electroluminescence from ZnO nanoflowers/GaN thin film p-n heterojunction,” Appl. Phys. Lett. 97(8), 082111 (2010).

2009 (4)

C.-H. Chen, S.-J. Chang, S.-P. Chang, M.-J. Li, I.-C. Chen, T.-J. Hsueh, and C.-L. Hsu, “Novel fabrication of UV photodetector based on ZnO nanowire/p-GaN heterojunction,” Chem. Phys. Lett. 476(1–3), 69–72 (2009).

C.-H. Chen, S.-J. Chang, S.-P. Chang, M.-J. Li, I.-C. Chen, T.-J. Hsueh, and C.-L. Hsu, “Electroluminescence from n-ZnO nanowires/p-GaN heterostructure light-emitting diodes,” Appl. Phys. Lett. 95(22), 223101 (2009).

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).

X. Li, B. Zhang, X. Dong, Y. Zhang, X. Xia, W. Zhao, and G. Du, “Room temperature electroluminescence from ZnO/Si heterojunction devices grown by metal–organic chemical vapor deposition,” J. Lumin. 129(1), 86–89 (2009).

2008 (1)

H. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nat. Photonics 2(10), 622–626 (2008).

2006 (3)

T. H. Kim, S. Y. Lee, N. K. Cho, H. K. Seong, H. J. Choi, S. W. Jung, and S. K. Lee, “Dielectrophoretic alignment of gallium nitride nanowires (GaN NWs) for use in device applications,” Nanotechnology 17(14), 3394–3399 (2006).

J. Bao, M. A. Zimmler, F. Capasso, X. Wang, and Z. F. Ren, “Broadband ZnO single-nanowire light-emitting diode,” Nano Lett. 6(8), 1719–1722 (2006).

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006).

2005 (2)

F. Qian, S. Grade?ak, Y. Li, C.-Y. Wen, and C. M. Lieber, “Core/Multishell Nanowire Heterostructures as Multicolor, High-Efficiency Light-Emitting Diodes,” Nano Lett. 5(11), 2287–2291 (2005).

Y. Huang, X. Duan, and C. M. Lieber, “Nanowires for integrated multicolor nanophotonics,” Small 1(1), 142–147 (2005).

1998 (1)

S. J. Xu, G. Li, S. J. Chua, X. C. Wang, and W. Wang, “Observation of Optically, Active Metastable Defects in Undoped GaN epilayers,” Appl. Phys. Lett. 72(19), 2451–2453 (1998).

1994 (1)

H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large?band?gap SiC, III?V nitride, and II?VI ZnSe?based semiconductor device technologies,” J. Appl. Phys. 76(3), 1363–1398 (1994).

Ahn, J.

J. Ahn, M. A. Mastro, J. Hite, C. R. Eddy, and J. Kim, “Electroluminescence from ZnO nanoflowers/GaN thin film p-n heterojunction,” Appl. Phys. Lett. 97(8), 082111 (2010).

J. Ahn, M. A. Mastro, J. Hite, C. R. Eddy, and J. Kim, “Violet electroluminescence from p-GaN thin film/n-GaN nanowire homojunction,” Appl. Phys. Lett. 96(13), 132105 (2010).

Bao, J.

J. Bao, M. A. Zimmler, F. Capasso, X. Wang, and Z. F. Ren, “Broadband ZnO single-nanowire light-emitting diode,” Nano Lett. 6(8), 1719–1722 (2006).

Barrelet, C. J.

H. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nat. Photonics 2(10), 622–626 (2008).

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).

Burns, M.

H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large?band?gap SiC, III?V nitride, and II?VI ZnSe?based semiconductor device technologies,” J. Appl. Phys. 76(3), 1363–1398 (1994).

Capasso, F.

M. A. Zimmler, F. Capasso, S. Müller, and C. Ronnin, “Optically Pumped Nanowire Lasers: Invited Review,” Semicond. Sci. Technol. 25(2), 024001 (2010).

J. Bao, M. A. Zimmler, F. Capasso, X. Wang, and Z. F. Ren, “Broadband ZnO single-nanowire light-emitting diode,” Nano Lett. 6(8), 1719–1722 (2006).

Chang, S.-J.

C.-H. Chen, S.-J. Chang, S.-P. Chang, M.-J. Li, I.-C. Chen, T.-J. Hsueh, and C.-L. Hsu, “Novel fabrication of UV photodetector based on ZnO nanowire/p-GaN heterojunction,” Chem. Phys. Lett. 476(1–3), 69–72 (2009).

C.-H. Chen, S.-J. Chang, S.-P. Chang, M.-J. Li, I.-C. Chen, T.-J. Hsueh, and C.-L. Hsu, “Electroluminescence from n-ZnO nanowires/p-GaN heterostructure light-emitting diodes,” Appl. Phys. Lett. 95(22), 223101 (2009).

Chang, S.-P.

C.-H. Chen, S.-J. Chang, S.-P. Chang, M.-J. Li, I.-C. Chen, T.-J. Hsueh, and C.-L. Hsu, “Electroluminescence from n-ZnO nanowires/p-GaN heterostructure light-emitting diodes,” Appl. Phys. Lett. 95(22), 223101 (2009).

C.-H. Chen, S.-J. Chang, S.-P. Chang, M.-J. Li, I.-C. Chen, T.-J. Hsueh, and C.-L. Hsu, “Novel fabrication of UV photodetector based on ZnO nanowire/p-GaN heterojunction,” Chem. Phys. Lett. 476(1–3), 69–72 (2009).

Chen, C.-H.

C.-H. Chen, S.-J. Chang, S.-P. Chang, M.-J. Li, I.-C. Chen, T.-J. Hsueh, and C.-L. Hsu, “Novel fabrication of UV photodetector based on ZnO nanowire/p-GaN heterojunction,” Chem. Phys. Lett. 476(1–3), 69–72 (2009).

C.-H. Chen, S.-J. Chang, S.-P. Chang, M.-J. Li, I.-C. Chen, T.-J. Hsueh, and C.-L. Hsu, “Electroluminescence from n-ZnO nanowires/p-GaN heterostructure light-emitting diodes,” Appl. Phys. Lett. 95(22), 223101 (2009).

Chen, I.-C.

C.-H. Chen, S.-J. Chang, S.-P. Chang, M.-J. Li, I.-C. Chen, T.-J. Hsueh, and C.-L. Hsu, “Electroluminescence from n-ZnO nanowires/p-GaN heterostructure light-emitting diodes,” Appl. Phys. Lett. 95(22), 223101 (2009).

C.-H. Chen, S.-J. Chang, S.-P. Chang, M.-J. Li, I.-C. Chen, T.-J. Hsueh, and C.-L. Hsu, “Novel fabrication of UV photodetector based on ZnO nanowire/p-GaN heterojunction,” Chem. Phys. Lett. 476(1–3), 69–72 (2009).

Cho, N. K.

T. H. Kim, S. Y. Lee, N. K. Cho, H. K. Seong, H. J. Choi, S. W. Jung, and S. K. Lee, “Dielectrophoretic alignment of gallium nitride nanowires (GaN NWs) for use in device applications,” Nanotechnology 17(14), 3394–3399 (2006).

Choi, H. J.

T. H. Kim, S. Y. Lee, N. K. Cho, H. K. Seong, H. J. Choi, S. W. Jung, and S. K. Lee, “Dielectrophoretic alignment of gallium nitride nanowires (GaN NWs) for use in device applications,” Nanotechnology 17(14), 3394–3399 (2006).

Chua, S. J.

S. J. Xu, G. Li, S. J. Chua, X. C. Wang, and W. Wang, “Observation of Optically, Active Metastable Defects in Undoped GaN epilayers,” Appl. Phys. Lett. 72(19), 2451–2453 (1998).

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).

Dong, X.

X. Li, B. Zhang, X. Dong, Y. Zhang, X. Xia, W. Zhao, and G. Du, “Room temperature electroluminescence from ZnO/Si heterojunction devices grown by metal–organic chemical vapor deposition,” J. Lumin. 129(1), 86–89 (2009).

Du, G.

X. Li, B. Zhang, X. Dong, Y. Zhang, X. Xia, W. Zhao, and G. Du, “Room temperature electroluminescence from ZnO/Si heterojunction devices grown by metal–organic chemical vapor deposition,” J. Lumin. 129(1), 86–89 (2009).

Duan, X.

Y. Huang, X. Duan, and C. M. Lieber, “Nanowires for integrated multicolor nanophotonics,” Small 1(1), 142–147 (2005).

Eddy, C. R.

J. Ahn, M. A. Mastro, J. Hite, C. R. Eddy, and J. Kim, “Electroluminescence from ZnO nanoflowers/GaN thin film p-n heterojunction,” Appl. Phys. Lett. 97(8), 082111 (2010).

J. Ahn, M. A. Mastro, J. Hite, C. R. Eddy, and J. Kim, “Violet electroluminescence from p-GaN thin film/n-GaN nanowire homojunction,” Appl. Phys. Lett. 96(13), 132105 (2010).

Fukui, T.

K. Tomioka and T. Fukui, “Tunnel field-effect transistor using InAs nanowire/Si heterojunction,” Appl. Phys. Lett. 98(8), 083114 (2011).

Gao, G. B.

H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large?band?gap SiC, III?V nitride, and II?VI ZnSe?based semiconductor device technologies,” J. Appl. Phys. 76(3), 1363–1398 (1994).

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).

Gradecak, S.

F. Qian, S. Grade?ak, Y. Li, C.-Y. Wen, and C. M. Lieber, “Core/Multishell Nanowire Heterostructures as Multicolor, High-Efficiency Light-Emitting Diodes,” Nano Lett. 5(11), 2287–2291 (2005).

Hite, J.

J. Ahn, M. A. Mastro, J. Hite, C. R. Eddy, and J. Kim, “Electroluminescence from ZnO nanoflowers/GaN thin film p-n heterojunction,” Appl. Phys. Lett. 97(8), 082111 (2010).

J. Ahn, M. A. Mastro, J. Hite, C. R. Eddy, and J. Kim, “Violet electroluminescence from p-GaN thin film/n-GaN nanowire homojunction,” Appl. Phys. Lett. 96(13), 132105 (2010).

Hsu, C.-L.

C.-H. Chen, S.-J. Chang, S.-P. Chang, M.-J. Li, I.-C. Chen, T.-J. Hsueh, and C.-L. Hsu, “Novel fabrication of UV photodetector based on ZnO nanowire/p-GaN heterojunction,” Chem. Phys. Lett. 476(1–3), 69–72 (2009).

C.-H. Chen, S.-J. Chang, S.-P. Chang, M.-J. Li, I.-C. Chen, T.-J. Hsueh, and C.-L. Hsu, “Electroluminescence from n-ZnO nanowires/p-GaN heterostructure light-emitting diodes,” Appl. Phys. Lett. 95(22), 223101 (2009).

Hsueh, T.-J.

C.-H. Chen, S.-J. Chang, S.-P. Chang, M.-J. Li, I.-C. Chen, T.-J. Hsueh, and C.-L. Hsu, “Electroluminescence from n-ZnO nanowires/p-GaN heterostructure light-emitting diodes,” Appl. Phys. Lett. 95(22), 223101 (2009).

C.-H. Chen, S.-J. Chang, S.-P. Chang, M.-J. Li, I.-C. Chen, T.-J. Hsueh, and C.-L. Hsu, “Novel fabrication of UV photodetector based on ZnO nanowire/p-GaN heterojunction,” Chem. Phys. Lett. 476(1–3), 69–72 (2009).

Huang, Y.

Y. Huang, X. Duan, and C. M. Lieber, “Nanowires for integrated multicolor nanophotonics,” Small 1(1), 142–147 (2005).

Jung, S. W.

T. H. Kim, S. Y. Lee, N. K. Cho, H. K. Seong, H. J. Choi, S. W. Jung, and S. K. Lee, “Dielectrophoretic alignment of gallium nitride nanowires (GaN NWs) for use in device applications,” Nanotechnology 17(14), 3394–3399 (2006).

Kim, J.

K. Kim, T. Moon, J. Kim, and S. Kim, “Electrically driven lasing in light-emitting devices composed of n-ZnO and p-Si nanowires,” Nanotechnology 22(24), 245203 (2011).

J. Ahn, M. A. Mastro, J. Hite, C. R. Eddy, and J. Kim, “Violet electroluminescence from p-GaN thin film/n-GaN nanowire homojunction,” Appl. Phys. Lett. 96(13), 132105 (2010).

J. Ahn, M. A. Mastro, J. Hite, C. R. Eddy, and J. Kim, “Electroluminescence from ZnO nanoflowers/GaN thin film p-n heterojunction,” Appl. Phys. Lett. 97(8), 082111 (2010).

Kim, K.

K. Kim, T. Moon, J. Kim, and S. Kim, “Electrically driven lasing in light-emitting devices composed of n-ZnO and p-Si nanowires,” Nanotechnology 22(24), 245203 (2011).

Kim, S.

K. Kim, T. Moon, J. Kim, and S. Kim, “Electrically driven lasing in light-emitting devices composed of n-ZnO and p-Si nanowires,” Nanotechnology 22(24), 245203 (2011).

Kim, T. H.

T. H. Kim, S. Y. Lee, N. K. Cho, H. K. Seong, H. J. Choi, S. W. Jung, and S. K. Lee, “Dielectrophoretic alignment of gallium nitride nanowires (GaN NWs) for use in device applications,” Nanotechnology 17(14), 3394–3399 (2006).

Lee, S. K.

T. H. Kim, S. Y. Lee, N. K. Cho, H. K. Seong, H. J. Choi, S. W. Jung, and S. K. Lee, “Dielectrophoretic alignment of gallium nitride nanowires (GaN NWs) for use in device applications,” Nanotechnology 17(14), 3394–3399 (2006).

Lee, S. Y.

T. H. Kim, S. Y. Lee, N. K. Cho, H. K. Seong, H. J. Choi, S. W. Jung, and S. K. Lee, “Dielectrophoretic alignment of gallium nitride nanowires (GaN NWs) for use in device applications,” Nanotechnology 17(14), 3394–3399 (2006).

Li, G.

S. J. Xu, G. Li, S. J. Chua, X. C. Wang, and W. Wang, “Observation of Optically, Active Metastable Defects in Undoped GaN epilayers,” Appl. Phys. Lett. 72(19), 2451–2453 (1998).

Li, M.-J.

C.-H. Chen, S.-J. Chang, S.-P. Chang, M.-J. Li, I.-C. Chen, T.-J. Hsueh, and C.-L. Hsu, “Electroluminescence from n-ZnO nanowires/p-GaN heterostructure light-emitting diodes,” Appl. Phys. Lett. 95(22), 223101 (2009).

C.-H. Chen, S.-J. Chang, S.-P. Chang, M.-J. Li, I.-C. Chen, T.-J. Hsueh, and C.-L. Hsu, “Novel fabrication of UV photodetector based on ZnO nanowire/p-GaN heterojunction,” Chem. Phys. Lett. 476(1–3), 69–72 (2009).

Li, Q.

Q. Li and G. T. Wang, “Spatial distribution of defect luminescence in GaN nanowires,” Nano Lett. 10(5), 1554–1558 (2010).

Li, X.

X. Li, B. Zhang, X. Dong, Y. Zhang, X. Xia, W. Zhao, and G. Du, “Room temperature electroluminescence from ZnO/Si heterojunction devices grown by metal–organic chemical vapor deposition,” J. Lumin. 129(1), 86–89 (2009).

Li, Y.

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006).

F. Qian, S. Grade?ak, Y. Li, C.-Y. Wen, and C. M. Lieber, “Core/Multishell Nanowire Heterostructures as Multicolor, High-Efficiency Light-Emitting Diodes,” Nano Lett. 5(11), 2287–2291 (2005).

Lieber, C. M.

H. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nat. Photonics 2(10), 622–626 (2008).

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006).

Y. Huang, X. Duan, and C. M. Lieber, “Nanowires for integrated multicolor nanophotonics,” Small 1(1), 142–147 (2005).

F. Qian, S. Grade?ak, Y. Li, C.-Y. Wen, and C. M. Lieber, “Core/Multishell Nanowire Heterostructures as Multicolor, High-Efficiency Light-Emitting Diodes,” Nano Lett. 5(11), 2287–2291 (2005).

Lin, M. E.

H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large?band?gap SiC, III?V nitride, and II?VI ZnSe?based semiconductor device technologies,” J. Appl. Phys. 76(3), 1363–1398 (1994).

Ma, R.-M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).

Mastro, M. A.

J. Ahn, M. A. Mastro, J. Hite, C. R. Eddy, and J. Kim, “Electroluminescence from ZnO nanoflowers/GaN thin film p-n heterojunction,” Appl. Phys. Lett. 97(8), 082111 (2010).

J. Ahn, M. A. Mastro, J. Hite, C. R. Eddy, and J. Kim, “Violet electroluminescence from p-GaN thin film/n-GaN nanowire homojunction,” Appl. Phys. Lett. 96(13), 132105 (2010).

Moon, T.

K. Kim, T. Moon, J. Kim, and S. Kim, “Electrically driven lasing in light-emitting devices composed of n-ZnO and p-Si nanowires,” Nanotechnology 22(24), 245203 (2011).

Morkoç, H.

H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large?band?gap SiC, III?V nitride, and II?VI ZnSe?based semiconductor device technologies,” J. Appl. Phys. 76(3), 1363–1398 (1994).

Müller, S.

M. A. Zimmler, F. Capasso, S. Müller, and C. Ronnin, “Optically Pumped Nanowire Lasers: Invited Review,” Semicond. Sci. Technol. 25(2), 024001 (2010).

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).

Park, H.

H. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nat. Photonics 2(10), 622–626 (2008).

Qian, F.

H. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nat. Photonics 2(10), 622–626 (2008).

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006).

F. Qian, S. Grade?ak, Y. Li, C.-Y. Wen, and C. M. Lieber, “Core/Multishell Nanowire Heterostructures as Multicolor, High-Efficiency Light-Emitting Diodes,” Nano Lett. 5(11), 2287–2291 (2005).

Ren, Z. F.

J. Bao, M. A. Zimmler, F. Capasso, X. Wang, and Z. F. Ren, “Broadband ZnO single-nanowire light-emitting diode,” Nano Lett. 6(8), 1719–1722 (2006).

Ronnin, C.

M. A. Zimmler, F. Capasso, S. Müller, and C. Ronnin, “Optically Pumped Nanowire Lasers: Invited Review,” Semicond. Sci. Technol. 25(2), 024001 (2010).

Seong, H. K.

T. H. Kim, S. Y. Lee, N. K. Cho, H. K. Seong, H. J. Choi, S. W. Jung, and S. K. Lee, “Dielectrophoretic alignment of gallium nitride nanowires (GaN NWs) for use in device applications,” Nanotechnology 17(14), 3394–3399 (2006).

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).

Strite, S.

H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large?band?gap SiC, III?V nitride, and II?VI ZnSe?based semiconductor device technologies,” J. Appl. Phys. 76(3), 1363–1398 (1994).

Sverdlov, B.

H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large?band?gap SiC, III?V nitride, and II?VI ZnSe?based semiconductor device technologies,” J. Appl. Phys. 76(3), 1363–1398 (1994).

Tian, B.

H. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nat. Photonics 2(10), 622–626 (2008).

Tomioka, K.

K. Tomioka and T. Fukui, “Tunnel field-effect transistor using InAs nanowire/Si heterojunction,” Appl. Phys. Lett. 98(8), 083114 (2011).

Wang, G. T.

Q. Li and G. T. Wang, “Spatial distribution of defect luminescence in GaN nanowires,” Nano Lett. 10(5), 1554–1558 (2010).

Wang, W.

S. J. Xu, G. Li, S. J. Chua, X. C. Wang, and W. Wang, “Observation of Optically, Active Metastable Defects in Undoped GaN epilayers,” Appl. Phys. Lett. 72(19), 2451–2453 (1998).

Wang, X.

J. Bao, M. A. Zimmler, F. Capasso, X. Wang, and Z. F. Ren, “Broadband ZnO single-nanowire light-emitting diode,” Nano Lett. 6(8), 1719–1722 (2006).

Wang, X. C.

S. J. Xu, G. Li, S. J. Chua, X. C. Wang, and W. Wang, “Observation of Optically, Active Metastable Defects in Undoped GaN epilayers,” Appl. Phys. Lett. 72(19), 2451–2453 (1998).

Wen, C.-Y.

F. Qian, S. Grade?ak, Y. Li, C.-Y. Wen, and C. M. Lieber, “Core/Multishell Nanowire Heterostructures as Multicolor, High-Efficiency Light-Emitting Diodes,” Nano Lett. 5(11), 2287–2291 (2005).

Wu, Y.

H. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nat. Photonics 2(10), 622–626 (2008).

Xia, X.

X. Li, B. Zhang, X. Dong, Y. Zhang, X. Xia, W. Zhao, and G. Du, “Room temperature electroluminescence from ZnO/Si heterojunction devices grown by metal–organic chemical vapor deposition,” J. Lumin. 129(1), 86–89 (2009).

Xiang, J.

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006).

Xu, S. J.

S. J. Xu, G. Li, S. J. Chua, X. C. Wang, and W. Wang, “Observation of Optically, Active Metastable Defects in Undoped GaN epilayers,” Appl. Phys. Lett. 72(19), 2451–2453 (1998).

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).

Zhang, B.

X. Li, B. Zhang, X. Dong, Y. Zhang, X. Xia, W. Zhao, and G. Du, “Room temperature electroluminescence from ZnO/Si heterojunction devices grown by metal–organic chemical vapor deposition,” J. Lumin. 129(1), 86–89 (2009).

Zhang, X.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).

Zhang, Y.

X. Li, B. Zhang, X. Dong, Y. Zhang, X. Xia, W. Zhao, and G. Du, “Room temperature electroluminescence from ZnO/Si heterojunction devices grown by metal–organic chemical vapor deposition,” J. Lumin. 129(1), 86–89 (2009).

Zhao, W.

X. Li, B. Zhang, X. Dong, Y. Zhang, X. Xia, W. Zhao, and G. Du, “Room temperature electroluminescence from ZnO/Si heterojunction devices grown by metal–organic chemical vapor deposition,” J. Lumin. 129(1), 86–89 (2009).

Zimmler, M. A.

M. A. Zimmler, F. Capasso, S. Müller, and C. Ronnin, “Optically Pumped Nanowire Lasers: Invited Review,” Semicond. Sci. Technol. 25(2), 024001 (2010).

J. Bao, M. A. Zimmler, F. Capasso, X. Wang, and Z. F. Ren, “Broadband ZnO single-nanowire light-emitting diode,” Nano Lett. 6(8), 1719–1722 (2006).

Appl. Phys. Lett. (5)

C.-H. Chen, S.-J. Chang, S.-P. Chang, M.-J. Li, I.-C. Chen, T.-J. Hsueh, and C.-L. Hsu, “Electroluminescence from n-ZnO nanowires/p-GaN heterostructure light-emitting diodes,” Appl. Phys. Lett. 95(22), 223101 (2009).

J. Ahn, M. A. Mastro, J. Hite, C. R. Eddy, and J. Kim, “Violet electroluminescence from p-GaN thin film/n-GaN nanowire homojunction,” Appl. Phys. Lett. 96(13), 132105 (2010).

J. Ahn, M. A. Mastro, J. Hite, C. R. Eddy, and J. Kim, “Electroluminescence from ZnO nanoflowers/GaN thin film p-n heterojunction,” Appl. Phys. Lett. 97(8), 082111 (2010).

K. Tomioka and T. Fukui, “Tunnel field-effect transistor using InAs nanowire/Si heterojunction,” Appl. Phys. Lett. 98(8), 083114 (2011).

S. J. Xu, G. Li, S. J. Chua, X. C. Wang, and W. Wang, “Observation of Optically, Active Metastable Defects in Undoped GaN epilayers,” Appl. Phys. Lett. 72(19), 2451–2453 (1998).

Chem. Phys. Lett. (1)

C.-H. Chen, S.-J. Chang, S.-P. Chang, M.-J. Li, I.-C. Chen, T.-J. Hsueh, and C.-L. Hsu, “Novel fabrication of UV photodetector based on ZnO nanowire/p-GaN heterojunction,” Chem. Phys. Lett. 476(1–3), 69–72 (2009).

J. Appl. Phys. (1)

H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large?band?gap SiC, III?V nitride, and II?VI ZnSe?based semiconductor device technologies,” J. Appl. Phys. 76(3), 1363–1398 (1994).

J. Lumin. (1)

X. Li, B. Zhang, X. Dong, Y. Zhang, X. Xia, W. Zhao, and G. Du, “Room temperature electroluminescence from ZnO/Si heterojunction devices grown by metal–organic chemical vapor deposition,” J. Lumin. 129(1), 86–89 (2009).

Mater. Today (1)

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006).

Nano Lett. (3)

F. Qian, S. Grade?ak, Y. Li, C.-Y. Wen, and C. M. Lieber, “Core/Multishell Nanowire Heterostructures as Multicolor, High-Efficiency Light-Emitting Diodes,” Nano Lett. 5(11), 2287–2291 (2005).

J. Bao, M. A. Zimmler, F. Capasso, X. Wang, and Z. F. Ren, “Broadband ZnO single-nanowire light-emitting diode,” Nano Lett. 6(8), 1719–1722 (2006).

Q. Li and G. T. Wang, “Spatial distribution of defect luminescence in GaN nanowires,” Nano Lett. 10(5), 1554–1558 (2010).

Nanotechnology (2)

T. H. Kim, S. Y. Lee, N. K. Cho, H. K. Seong, H. J. Choi, S. W. Jung, and S. K. Lee, “Dielectrophoretic alignment of gallium nitride nanowires (GaN NWs) for use in device applications,” Nanotechnology 17(14), 3394–3399 (2006).

K. Kim, T. Moon, J. Kim, and S. Kim, “Electrically driven lasing in light-emitting devices composed of n-ZnO and p-Si nanowires,” Nanotechnology 22(24), 245203 (2011).

Nat. Photonics (1)

H. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nat. Photonics 2(10), 622–626 (2008).

Nature (1)

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).

Semicond. Sci. Technol. (1)

M. A. Zimmler, F. Capasso, S. Müller, and C. Ronnin, “Optically Pumped Nanowire Lasers: Invited Review,” Semicond. Sci. Technol. 25(2), 024001 (2010).

Small (1)

Y. Huang, X. Duan, and C. M. Lieber, “Nanowires for integrated multicolor nanophotonics,” Small 1(1), 142–147 (2005).

Other (3)

M. Fukuda, Optical Semiconductor Devices (WILEY, New York, 1999).

S. M. Sze, Physics of Semiconductor Devices (WILEY, New York, 2007).

H. Morkoç, Handbook of Nitride Semiconductors and devices (WILEY, Weinheim, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic image and (b) optical microscopy image of the n-GaN microwire / p-Si thin film heterojunction LED. (c) An SEM image that shows the undercut formed by wet etching.

Fig. 2
Fig. 2

Photoluminescence spectra of a GaN microwire in the (a) transverse and (b) longitudinal orientations. The super-linear increase in emission is evident when the peak intensity is plotted as a function of input power density in the (c) transverse and (d) longitudinal orientation in a (c) log and (d) linear intensity scale.

Fig. 3
Fig. 3

PL spectrum of GaN microwire displays strong near bandedge emission. Inset: Optical image of the n-GaN microwire on a p-Si substrate with the metal electrode visible as a circle. Optical stimulation with a 325nm wavelength CW laser source produced photoluminescence at a point near the contact edge (black arrow in the inset). Light generated at the PL point traveled the length of the wire without apparent scattering and escaped into free space at the microwire tip.

Fig. 4
Fig. 4

Optical microscopy images of the LED devices biased under increasing forward bias. The primary light source at the right tip of the microwire coincides with the location of the n-GaN microwire / p-Si junction. Waveguiding produced light emission at the opposite (left) tip of the microwire.

Fig. 5
Fig. 5

(a) I-V characteistic of the n-GaN microwire / p-Si thin film heterojunction LED. (b) Band diagram of the n-GaN microwire / p-Si substrate heterojunction LED (c) Band diagram under a forward bias. Major forward conduction began at approximately 5V.

Metrics