Abstract

Optical coherence tomography (OCT) images are frequently interpreted in terms of layers (for example, of tissue) with the boundary defined by a change in refractive index. Real boundaries are rough compared with the wavelength of light, and in this paper we show that this roughness has to be taken into account in interpreting the images. We give an example of the same OCT image obtained from two quite different objects, one smooth compared to the optical wavelength, and the other rough.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Tomlins and R. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys. 38(15), 2519–2535 (2005).
    [CrossRef]
  2. M. Brezinski, Optical Coherence Tomography: Principles and Applications (Academic, 2007).
  3. W. Drexler and J. Fujimoto, Optical Coherence Tomography: Technologies and Applications (Springer, 2008).
  4. Optical Coherence Tomography and Coherence Domain Optical Methods, J. Fujimoto, J. Izatt, and V. Tuchin, eds., Proc SPIE 7889 (2011).
  5. J. P. Rolland, J. O’Daniel, C. Akcay, T. DeLemos, K. S. Lee, K. I. Cheong, E. Clarkson, R. Chakrabarti, and R. Ferris, “Task-based optimization and performance assessment in optical coherence imaging,” J. Opt. Soc. Am. A 22(6), 1132–1142 (2005).
    [CrossRef] [PubMed]
  6. Imaging the Eye from Front to Back with RTVue Fourier-Domain OCT, D. Huang, ed. (Slack Press, 2010).
  7. G. Yao and L. V. Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44(9), 2307–2320 (1999).
    [CrossRef] [PubMed]
  8. M. Kirillin, I. Meglinski, V. Kuzmin, E. Sergeeva, and R. Myllylä, “Simulation of optical coherence tomography images by Monte Carlo modeling based on polarization vector approach,” Opt. Express 18(21), 21714–21724 (2010).
    [CrossRef] [PubMed]
  9. F. G. Bass and I. M. Fuks, Wave Scattering from Statistically Rough Surfaces (Pergamon, 1979).
  10. P. Imperatore, A. Iodice, and D. Riccio, “Electromagnetic wave scattering from layered structures with an arbitrary number of rough interfaces,” IEEE Trans. Geosci. Rem. Sens. 47(4), 1056–1072 (2009).
    [CrossRef]
  11. T. Leskova, A. A. Maradudin, and I. V. Novikov, “Scattering of light from the random interface between two dielectric media with low contrast,” J. Opt. Soc. Am. A 17(7), 1288 (2000).
    [CrossRef]

2010

2009

P. Imperatore, A. Iodice, and D. Riccio, “Electromagnetic wave scattering from layered structures with an arbitrary number of rough interfaces,” IEEE Trans. Geosci. Rem. Sens. 47(4), 1056–1072 (2009).
[CrossRef]

2005

2000

1999

G. Yao and L. V. Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44(9), 2307–2320 (1999).
[CrossRef] [PubMed]

Akcay, C.

Chakrabarti, R.

Cheong, K. I.

Clarkson, E.

DeLemos, T.

Ferris, R.

Imperatore, P.

P. Imperatore, A. Iodice, and D. Riccio, “Electromagnetic wave scattering from layered structures with an arbitrary number of rough interfaces,” IEEE Trans. Geosci. Rem. Sens. 47(4), 1056–1072 (2009).
[CrossRef]

Iodice, A.

P. Imperatore, A. Iodice, and D. Riccio, “Electromagnetic wave scattering from layered structures with an arbitrary number of rough interfaces,” IEEE Trans. Geosci. Rem. Sens. 47(4), 1056–1072 (2009).
[CrossRef]

Kirillin, M.

Kuzmin, V.

Lee, K. S.

Leskova, T.

Maradudin, A. A.

Meglinski, I.

Myllylä, R.

Novikov, I. V.

O’Daniel, J.

Riccio, D.

P. Imperatore, A. Iodice, and D. Riccio, “Electromagnetic wave scattering from layered structures with an arbitrary number of rough interfaces,” IEEE Trans. Geosci. Rem. Sens. 47(4), 1056–1072 (2009).
[CrossRef]

Rolland, J. P.

Sergeeva, E.

Tomlins, P.

P. Tomlins and R. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys. 38(15), 2519–2535 (2005).
[CrossRef]

Wang, L. V.

G. Yao and L. V. Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44(9), 2307–2320 (1999).
[CrossRef] [PubMed]

Wang, R.

P. Tomlins and R. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys. 38(15), 2519–2535 (2005).
[CrossRef]

Yao, G.

G. Yao and L. V. Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44(9), 2307–2320 (1999).
[CrossRef] [PubMed]

IEEE Trans. Geosci. Rem. Sens.

P. Imperatore, A. Iodice, and D. Riccio, “Electromagnetic wave scattering from layered structures with an arbitrary number of rough interfaces,” IEEE Trans. Geosci. Rem. Sens. 47(4), 1056–1072 (2009).
[CrossRef]

J. Opt. Soc. Am. A

J. Phys. D Appl. Phys.

P. Tomlins and R. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys. 38(15), 2519–2535 (2005).
[CrossRef]

Opt. Express

Phys. Med. Biol.

G. Yao and L. V. Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44(9), 2307–2320 (1999).
[CrossRef] [PubMed]

Other

F. G. Bass and I. M. Fuks, Wave Scattering from Statistically Rough Surfaces (Pergamon, 1979).

M. Brezinski, Optical Coherence Tomography: Principles and Applications (Academic, 2007).

W. Drexler and J. Fujimoto, Optical Coherence Tomography: Technologies and Applications (Springer, 2008).

Optical Coherence Tomography and Coherence Domain Optical Methods, J. Fujimoto, J. Izatt, and V. Tuchin, eds., Proc SPIE 7889 (2011).

Imaging the Eye from Front to Back with RTVue Fourier-Domain OCT, D. Huang, ed. (Slack Press, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Roughness-induced relative error in the refractive index retrieved from the reflection coefficient of the dielectric half-space with n=1.02

Fig. 2
Fig. 2

Physical sample studied.

Fig. 3
Fig. 3

OCT interferogram for the system shown in Fig. 2 with the parameters ε1 = ε3 = 1.3, ε2 = ε4 = 1.31; z1 = z2 = z3 = 15μm; ω1 = 2.28×1015Hz, ω2 = 2.43×1015Hz.

Fig. 4
Fig. 4

OCT interferogram for the system with the parameters presented in Fig. 3 and rough interfaces z1, z2, z3 with the rms: (a) σ1 = σ2 = σ3 = 0.1λ; (b) σ1 = σ2 = σ3 = 0.12λ respectively.

Fig. 5
Fig. 5

Two interferograms (indistinguishable in Figure) from two different layered objects, one with smooth surfaces and the other with optically rough surfaces (see text for parameters of samples).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E in (z,t;ω)=s(ω) e i(kzωt) ,
I(Δx)= { 1 4 | s(ω) | 2 [ | H(ω) | 2 +1 ]+ 1 2 { | s(ω) | 2 H(ω) e iΦ( Δx ) } }dω,
Φ(Δx)=2 ω c Δx,
H(ω)= 0 L r(ω,z)exp( i2n(ω,z)kz )dz ,
H( ω )= j=1 N r j ( ω, z j ) exp( i 2ω c Z j ); Z j = m=1 j n m z m ; n m = ε m .
S(ω)={ 1 for ω 1 ω ω 2 0 forω ω 1 ;ω ω 2 ,
I N (Δx)= C N + F N (Δx),
F N ( Δx )= j=1 N r j 2cos 2Ω c ( Z j +Δx )sin 2ω c ( Z j +Δx ) Z j +Δx ; Ω= ω 1 + ω 2 ;ω= ω 1 ω 2 .
σ 2 = ζ 2 ( x ) , ζ( x )ζ( x' ) =σW( | xx' | ) , ζ( x ) =0
r 1 = η 4 ε 1 e 2 ε 1 σ 2 k 2 ,

Metrics