Abstract

In this paper we discuss the possibility of implementing a novel bio-sensing platform based on the observation of the shift of the leaky surface plasmon mode that occurs at the edge of the plasmonic band gap of metal gratings, when an analyte is deposited on top of the metallic structure. We report numerical calculations, fabrication and experimental measurements to prove the sensing capability of a two-dimensional array of gold nano-patches in the detection of a small quantity of Isopropyl Alcohol (IPA) deposited on top of sensor surface. The calculated sensitivity of our device approaches a value of 1000 nm/RIU with a corresponding Figure of Merit (FOM) of 222 RIU−1. The presence of IPA can also be visually estimated by observing a color variation in the diffracted field. We show that color brightness and intensity variations can be ascribed to a change in the aperture size, keeping the periodicity constant, and to different types of analyte deposited on the sample, respectively. Moreover, we demonstrate that unavoidable fabrication imperfections revealed by the presence of rounded corners and surface roughness do not significantly affect device performance.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Kang and S. M. Weiss, “Photonic crystal with multiple-hole defect for sensor applications,” Opt. Express 16(22), 18188–18193 (2008).
    [CrossRef] [PubMed]
  2. T. Stomeo, M. Grande, G. Rainò, A. Passaseo, A. D’Orazio, R. Cingolani, A. Locatelli, D. Modotto, C. De Angelis, and M. De Vittorio, “Optical filter based on two coupled PhC GaAs-membranes,” Opt. Lett. 35(3), 411–413 (2010).
    [CrossRef] [PubMed]
  3. B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, “Asymmetric split ring resonators for optical sensing of organic materials,” Opt. Express 17(2), 1107–1115 (2009).
    [CrossRef] [PubMed]
  4. T. Claes, J. Girones Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photonics J. 1(3), 197–204 (2009).
    [CrossRef]
  5. X. Dai, S. J. Mihailov, and C. Blanchetière, “Optical evanescent field waveguide Bragg grating pressure sensor,” Opt. Eng. 49(2), 024401 (2010).
    [CrossRef]
  6. M. A. Vincenti, S. Trevisi, M. De Sario, V. Petruzzelli, A. D’Orazio, F. Prudenzano, N. Cioffi, D. de Ceglia, and M. Scalora, “Theoretical analysis of a palladium-based one-dimensional metallo-dielectric photonic band gap structure for applications to H2 sensors,” J. Appl. Phys. 103(6), 064507 (2008).
    [CrossRef]
  7. E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors (Basel Switzerland) 11(3), 2961–2971 (2011).
    [CrossRef]
  8. S. Roh, T. Chung, and B. Lee, “Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors,” Sensors (Basel Switzerland) 11(2), 1565–1588 (2011).
    [CrossRef]
  9. B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based Surface Plasmon Resonance sensors,” Opt. Express 15(18), 11413–11426 (2007).
    [CrossRef] [PubMed]
  10. A. Goldman, M. Goldman, A. Roos, and N. Kaabouch, “Plasma-surface interaction phenomena induced by corona discharges. Application to aerosols detection and to diagnosis on surface layers,” Pure Appl. Chem. 64(5), 759–763 (1992).
    [CrossRef]
  11. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216(4), 398–410 (1968).
    [CrossRef]
  12. E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. Teil A 23, 2135–2136 (1968).
  13. Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
    [CrossRef] [PubMed]
  14. F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
    [CrossRef] [PubMed]
  15. J. I. L. Chen, Y. Chen, and D. S. Ginger, “Plasmonic nanoparticle dimers for optical sensing of DNA in complex media,” J. Am. Chem. Soc. 132(28), 9600–9601 (2010).
    [CrossRef] [PubMed]
  16. J. Zhang, T. Atay, and A. V. Nurmikko, “Optical detection of brain cell activity using plasmonic gold nanoparticles,” Nano Lett. 9(2), 519–524 (2009).
    [CrossRef] [PubMed]
  17. A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5(6), 4843–4849 (2011).
    [CrossRef] [PubMed]
  18. C. L. Baciu, J. Becker, A. Janshoff, and C. Sönnichsen, “Protein-membrane interaction probed by single plasmonic nanoparticles,” Nano Lett. 8(6), 1724–1728 (2008).
    [CrossRef] [PubMed]
  19. J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
    [CrossRef] [PubMed]
  20. W. Kubo and S. Fujikawa, “Au double nanopillars with nanogap for plasmonic sensor,” Nano Lett. 11(1), 8–15 (2011).
    [CrossRef] [PubMed]
  21. W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
    [CrossRef] [PubMed]
  22. G. J. Nusz, A. C. Curry, S. M. Marinakos, A. Wax, and A. Chilkoti, “Rational selection of gold nanorod geometry for label-free plasmonic biosensors,” ACS Nano 3(4), 795–806 (2009).
    [CrossRef] [PubMed]
  23. H. Altug, A. A. Yanik, M. Huang, and R. Adato, “Ultrasensitive plasmonic sensors mold the flow of light and fluidics,” SPIE Newsroom, 20 Sept. 2010, http://spie.org/x41536.xml?ArticleID=x41536
  24. R. W. Wood, “On the remarkable case of uneven distribution of a light in a diffractive grating spectrum,” Philos. Mag. 4, 396–402 (1902).
  25. R. W. Wood, “Diffraction gratings with controlled groove form and abnormal distribution of intensity,” Philos. Mag. 23, 310–317 (1912).
  26. L. Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 79(532), 399–416 (1907).
    [CrossRef]
  27. U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves),” J. Opt. Soc. Am. 31(3), 213–222 (1941).
    [CrossRef]
  28. A. Hessel and A. A. Oliner, “A new theory of Wood's anomalies on optical gratings,” Appl. Opt. 4(10), 1275–1297 (1965).
    [CrossRef]
  29. D. de Ceglia, M. A. Vincenti, M. Scalora, N. Akozbek, and M. J. Bloemer, “Plasmonic band edge effects on the transmission properties of metal gratings,” AIP Advances 1(3), 032151 (2011).
    [CrossRef]
  30. R. Marani, M. Grande, V. Marrocco, A. D’Orazio, V. Petruzzelli, M. A. Vincenti, and D. de Ceglia, “Plasmonic bandgap formation in two-dimensional periodic arrangements of gold patches with subwavelength gaps,” Opt. Lett. 36(6), 903–905 (2011).
    [CrossRef] [PubMed]
  31. M. A. Vincenti, D. de Ceglia, M. Scalora, R. Marani, V. Marrocco, M. Grande, G. Morea, and A. D’Orazio, “Enhancement and suppression of transmission in 3-D nanoslits arrays with 1- and 2-D periodicities,” Proc. SPIE 7946, 794625, 794625–794627 (2011).
    [CrossRef]
  32. H. Raether, Surface Polaritons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
  33. C. Munuera, J. A. Aznarez, E. Rodr?guez-Canas, A. I. Oliva, M. Aguilar, and J. L. Sacedon, “Study of rough growth fronts of evaporated polycrystalline gold films,” J. Vac. Sci. Technol. A 22(4), 1767–1772 (2004).
    [CrossRef]

2011 (7)

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5(6), 4843–4849 (2011).
[CrossRef] [PubMed]

W. Kubo and S. Fujikawa, “Au double nanopillars with nanogap for plasmonic sensor,” Nano Lett. 11(1), 8–15 (2011).
[CrossRef] [PubMed]

E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors (Basel Switzerland) 11(3), 2961–2971 (2011).
[CrossRef]

S. Roh, T. Chung, and B. Lee, “Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors,” Sensors (Basel Switzerland) 11(2), 1565–1588 (2011).
[CrossRef]

D. de Ceglia, M. A. Vincenti, M. Scalora, N. Akozbek, and M. J. Bloemer, “Plasmonic band edge effects on the transmission properties of metal gratings,” AIP Advances 1(3), 032151 (2011).
[CrossRef]

M. A. Vincenti, D. de Ceglia, M. Scalora, R. Marani, V. Marrocco, M. Grande, G. Morea, and A. D’Orazio, “Enhancement and suppression of transmission in 3-D nanoslits arrays with 1- and 2-D periodicities,” Proc. SPIE 7946, 794625, 794625–794627 (2011).
[CrossRef]

R. Marani, M. Grande, V. Marrocco, A. D’Orazio, V. Petruzzelli, M. A. Vincenti, and D. de Ceglia, “Plasmonic bandgap formation in two-dimensional periodic arrangements of gold patches with subwavelength gaps,” Opt. Lett. 36(6), 903–905 (2011).
[CrossRef] [PubMed]

2010 (6)

T. Stomeo, M. Grande, G. Rainò, A. Passaseo, A. D’Orazio, R. Cingolani, A. Locatelli, D. Modotto, C. De Angelis, and M. De Vittorio, “Optical filter based on two coupled PhC GaAs-membranes,” Opt. Lett. 35(3), 411–413 (2010).
[CrossRef] [PubMed]

X. Dai, S. J. Mihailov, and C. Blanchetière, “Optical evanescent field waveguide Bragg grating pressure sensor,” Opt. Eng. 49(2), 024401 (2010).
[CrossRef]

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[CrossRef] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[CrossRef] [PubMed]

J. I. L. Chen, Y. Chen, and D. S. Ginger, “Plasmonic nanoparticle dimers for optical sensing of DNA in complex media,” J. Am. Chem. Soc. 132(28), 9600–9601 (2010).
[CrossRef] [PubMed]

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[CrossRef] [PubMed]

2009 (4)

J. Zhang, T. Atay, and A. V. Nurmikko, “Optical detection of brain cell activity using plasmonic gold nanoparticles,” Nano Lett. 9(2), 519–524 (2009).
[CrossRef] [PubMed]

T. Claes, J. Girones Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photonics J. 1(3), 197–204 (2009).
[CrossRef]

G. J. Nusz, A. C. Curry, S. M. Marinakos, A. Wax, and A. Chilkoti, “Rational selection of gold nanorod geometry for label-free plasmonic biosensors,” ACS Nano 3(4), 795–806 (2009).
[CrossRef] [PubMed]

B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, “Asymmetric split ring resonators for optical sensing of organic materials,” Opt. Express 17(2), 1107–1115 (2009).
[CrossRef] [PubMed]

2008 (4)

M. A. Vincenti, S. Trevisi, M. De Sario, V. Petruzzelli, A. D’Orazio, F. Prudenzano, N. Cioffi, D. de Ceglia, and M. Scalora, “Theoretical analysis of a palladium-based one-dimensional metallo-dielectric photonic band gap structure for applications to H2 sensors,” J. Appl. Phys. 103(6), 064507 (2008).
[CrossRef]

C. Kang and S. M. Weiss, “Photonic crystal with multiple-hole defect for sensor applications,” Opt. Express 16(22), 18188–18193 (2008).
[CrossRef] [PubMed]

C. L. Baciu, J. Becker, A. Janshoff, and C. Sönnichsen, “Protein-membrane interaction probed by single plasmonic nanoparticles,” Nano Lett. 8(6), 1724–1728 (2008).
[CrossRef] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

2007 (1)

2004 (1)

C. Munuera, J. A. Aznarez, E. Rodr?guez-Canas, A. I. Oliva, M. Aguilar, and J. L. Sacedon, “Study of rough growth fronts of evaporated polycrystalline gold films,” J. Vac. Sci. Technol. A 22(4), 1767–1772 (2004).
[CrossRef]

1992 (1)

A. Goldman, M. Goldman, A. Roos, and N. Kaabouch, “Plasma-surface interaction phenomena induced by corona discharges. Application to aerosols detection and to diagnosis on surface layers,” Pure Appl. Chem. 64(5), 759–763 (1992).
[CrossRef]

1968 (2)

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216(4), 398–410 (1968).
[CrossRef]

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. Teil A 23, 2135–2136 (1968).

1965 (1)

1941 (1)

1912 (1)

R. W. Wood, “Diffraction gratings with controlled groove form and abnormal distribution of intensity,” Philos. Mag. 23, 310–317 (1912).

1907 (1)

L. Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 79(532), 399–416 (1907).
[CrossRef]

1902 (1)

R. W. Wood, “On the remarkable case of uneven distribution of a light in a diffractive grating spectrum,” Philos. Mag. 4, 396–402 (1902).

Aguilar, M.

C. Munuera, J. A. Aznarez, E. Rodr?guez-Canas, A. I. Oliva, M. Aguilar, and J. L. Sacedon, “Study of rough growth fronts of evaporated polycrystalline gold films,” J. Vac. Sci. Technol. A 22(4), 1767–1772 (2004).
[CrossRef]

Akozbek, N.

D. de Ceglia, M. A. Vincenti, M. Scalora, N. Akozbek, and M. J. Bloemer, “Plasmonic band edge effects on the transmission properties of metal gratings,” AIP Advances 1(3), 032151 (2011).
[CrossRef]

Arnedillo, M. L.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5(6), 4843–4849 (2011).
[CrossRef] [PubMed]

Atay, T.

J. Zhang, T. Atay, and A. V. Nurmikko, “Optical detection of brain cell activity using plasmonic gold nanoparticles,” Nano Lett. 9(2), 519–524 (2009).
[CrossRef] [PubMed]

Aznarez, J. A.

C. Munuera, J. A. Aznarez, E. Rodr?guez-Canas, A. I. Oliva, M. Aguilar, and J. L. Sacedon, “Study of rough growth fronts of evaporated polycrystalline gold films,” J. Vac. Sci. Technol. A 22(4), 1767–1772 (2004).
[CrossRef]

Baciu, C. L.

C. L. Baciu, J. Becker, A. Janshoff, and C. Sönnichsen, “Protein-membrane interaction probed by single plasmonic nanoparticles,” Nano Lett. 8(6), 1724–1728 (2008).
[CrossRef] [PubMed]

Baets, R.

T. Claes, J. Girones Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photonics J. 1(3), 197–204 (2009).
[CrossRef]

Becker, J.

C. L. Baciu, J. Becker, A. Janshoff, and C. Sönnichsen, “Protein-membrane interaction probed by single plasmonic nanoparticles,” Nano Lett. 8(6), 1724–1728 (2008).
[CrossRef] [PubMed]

Bienstman, P.

T. Claes, J. Girones Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photonics J. 1(3), 197–204 (2009).
[CrossRef]

Blanchetière, C.

X. Dai, S. J. Mihailov, and C. Blanchetière, “Optical evanescent field waveguide Bragg grating pressure sensor,” Opt. Eng. 49(2), 024401 (2010).
[CrossRef]

Bloemer, M. J.

D. de Ceglia, M. A. Vincenti, M. Scalora, N. Akozbek, and M. J. Bloemer, “Plasmonic band edge effects on the transmission properties of metal gratings,” AIP Advances 1(3), 032151 (2011).
[CrossRef]

Capasso, F.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[CrossRef] [PubMed]

Chen, J. I. L.

J. I. L. Chen, Y. Chen, and D. S. Ginger, “Plasmonic nanoparticle dimers for optical sensing of DNA in complex media,” J. Am. Chem. Soc. 132(28), 9600–9601 (2010).
[CrossRef] [PubMed]

Chen, Y.

J. I. L. Chen, Y. Chen, and D. S. Ginger, “Plasmonic nanoparticle dimers for optical sensing of DNA in complex media,” J. Am. Chem. Soc. 132(28), 9600–9601 (2010).
[CrossRef] [PubMed]

Chichkov, B. N.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5(6), 4843–4849 (2011).
[CrossRef] [PubMed]

Chilkoti, A.

G. J. Nusz, A. C. Curry, S. M. Marinakos, A. Wax, and A. Chilkoti, “Rational selection of gold nanorod geometry for label-free plasmonic biosensors,” ACS Nano 3(4), 795–806 (2009).
[CrossRef] [PubMed]

Chung, T.

S. Roh, T. Chung, and B. Lee, “Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors,” Sensors (Basel Switzerland) 11(2), 1565–1588 (2011).
[CrossRef]

Cingolani, R.

Cioffi, N.

M. A. Vincenti, S. Trevisi, M. De Sario, V. Petruzzelli, A. D’Orazio, F. Prudenzano, N. Cioffi, D. de Ceglia, and M. Scalora, “Theoretical analysis of a palladium-based one-dimensional metallo-dielectric photonic band gap structure for applications to H2 sensors,” J. Appl. Phys. 103(6), 064507 (2008).
[CrossRef]

Claes, T.

T. Claes, J. Girones Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photonics J. 1(3), 197–204 (2009).
[CrossRef]

Curry, A. C.

G. J. Nusz, A. C. Curry, S. M. Marinakos, A. Wax, and A. Chilkoti, “Rational selection of gold nanorod geometry for label-free plasmonic biosensors,” ACS Nano 3(4), 795–806 (2009).
[CrossRef] [PubMed]

D’Orazio, A.

R. Marani, M. Grande, V. Marrocco, A. D’Orazio, V. Petruzzelli, M. A. Vincenti, and D. de Ceglia, “Plasmonic bandgap formation in two-dimensional periodic arrangements of gold patches with subwavelength gaps,” Opt. Lett. 36(6), 903–905 (2011).
[CrossRef] [PubMed]

M. A. Vincenti, D. de Ceglia, M. Scalora, R. Marani, V. Marrocco, M. Grande, G. Morea, and A. D’Orazio, “Enhancement and suppression of transmission in 3-D nanoslits arrays with 1- and 2-D periodicities,” Proc. SPIE 7946, 794625, 794625–794627 (2011).
[CrossRef]

T. Stomeo, M. Grande, G. Rainò, A. Passaseo, A. D’Orazio, R. Cingolani, A. Locatelli, D. Modotto, C. De Angelis, and M. De Vittorio, “Optical filter based on two coupled PhC GaAs-membranes,” Opt. Lett. 35(3), 411–413 (2010).
[CrossRef] [PubMed]

M. A. Vincenti, S. Trevisi, M. De Sario, V. Petruzzelli, A. D’Orazio, F. Prudenzano, N. Cioffi, D. de Ceglia, and M. Scalora, “Theoretical analysis of a palladium-based one-dimensional metallo-dielectric photonic band gap structure for applications to H2 sensors,” J. Appl. Phys. 103(6), 064507 (2008).
[CrossRef]

Dai, X.

X. Dai, S. J. Mihailov, and C. Blanchetière, “Optical evanescent field waveguide Bragg grating pressure sensor,” Opt. Eng. 49(2), 024401 (2010).
[CrossRef]

De Angelis, C.

de Ceglia, D.

M. A. Vincenti, D. de Ceglia, M. Scalora, R. Marani, V. Marrocco, M. Grande, G. Morea, and A. D’Orazio, “Enhancement and suppression of transmission in 3-D nanoslits arrays with 1- and 2-D periodicities,” Proc. SPIE 7946, 794625, 794625–794627 (2011).
[CrossRef]

R. Marani, M. Grande, V. Marrocco, A. D’Orazio, V. Petruzzelli, M. A. Vincenti, and D. de Ceglia, “Plasmonic bandgap formation in two-dimensional periodic arrangements of gold patches with subwavelength gaps,” Opt. Lett. 36(6), 903–905 (2011).
[CrossRef] [PubMed]

D. de Ceglia, M. A. Vincenti, M. Scalora, N. Akozbek, and M. J. Bloemer, “Plasmonic band edge effects on the transmission properties of metal gratings,” AIP Advances 1(3), 032151 (2011).
[CrossRef]

M. A. Vincenti, S. Trevisi, M. De Sario, V. Petruzzelli, A. D’Orazio, F. Prudenzano, N. Cioffi, D. de Ceglia, and M. Scalora, “Theoretical analysis of a palladium-based one-dimensional metallo-dielectric photonic band gap structure for applications to H2 sensors,” J. Appl. Phys. 103(6), 064507 (2008).
[CrossRef]

De La Rue, R. M.

De Sario, M.

M. A. Vincenti, S. Trevisi, M. De Sario, V. Petruzzelli, A. D’Orazio, F. Prudenzano, N. Cioffi, D. de Ceglia, and M. Scalora, “Theoretical analysis of a palladium-based one-dimensional metallo-dielectric photonic band gap structure for applications to H2 sensors,” J. Appl. Phys. 103(6), 064507 (2008).
[CrossRef]

De Vittorio, M.

De Vos, K.

T. Claes, J. Girones Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photonics J. 1(3), 197–204 (2009).
[CrossRef]

Ebendorff-Heidepriem, H.

E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors (Basel Switzerland) 11(3), 2961–2971 (2011).
[CrossRef]

Evlyukhin, A. B.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5(6), 4843–4849 (2011).
[CrossRef] [PubMed]

Fan, J. A.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[CrossRef] [PubMed]

Fano, U.

Fassi Fehri, M.

Fujikawa, S.

W. Kubo and S. Fujikawa, “Au double nanopillars with nanogap for plasmonic sensor,” Nano Lett. 11(1), 8–15 (2011).
[CrossRef] [PubMed]

Gauvreau, B.

Ginger, D. S.

J. I. L. Chen, Y. Chen, and D. S. Ginger, “Plasmonic nanoparticle dimers for optical sensing of DNA in complex media,” J. Am. Chem. Soc. 132(28), 9600–9601 (2010).
[CrossRef] [PubMed]

Girones Molera, J.

T. Claes, J. Girones Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photonics J. 1(3), 197–204 (2009).
[CrossRef]

Goldman, A.

A. Goldman, M. Goldman, A. Roos, and N. Kaabouch, “Plasma-surface interaction phenomena induced by corona discharges. Application to aerosols detection and to diagnosis on surface layers,” Pure Appl. Chem. 64(5), 759–763 (1992).
[CrossRef]

Goldman, M.

A. Goldman, M. Goldman, A. Roos, and N. Kaabouch, “Plasma-surface interaction phenomena induced by corona discharges. Application to aerosols detection and to diagnosis on surface layers,” Pure Appl. Chem. 64(5), 759–763 (1992).
[CrossRef]

Gonçalves, M. R.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5(6), 4843–4849 (2011).
[CrossRef] [PubMed]

Grande, M.

Halas, N. J.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[CrossRef] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

Hao, F.

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

Hassani, A.

Hessel, A.

Huang, L.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[CrossRef] [PubMed]

Janshoff, A.

C. L. Baciu, J. Becker, A. Janshoff, and C. Sönnichsen, “Protein-membrane interaction probed by single plasmonic nanoparticles,” Nano Lett. 8(6), 1724–1728 (2008).
[CrossRef] [PubMed]

Johnson, N. P.

Kaabouch, N.

A. Goldman, M. Goldman, A. Roos, and N. Kaabouch, “Plasma-surface interaction phenomena induced by corona discharges. Application to aerosols detection and to diagnosis on surface layers,” Pure Appl. Chem. 64(5), 759–763 (1992).
[CrossRef]

Kabashin, A.

Kang, C.

Khokhar, A. Z.

Kiyan, R.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5(6), 4843–4849 (2011).
[CrossRef] [PubMed]

Koroleva, A.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5(6), 4843–4849 (2011).
[CrossRef] [PubMed]

Kretschmann, E.

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. Teil A 23, 2135–2136 (1968).

Kubo, W.

W. Kubo and S. Fujikawa, “Au double nanopillars with nanogap for plasmonic sensor,” Nano Lett. 11(1), 8–15 (2011).
[CrossRef] [PubMed]

Kundu, J.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[CrossRef] [PubMed]

Kuznetsov, A. I.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5(6), 4843–4849 (2011).
[CrossRef] [PubMed]

Lahiri, B.

Lassiter, J. B.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[CrossRef] [PubMed]

Lee, B.

S. Roh, T. Chung, and B. Lee, “Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors,” Sensors (Basel Switzerland) 11(2), 1565–1588 (2011).
[CrossRef]

Locatelli, A.

Maier, S. A.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[CrossRef] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

Marani, R.

R. Marani, M. Grande, V. Marrocco, A. D’Orazio, V. Petruzzelli, M. A. Vincenti, and D. de Ceglia, “Plasmonic bandgap formation in two-dimensional periodic arrangements of gold patches with subwavelength gaps,” Opt. Lett. 36(6), 903–905 (2011).
[CrossRef] [PubMed]

M. A. Vincenti, D. de Ceglia, M. Scalora, R. Marani, V. Marrocco, M. Grande, G. Morea, and A. D’Orazio, “Enhancement and suppression of transmission in 3-D nanoslits arrays with 1- and 2-D periodicities,” Proc. SPIE 7946, 794625, 794625–794627 (2011).
[CrossRef]

Marinakos, S. M.

G. J. Nusz, A. C. Curry, S. M. Marinakos, A. Wax, and A. Chilkoti, “Rational selection of gold nanorod geometry for label-free plasmonic biosensors,” ACS Nano 3(4), 795–806 (2009).
[CrossRef] [PubMed]

Marrocco, V.

M. A. Vincenti, D. de Ceglia, M. Scalora, R. Marani, V. Marrocco, M. Grande, G. Morea, and A. D’Orazio, “Enhancement and suppression of transmission in 3-D nanoslits arrays with 1- and 2-D periodicities,” Proc. SPIE 7946, 794625, 794625–794627 (2011).
[CrossRef]

R. Marani, M. Grande, V. Marrocco, A. D’Orazio, V. Petruzzelli, M. A. Vincenti, and D. de Ceglia, “Plasmonic bandgap formation in two-dimensional periodic arrangements of gold patches with subwavelength gaps,” Opt. Lett. 36(6), 903–905 (2011).
[CrossRef] [PubMed]

Marti, O.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5(6), 4843–4849 (2011).
[CrossRef] [PubMed]

Martin, O. J. F.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[CrossRef] [PubMed]

McMeekin, S. G.

Mihailov, S. J.

X. Dai, S. J. Mihailov, and C. Blanchetière, “Optical evanescent field waveguide Bragg grating pressure sensor,” Opt. Eng. 49(2), 024401 (2010).
[CrossRef]

Modotto, D.

Monro, T. M.

E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors (Basel Switzerland) 11(3), 2961–2971 (2011).
[CrossRef]

Morea, G.

M. A. Vincenti, D. de Ceglia, M. Scalora, R. Marani, V. Marrocco, M. Grande, G. Morea, and A. D’Orazio, “Enhancement and suppression of transmission in 3-D nanoslits arrays with 1- and 2-D periodicities,” Proc. SPIE 7946, 794625, 794625–794627 (2011).
[CrossRef]

Moshchalkov, V. V.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[CrossRef] [PubMed]

Munuera, C.

C. Munuera, J. A. Aznarez, E. Rodr?guez-Canas, A. I. Oliva, M. Aguilar, and J. L. Sacedon, “Study of rough growth fronts of evaporated polycrystalline gold films,” J. Vac. Sci. Technol. A 22(4), 1767–1772 (2004).
[CrossRef]

Nordlander, P.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[CrossRef] [PubMed]

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[CrossRef] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

Nurmikko, A. V.

J. Zhang, T. Atay, and A. V. Nurmikko, “Optical detection of brain cell activity using plasmonic gold nanoparticles,” Nano Lett. 9(2), 519–524 (2009).
[CrossRef] [PubMed]

Nusz, G. J.

G. J. Nusz, A. C. Curry, S. M. Marinakos, A. Wax, and A. Chilkoti, “Rational selection of gold nanorod geometry for label-free plasmonic biosensors,” ACS Nano 3(4), 795–806 (2009).
[CrossRef] [PubMed]

Oliner, A. A.

Oliva, A. I.

C. Munuera, J. A. Aznarez, E. Rodr?guez-Canas, A. I. Oliva, M. Aguilar, and J. L. Sacedon, “Study of rough growth fronts of evaporated polycrystalline gold films,” J. Vac. Sci. Technol. A 22(4), 1767–1772 (2004).
[CrossRef]

Otto, A.

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216(4), 398–410 (1968).
[CrossRef]

Passaseo, A.

Petruzzelli, V.

R. Marani, M. Grande, V. Marrocco, A. D’Orazio, V. Petruzzelli, M. A. Vincenti, and D. de Ceglia, “Plasmonic bandgap formation in two-dimensional periodic arrangements of gold patches with subwavelength gaps,” Opt. Lett. 36(6), 903–905 (2011).
[CrossRef] [PubMed]

M. A. Vincenti, S. Trevisi, M. De Sario, V. Petruzzelli, A. D’Orazio, F. Prudenzano, N. Cioffi, D. de Ceglia, and M. Scalora, “Theoretical analysis of a palladium-based one-dimensional metallo-dielectric photonic band gap structure for applications to H2 sensors,” J. Appl. Phys. 103(6), 064507 (2008).
[CrossRef]

Prudenzano, F.

M. A. Vincenti, S. Trevisi, M. De Sario, V. Petruzzelli, A. D’Orazio, F. Prudenzano, N. Cioffi, D. de Ceglia, and M. Scalora, “Theoretical analysis of a palladium-based one-dimensional metallo-dielectric photonic band gap structure for applications to H2 sensors,” J. Appl. Phys. 103(6), 064507 (2008).
[CrossRef]

Raether, H.

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. Teil A 23, 2135–2136 (1968).

Rainò, G.

Rayleigh, L.

L. Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 79(532), 399–416 (1907).
[CrossRef]

Reinhardt, C.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5(6), 4843–4849 (2011).
[CrossRef] [PubMed]

Rodriguez-Canas, E.

C. Munuera, J. A. Aznarez, E. Rodr?guez-Canas, A. I. Oliva, M. Aguilar, and J. L. Sacedon, “Study of rough growth fronts of evaporated polycrystalline gold films,” J. Vac. Sci. Technol. A 22(4), 1767–1772 (2004).
[CrossRef]

Roh, S.

S. Roh, T. Chung, and B. Lee, “Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors,” Sensors (Basel Switzerland) 11(2), 1565–1588 (2011).
[CrossRef]

Roos, A.

A. Goldman, M. Goldman, A. Roos, and N. Kaabouch, “Plasma-surface interaction phenomena induced by corona discharges. Application to aerosols detection and to diagnosis on surface layers,” Pure Appl. Chem. 64(5), 759–763 (1992).
[CrossRef]

Sacedon, J. L.

C. Munuera, J. A. Aznarez, E. Rodr?guez-Canas, A. I. Oliva, M. Aguilar, and J. L. Sacedon, “Study of rough growth fronts of evaporated polycrystalline gold films,” J. Vac. Sci. Technol. A 22(4), 1767–1772 (2004).
[CrossRef]

Santschi, C.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[CrossRef] [PubMed]

Scalora, M.

D. de Ceglia, M. A. Vincenti, M. Scalora, N. Akozbek, and M. J. Bloemer, “Plasmonic band edge effects on the transmission properties of metal gratings,” AIP Advances 1(3), 032151 (2011).
[CrossRef]

M. A. Vincenti, D. de Ceglia, M. Scalora, R. Marani, V. Marrocco, M. Grande, G. Morea, and A. D’Orazio, “Enhancement and suppression of transmission in 3-D nanoslits arrays with 1- and 2-D periodicities,” Proc. SPIE 7946, 794625, 794625–794627 (2011).
[CrossRef]

M. A. Vincenti, S. Trevisi, M. De Sario, V. Petruzzelli, A. D’Orazio, F. Prudenzano, N. Cioffi, D. de Ceglia, and M. Scalora, “Theoretical analysis of a palladium-based one-dimensional metallo-dielectric photonic band gap structure for applications to H2 sensors,” J. Appl. Phys. 103(6), 064507 (2008).
[CrossRef]

Schacht, E.

T. Claes, J. Girones Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photonics J. 1(3), 197–204 (2009).
[CrossRef]

Schartner, E. P.

E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors (Basel Switzerland) 11(3), 2961–2971 (2011).
[CrossRef]

Skorobogatiy, M. A.

Sobhani, H.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[CrossRef] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[CrossRef] [PubMed]

Sonnefraud, Y.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[CrossRef] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

Sönnichsen, C.

C. L. Baciu, J. Becker, A. Janshoff, and C. Sönnichsen, “Protein-membrane interaction probed by single plasmonic nanoparticles,” Nano Lett. 8(6), 1724–1728 (2008).
[CrossRef] [PubMed]

Stomeo, T.

Trevisi, S.

M. A. Vincenti, S. Trevisi, M. De Sario, V. Petruzzelli, A. D’Orazio, F. Prudenzano, N. Cioffi, D. de Ceglia, and M. Scalora, “Theoretical analysis of a palladium-based one-dimensional metallo-dielectric photonic band gap structure for applications to H2 sensors,” J. Appl. Phys. 103(6), 064507 (2008).
[CrossRef]

Van Dorpe, P.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[CrossRef] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

Vandenbosch, G. A.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[CrossRef] [PubMed]

Verellen, N.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[CrossRef] [PubMed]

Vincenti, M. A.

D. de Ceglia, M. A. Vincenti, M. Scalora, N. Akozbek, and M. J. Bloemer, “Plasmonic band edge effects on the transmission properties of metal gratings,” AIP Advances 1(3), 032151 (2011).
[CrossRef]

R. Marani, M. Grande, V. Marrocco, A. D’Orazio, V. Petruzzelli, M. A. Vincenti, and D. de Ceglia, “Plasmonic bandgap formation in two-dimensional periodic arrangements of gold patches with subwavelength gaps,” Opt. Lett. 36(6), 903–905 (2011).
[CrossRef] [PubMed]

M. A. Vincenti, D. de Ceglia, M. Scalora, R. Marani, V. Marrocco, M. Grande, G. Morea, and A. D’Orazio, “Enhancement and suppression of transmission in 3-D nanoslits arrays with 1- and 2-D periodicities,” Proc. SPIE 7946, 794625, 794625–794627 (2011).
[CrossRef]

M. A. Vincenti, S. Trevisi, M. De Sario, V. Petruzzelli, A. D’Orazio, F. Prudenzano, N. Cioffi, D. de Ceglia, and M. Scalora, “Theoretical analysis of a palladium-based one-dimensional metallo-dielectric photonic band gap structure for applications to H2 sensors,” J. Appl. Phys. 103(6), 064507 (2008).
[CrossRef]

Warren-Smith, S. C.

E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors (Basel Switzerland) 11(3), 2961–2971 (2011).
[CrossRef]

Wax, A.

G. J. Nusz, A. C. Curry, S. M. Marinakos, A. Wax, and A. Chilkoti, “Rational selection of gold nanorod geometry for label-free plasmonic biosensors,” ACS Nano 3(4), 795–806 (2009).
[CrossRef] [PubMed]

Weiss, S. M.

White, R. T.

E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors (Basel Switzerland) 11(3), 2961–2971 (2011).
[CrossRef]

Wood, R. W.

R. W. Wood, “Diffraction gratings with controlled groove form and abnormal distribution of intensity,” Philos. Mag. 23, 310–317 (1912).

R. W. Wood, “On the remarkable case of uneven distribution of a light in a diffractive grating spectrum,” Philos. Mag. 4, 396–402 (1902).

Zhang, J.

J. Zhang, T. Atay, and A. V. Nurmikko, “Optical detection of brain cell activity using plasmonic gold nanoparticles,” Nano Lett. 9(2), 519–524 (2009).
[CrossRef] [PubMed]

Zhang, W.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[CrossRef] [PubMed]

ACS Nano (3)

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[CrossRef] [PubMed]

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5(6), 4843–4849 (2011).
[CrossRef] [PubMed]

G. J. Nusz, A. C. Curry, S. M. Marinakos, A. Wax, and A. Chilkoti, “Rational selection of gold nanorod geometry for label-free plasmonic biosensors,” ACS Nano 3(4), 795–806 (2009).
[CrossRef] [PubMed]

AIP Advances (1)

D. de Ceglia, M. A. Vincenti, M. Scalora, N. Akozbek, and M. J. Bloemer, “Plasmonic band edge effects on the transmission properties of metal gratings,” AIP Advances 1(3), 032151 (2011).
[CrossRef]

Appl. Opt. (1)

IEEE Photonics J. (1)

T. Claes, J. Girones Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photonics J. 1(3), 197–204 (2009).
[CrossRef]

J. Am. Chem. Soc. (1)

J. I. L. Chen, Y. Chen, and D. S. Ginger, “Plasmonic nanoparticle dimers for optical sensing of DNA in complex media,” J. Am. Chem. Soc. 132(28), 9600–9601 (2010).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

M. A. Vincenti, S. Trevisi, M. De Sario, V. Petruzzelli, A. D’Orazio, F. Prudenzano, N. Cioffi, D. de Ceglia, and M. Scalora, “Theoretical analysis of a palladium-based one-dimensional metallo-dielectric photonic band gap structure for applications to H2 sensors,” J. Appl. Phys. 103(6), 064507 (2008).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Vac. Sci. Technol. A (1)

C. Munuera, J. A. Aznarez, E. Rodr?guez-Canas, A. I. Oliva, M. Aguilar, and J. L. Sacedon, “Study of rough growth fronts of evaporated polycrystalline gold films,” J. Vac. Sci. Technol. A 22(4), 1767–1772 (2004).
[CrossRef]

Nano Lett. (6)

J. Zhang, T. Atay, and A. V. Nurmikko, “Optical detection of brain cell activity using plasmonic gold nanoparticles,” Nano Lett. 9(2), 519–524 (2009).
[CrossRef] [PubMed]

C. L. Baciu, J. Becker, A. Janshoff, and C. Sönnichsen, “Protein-membrane interaction probed by single plasmonic nanoparticles,” Nano Lett. 8(6), 1724–1728 (2008).
[CrossRef] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[CrossRef] [PubMed]

W. Kubo and S. Fujikawa, “Au double nanopillars with nanogap for plasmonic sensor,” Nano Lett. 11(1), 8–15 (2011).
[CrossRef] [PubMed]

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[CrossRef] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

Opt. Eng. (1)

X. Dai, S. J. Mihailov, and C. Blanchetière, “Optical evanescent field waveguide Bragg grating pressure sensor,” Opt. Eng. 49(2), 024401 (2010).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Philos. Mag. (2)

R. W. Wood, “On the remarkable case of uneven distribution of a light in a diffractive grating spectrum,” Philos. Mag. 4, 396–402 (1902).

R. W. Wood, “Diffraction gratings with controlled groove form and abnormal distribution of intensity,” Philos. Mag. 23, 310–317 (1912).

Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character (1)

L. Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 79(532), 399–416 (1907).
[CrossRef]

Proc. SPIE (1)

M. A. Vincenti, D. de Ceglia, M. Scalora, R. Marani, V. Marrocco, M. Grande, G. Morea, and A. D’Orazio, “Enhancement and suppression of transmission in 3-D nanoslits arrays with 1- and 2-D periodicities,” Proc. SPIE 7946, 794625, 794625–794627 (2011).
[CrossRef]

Pure Appl. Chem. (1)

A. Goldman, M. Goldman, A. Roos, and N. Kaabouch, “Plasma-surface interaction phenomena induced by corona discharges. Application to aerosols detection and to diagnosis on surface layers,” Pure Appl. Chem. 64(5), 759–763 (1992).
[CrossRef]

Sensors (Basel Switzerland) (2)

E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors (Basel Switzerland) 11(3), 2961–2971 (2011).
[CrossRef]

S. Roh, T. Chung, and B. Lee, “Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors,” Sensors (Basel Switzerland) 11(2), 1565–1588 (2011).
[CrossRef]

Z. Naturforsch. Teil A (1)

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. Teil A 23, 2135–2136 (1968).

Z. Phys. (1)

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216(4), 398–410 (1968).
[CrossRef]

Other (2)

H. Altug, A. A. Yanik, M. Huang, and R. Adato, “Ultrasensitive plasmonic sensors mold the flow of light and fluidics,” SPIE Newsroom, 20 Sept. 2010, http://spie.org/x41536.xml?ArticleID=x41536

H. Raether, Surface Polaritons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Sketch of the 2D gold arrangement on silicon substrate (the cyan hemispheres represent the localized plasmonic resonances).

Fig. 2
Fig. 2

a) Reflection map when the incident angle is varied in the range 0° - 90°; b) Detail of electric field localization at 635 nm (corresponding to the V state); electric field intensity localizes on the whole grating surface effectively increasing the active area of the structure.

Fig. 3
Fig. 3

Sketch of the fabrication protocol of the 2D arrangement of gold patches on Silicon substrate (cyan): a) e-beam exposure of the bi-layer (green); b) MIBK and IPA-methanol mixture development; c) thermal evaporation of the chrome (grey) and the gold (yellow) layers, respectively and d) lift-off by means of an acetone bath.

Fig. 4
Fig. 4

(a) SEM image of the fabricated device (inset: lift-off process); (b) roughness on a total area of 2.8 x 2.8 μm2 estimated by means of Atomic Force Microscope.

Fig. 5
Fig. 5

Sketch of the optical setup.

Fig. 6
Fig. 6

Measured (blue) and simulated (red) reflection spectra. Green solid line shows the effects of an average roughness along the grating and inside the metal walls similar to the measured roughness shown in Fig. 4 (a).

Fig. 7
Fig. 7

Simulated spectral shift of the V state when air (blue line) or a material with n = 1.001 (red line) cover the gold nano-patches. A shift of 1 nm is detected for such a small change of the refractive index.

Fig. 8
Fig. 8

a) Measured and simulated scattering spectra when the device is covered by air (black) and IPA (red), respectively. Picture captured by a digital camera when the device (with a dimension of 100 μm x 100 μm) is covered by b) air and c) IPA alcohol, respectively.

Fig. 9
Fig. 9

Top: scattering behavior when the aperture a is varied from 60 nm to 120 nm. The inset shows the graphical representation of the color change. Bottom: Simulated reflection for m = −1 diffraction order.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

q λ max =p ε d ε m ( λ max ) ε d + ε m ( λ max )

Metrics