Abstract

An ultralow coupling loss and broad bandwidth fiber-to-waveguide mode-size converter is demonstrated for nano-scale waveguides on SOI platform using CMOS technology in this paper. The mode-size converter consists of a cantilevered PECVD SiO2 waveguide and a-Si nano-tapers by removing the adjacent SiO2 layer and underlying substrate Si. The a-Si waveguide is located at the center of the cantilevered SiO2 waveguide. We characterized the cantilevered mode-size converter using cleaved optical single mode fiber with 10.5 µm mode field diameter. With refractive index (1.375) matching oil, the measured coupling efficiencies between the cleaved optical fiber and this converter are higher than 80% per facet and 70% per facet for TE and TM modes at 1600 nm, respectively. The polarization dependent loss and the coupling loss variation of this converter are less than 1.0 dB at the wavelength range of 1520 ~1640 nm. The 1-dB bandwidths for both TE and TM modes are more than 120 nm. The alignment tolerances for TE and TM modes are ± 2.8 µm and ± 2.1 µm at 1-dB excess loss in horizontal direction and vertical direction, respectively.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and G. R. Baets, “Compact wavelength-selective functions in Silicon-on-Insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
    [CrossRef]
  2. Q. Fang, J. F. Song, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low loss (~6.45dB/cm) sub-micron polycrystalline silicon waveguide integrated with efficient SiON waveguide coupler,” Opt. Express 16(9), 6425–6432 (2008).
    [CrossRef] [PubMed]
  3. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Kakahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
    [CrossRef]
  4. P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18(19), 20298–20304 (2010).
    [CrossRef] [PubMed]
  5. Q. Fang, J. F. Song, T. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett. 23(8), 525–527 (2011).
    [CrossRef]
  6. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
    [CrossRef] [PubMed]
  7. T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).
    [CrossRef]
  8. Q. Fang, T. Y. Liow, J. F. Song, K. W. Ang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “WDM multi-channel silicon photonic receiver with 320 Gbps data transmission capability,” Opt. Express 18(5), 5106–5113 (2010).
    [CrossRef] [PubMed]
  9. Q. Fang, Y. T. Phang, C. W. Tan, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Multi-channel silicon photonic receiver based on ring-resonators,” Opt. Express 18(13), 13510–13515 (2010).
    [CrossRef] [PubMed]
  10. B. Analui, D. Guckenberger, D. Kucharski, and A. Narasimha, “A fully integrated 20-Gb/s optoelectronic transceiver implemented in a standard 0.13-µm CMOS SOI technology,” IEEE J. Solid-State Circuits 41(12), 2945–2955 (2006).
    [CrossRef]
  11. T. Wahlbrink, W. S. Tsai, M. Waldow, M. Forst, J. Bolten, T. Mollenhauer, and H. Kurz, “Fabrication of high efficiency SOI taper structures,” Microelectron. Eng. 86(4-6), 1117–1119 (2009).
    [CrossRef]
  12. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 ?m square Si wire waveguides to single mode fibers,” Electron. Lett. 38(25), 1669–1670 (2002).
    [CrossRef]
  13. K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, “A silicon-based spot-size converter between single-mode fibers and Si-wire waveguides using cascaded tapers,” Appl. Phys. Lett. 91(14), 141120 (2007).
    [CrossRef]
  14. D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004).
    [CrossRef] [PubMed]
  15. L. Vivien, D. Pascal, S. Lardenois, D. Marris-Morini, E. Cassan, F. Grillot, S. Laval, J. Fédéli, and L. El Melhaoui, “Light injection in SOI microwaveguides using high-efficiency grating couplers,” J. Lightwave Technol. 24(10), 3810–3815 (2006).
    [CrossRef]
  16. D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,” Opt. Express 18(17), 18278–18283 (2010).
    [CrossRef] [PubMed]
  17. Q. Fang, T. Y. Liow, J. F. Song, C. W. Tan, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Suspended optical fiber-to-waveguide mode size converter for silicon photonics,” Opt. Express 18(8), 7763–7769 (2010).
    [CrossRef] [PubMed]
  18. L. Chen, C. R. Doerr, Y.-K. Chen, and T.-Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si2N4 or Si waveguides,” IEEE Photon. Technol. Lett. 22(23), 1744–1746 (2010).
    [CrossRef]
  19. R. Germann, H. W. M. Salemink, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, “Silicon oxynitride layer for optical waveguide applications,” J. Electrochem. Soc. 147(6), 2237–2241 (2000).
    [CrossRef]

2011 (1)

Q. Fang, J. F. Song, T. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett. 23(8), 525–527 (2011).
[CrossRef]

2010 (7)

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,” Opt. Express 18(17), 18278–18283 (2010).
[CrossRef] [PubMed]

Q. Fang, T. Y. Liow, J. F. Song, C. W. Tan, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Suspended optical fiber-to-waveguide mode size converter for silicon photonics,” Opt. Express 18(8), 7763–7769 (2010).
[CrossRef] [PubMed]

L. Chen, C. R. Doerr, Y.-K. Chen, and T.-Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si2N4 or Si waveguides,” IEEE Photon. Technol. Lett. 22(23), 1744–1746 (2010).
[CrossRef]

P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18(19), 20298–20304 (2010).
[CrossRef] [PubMed]

T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).
[CrossRef]

Q. Fang, T. Y. Liow, J. F. Song, K. W. Ang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “WDM multi-channel silicon photonic receiver with 320 Gbps data transmission capability,” Opt. Express 18(5), 5106–5113 (2010).
[CrossRef] [PubMed]

Q. Fang, Y. T. Phang, C. W. Tan, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Multi-channel silicon photonic receiver based on ring-resonators,” Opt. Express 18(13), 13510–13515 (2010).
[CrossRef] [PubMed]

2009 (1)

T. Wahlbrink, W. S. Tsai, M. Waldow, M. Forst, J. Bolten, T. Mollenhauer, and H. Kurz, “Fabrication of high efficiency SOI taper structures,” Microelectron. Eng. 86(4-6), 1117–1119 (2009).
[CrossRef]

2008 (1)

2007 (1)

K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, “A silicon-based spot-size converter between single-mode fibers and Si-wire waveguides using cascaded tapers,” Appl. Phys. Lett. 91(14), 141120 (2007).
[CrossRef]

2006 (3)

L. Vivien, D. Pascal, S. Lardenois, D. Marris-Morini, E. Cassan, F. Grillot, S. Laval, J. Fédéli, and L. El Melhaoui, “Light injection in SOI microwaveguides using high-efficiency grating couplers,” J. Lightwave Technol. 24(10), 3810–3815 (2006).
[CrossRef]

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and G. R. Baets, “Compact wavelength-selective functions in Silicon-on-Insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

B. Analui, D. Guckenberger, D. Kucharski, and A. Narasimha, “A fully integrated 20-Gb/s optoelectronic transceiver implemented in a standard 0.13-µm CMOS SOI technology,” IEEE J. Solid-State Circuits 41(12), 2945–2955 (2006).
[CrossRef]

2005 (1)

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Kakahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

2004 (2)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004).
[CrossRef] [PubMed]

2002 (1)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 ?m square Si wire waveguides to single mode fibers,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

2000 (1)

R. Germann, H. W. M. Salemink, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, “Silicon oxynitride layer for optical waveguide applications,” J. Electrochem. Soc. 147(6), 2237–2241 (2000).
[CrossRef]

Absil, P.

Analui, B.

B. Analui, D. Guckenberger, D. Kucharski, and A. Narasimha, “A fully integrated 20-Gb/s optoelectronic transceiver implemented in a standard 0.13-µm CMOS SOI technology,” IEEE J. Solid-State Circuits 41(12), 2945–2955 (2006).
[CrossRef]

Ang, K. W.

Q. Fang, T. Y. Liow, J. F. Song, K. W. Ang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “WDM multi-channel silicon photonic receiver with 320 Gbps data transmission capability,” Opt. Express 18(5), 5106–5113 (2010).
[CrossRef] [PubMed]

T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).
[CrossRef]

Asghari, M.

Baets, G. R.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and G. R. Baets, “Compact wavelength-selective functions in Silicon-on-Insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

Baets, R.

Beckx, S.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and G. R. Baets, “Compact wavelength-selective functions in Silicon-on-Insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

Beyeler, R.

R. Germann, H. W. M. Salemink, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, “Silicon oxynitride layer for optical waveguide applications,” J. Electrochem. Soc. 147(6), 2237–2241 (2000).
[CrossRef]

Bienstman, P.

Bogaerts, W.

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,” Opt. Express 18(17), 18278–18283 (2010).
[CrossRef] [PubMed]

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and G. R. Baets, “Compact wavelength-selective functions in Silicon-on-Insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

Bolten, J.

T. Wahlbrink, W. S. Tsai, M. Waldow, M. Forst, J. Bolten, T. Mollenhauer, and H. Kurz, “Fabrication of high efficiency SOI taper structures,” Microelectron. Eng. 86(4-6), 1117–1119 (2009).
[CrossRef]

Bona, G. L.

R. Germann, H. W. M. Salemink, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, “Silicon oxynitride layer for optical waveguide applications,” J. Electrochem. Soc. 147(6), 2237–2241 (2000).
[CrossRef]

Cai, H.

Q. Fang, J. F. Song, T. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett. 23(8), 525–527 (2011).
[CrossRef]

Cassan, E.

Chen, L.

L. Chen, C. R. Doerr, Y.-K. Chen, and T.-Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si2N4 or Si waveguides,” IEEE Photon. Technol. Lett. 22(23), 1744–1746 (2010).
[CrossRef]

Chen, Y.-K.

L. Chen, C. R. Doerr, Y.-K. Chen, and T.-Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si2N4 or Si waveguides,” IEEE Photon. Technol. Lett. 22(23), 1744–1746 (2010).
[CrossRef]

Cohen, O.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Cunningham, J. E.

Doerr, C. R.

L. Chen, C. R. Doerr, Y.-K. Chen, and T.-Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si2N4 or Si waveguides,” IEEE Photon. Technol. Lett. 22(23), 1744–1746 (2010).
[CrossRef]

Dong, P.

Dumon, P.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and G. R. Baets, “Compact wavelength-selective functions in Silicon-on-Insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

El Melhaoui, L.

Fang, Q.

Fédéli, J.

Feng, D.

Forst, M.

T. Wahlbrink, W. S. Tsai, M. Waldow, M. Forst, J. Bolten, T. Mollenhauer, and H. Kurz, “Fabrication of high efficiency SOI taper structures,” Microelectron. Eng. 86(4-6), 1117–1119 (2009).
[CrossRef]

Fukuda, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Kakahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

Germann, R.

R. Germann, H. W. M. Salemink, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, “Silicon oxynitride layer for optical waveguide applications,” J. Electrochem. Soc. 147(6), 2237–2241 (2000).
[CrossRef]

Grillot, F.

Guckenberger, D.

B. Analui, D. Guckenberger, D. Kucharski, and A. Narasimha, “A fully integrated 20-Gb/s optoelectronic transceiver implemented in a standard 0.13-µm CMOS SOI technology,” IEEE J. Solid-State Circuits 41(12), 2945–2955 (2006).
[CrossRef]

Horst, F.

R. Germann, H. W. M. Salemink, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, “Silicon oxynitride layer for optical waveguide applications,” J. Electrochem. Soc. 147(6), 2237–2241 (2000).
[CrossRef]

Ikedo, H.

K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, “A silicon-based spot-size converter between single-mode fibers and Si-wire waveguides using cascaded tapers,” Appl. Phys. Lett. 91(14), 141120 (2007).
[CrossRef]

Itabashi, S.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Kakahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

Jaenen, P.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and G. R. Baets, “Compact wavelength-selective functions in Silicon-on-Insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

Jones, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Kakahashi, J.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Kakahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

Krishnamoorthy, A. V.

Kucharski, D.

B. Analui, D. Guckenberger, D. Kucharski, and A. Narasimha, “A fully integrated 20-Gb/s optoelectronic transceiver implemented in a standard 0.13-µm CMOS SOI technology,” IEEE J. Solid-State Circuits 41(12), 2945–2955 (2006).
[CrossRef]

Kurz, H.

T. Wahlbrink, W. S. Tsai, M. Waldow, M. Forst, J. Bolten, T. Mollenhauer, and H. Kurz, “Fabrication of high efficiency SOI taper structures,” Microelectron. Eng. 86(4-6), 1117–1119 (2009).
[CrossRef]

Kwong, D. L.

Lardenois, S.

Laval, S.

Lepage, G.

Li, G.

Liang, H.

Liao, L.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Liow, T.

Q. Fang, J. F. Song, T. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett. 23(8), 525–527 (2011).
[CrossRef]

Liow, T. Y.

Liow, T.-Y.

L. Chen, C. R. Doerr, Y.-K. Chen, and T.-Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si2N4 or Si waveguides,” IEEE Photon. Technol. Lett. 22(23), 1744–1746 (2010).
[CrossRef]

Liu, A.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Lo, G. Q.

Marris-Morini, D.

Massarek, I.

R. Germann, H. W. M. Salemink, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, “Silicon oxynitride layer for optical waveguide applications,” J. Electrochem. Soc. 147(6), 2237–2241 (2000).
[CrossRef]

Mollenhauer, T.

T. Wahlbrink, W. S. Tsai, M. Waldow, M. Forst, J. Bolten, T. Mollenhauer, and H. Kurz, “Fabrication of high efficiency SOI taper structures,” Microelectron. Eng. 86(4-6), 1117–1119 (2009).
[CrossRef]

Morita, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Kakahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 ?m square Si wire waveguides to single mode fibers,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

Narasimha, A.

B. Analui, D. Guckenberger, D. Kucharski, and A. Narasimha, “A fully integrated 20-Gb/s optoelectronic transceiver implemented in a standard 0.13-µm CMOS SOI technology,” IEEE J. Solid-State Circuits 41(12), 2945–2955 (2006).
[CrossRef]

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Offrein, B. J.

R. Germann, H. W. M. Salemink, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, “Silicon oxynitride layer for optical waveguide applications,” J. Electrochem. Soc. 147(6), 2237–2241 (2000).
[CrossRef]

Ohshima, A.

K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, “A silicon-based spot-size converter between single-mode fibers and Si-wire waveguides using cascaded tapers,” Appl. Phys. Lett. 91(14), 141120 (2007).
[CrossRef]

Paniccia, M.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Pascal, D.

Phang, Y. T.

Qian, W.

Roelkens, G.

Rubin, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Salemink, H. W. M.

R. Germann, H. W. M. Salemink, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, “Silicon oxynitride layer for optical waveguide applications,” J. Electrochem. Soc. 147(6), 2237–2241 (2000).
[CrossRef]

Samara-Rubio, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Selvaraja, S.

Shafiiha, R.

Shiraishi, K.

K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, “A silicon-based spot-size converter between single-mode fibers and Si-wire waveguides using cascaded tapers,” Appl. Phys. Lett. 91(14), 141120 (2007).
[CrossRef]

Shoji, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Kakahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 ?m square Si wire waveguides to single mode fibers,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

Song, J. F.

Q. Fang, J. F. Song, T. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett. 23(8), 525–527 (2011).
[CrossRef]

T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).
[CrossRef]

Q. Fang, T. Y. Liow, J. F. Song, K. W. Ang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “WDM multi-channel silicon photonic receiver with 320 Gbps data transmission capability,” Opt. Express 18(5), 5106–5113 (2010).
[CrossRef] [PubMed]

Q. Fang, T. Y. Liow, J. F. Song, C. W. Tan, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Suspended optical fiber-to-waveguide mode size converter for silicon photonics,” Opt. Express 18(8), 7763–7769 (2010).
[CrossRef] [PubMed]

Q. Fang, J. F. Song, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low loss (~6.45dB/cm) sub-micron polycrystalline silicon waveguide integrated with efficient SiON waveguide coupler,” Opt. Express 16(9), 6425–6432 (2008).
[CrossRef] [PubMed]

Taillaert, D.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and G. R. Baets, “Compact wavelength-selective functions in Silicon-on-Insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004).
[CrossRef] [PubMed]

Takahashi, M.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Kakahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

Tamechika, E.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Kakahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

Tan, C. W.

Tao, S. H.

Thourhout, D. V.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and G. R. Baets, “Compact wavelength-selective functions in Silicon-on-Insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

Tsai, C. S.

K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, “A silicon-based spot-size converter between single-mode fibers and Si-wire waveguides using cascaded tapers,” Appl. Phys. Lett. 91(14), 141120 (2007).
[CrossRef]

Tsai, W. S.

T. Wahlbrink, W. S. Tsai, M. Waldow, M. Forst, J. Bolten, T. Mollenhauer, and H. Kurz, “Fabrication of high efficiency SOI taper structures,” Microelectron. Eng. 86(4-6), 1117–1119 (2009).
[CrossRef]

Tsuchizawa, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Kakahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 ?m square Si wire waveguides to single mode fibers,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

Van Thourhout, D.

Verheyen, P.

Vermeulen, D.

Vivien, L.

Wahlbrink, T.

T. Wahlbrink, W. S. Tsai, M. Waldow, M. Forst, J. Bolten, T. Mollenhauer, and H. Kurz, “Fabrication of high efficiency SOI taper structures,” Microelectron. Eng. 86(4-6), 1117–1119 (2009).
[CrossRef]

Waldow, M.

T. Wahlbrink, W. S. Tsai, M. Waldow, M. Forst, J. Bolten, T. Mollenhauer, and H. Kurz, “Fabrication of high efficiency SOI taper structures,” Microelectron. Eng. 86(4-6), 1117–1119 (2009).
[CrossRef]

Watanabe, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Kakahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 ?m square Si wire waveguides to single mode fibers,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

Wiaux, V.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and G. R. Baets, “Compact wavelength-selective functions in Silicon-on-Insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

Wouters, J.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and G. R. Baets, “Compact wavelength-selective functions in Silicon-on-Insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

Xiong, Y. Z.

T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).
[CrossRef]

Yamada, K.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Kakahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 ?m square Si wire waveguides to single mode fibers,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

Yoda, H.

K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, “A silicon-based spot-size converter between single-mode fibers and Si-wire waveguides using cascaded tapers,” Appl. Phys. Lett. 91(14), 141120 (2007).
[CrossRef]

Yu, M. B.

Appl. Phys. Lett. (1)

K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, “A silicon-based spot-size converter between single-mode fibers and Si-wire waveguides using cascaded tapers,” Appl. Phys. Lett. 91(14), 141120 (2007).
[CrossRef]

Electron. Lett. (1)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 ?m square Si wire waveguides to single mode fibers,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and G. R. Baets, “Compact wavelength-selective functions in Silicon-on-Insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Kakahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).
[CrossRef]

IEEE J. Solid-State Circuits (1)

B. Analui, D. Guckenberger, D. Kucharski, and A. Narasimha, “A fully integrated 20-Gb/s optoelectronic transceiver implemented in a standard 0.13-µm CMOS SOI technology,” IEEE J. Solid-State Circuits 41(12), 2945–2955 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

L. Chen, C. R. Doerr, Y.-K. Chen, and T.-Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si2N4 or Si waveguides,” IEEE Photon. Technol. Lett. 22(23), 1744–1746 (2010).
[CrossRef]

Q. Fang, J. F. Song, T. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett. 23(8), 525–527 (2011).
[CrossRef]

J. Electrochem. Soc. (1)

R. Germann, H. W. M. Salemink, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, “Silicon oxynitride layer for optical waveguide applications,” J. Electrochem. Soc. 147(6), 2237–2241 (2000).
[CrossRef]

J. Lightwave Technol. (1)

Microelectron. Eng. (1)

T. Wahlbrink, W. S. Tsai, M. Waldow, M. Forst, J. Bolten, T. Mollenhauer, and H. Kurz, “Fabrication of high efficiency SOI taper structures,” Microelectron. Eng. 86(4-6), 1117–1119 (2009).
[CrossRef]

Nature (1)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic structure of the mode-size converter. Left: top view of converter; Right: 3D structure of converter; Inset: the location of Si tapers (beams and air trenches are hidden for simplicity).

Fig. 2
Fig. 2

Simulated optical field distribution in the mode-size converter at 1550 nm (the outline is shown using the yellow lines).

Fig. 3
Fig. 3

AFM picture of the surface of PECVD SiO2 layer before CMP process (left) and after CMP process (right).

Fig. 4
Fig. 4

SEM images of mode-size converter after fabrication. Inset 1: upper Si nano-taper; Inset 2: lower Si taper bottom Si nano-taper; Inset 3: the input of the mode-size converter.

Fig. 5
Fig. 5

Measured results using cut-back structures integrated with input/output mode-size converter. Left: propagation loss of PECVD Si waveguide for TE/TM modes with/without matching oil. Right: coupling loss of mode-size converter for TE/TM modes with/without matching oil.

Tables (2)

Tables Icon

Table 1 The Design Parameters of the Mode-Size Converter

Tables Icon

Table 2 Measured Results of Coupling Loss and Tolerance at 1600 nm

Metrics