Abstract

The use of infrared radiation to provide high speed indoor wireless communication has attracted considerable attention for over a decade. In previous studies we proposed a novel full-duplex indoor optical wireless communication system with high-speed data transmission and limited mobility can be provided to users. When it is incorporated with localization function, gigabit mobile communication can be provided over the entire room. In this paper we theoretically analyze the limiting factor of our proposed system – background light induced shot noise. A theoretical model that allows the receiver sensitivity and the corresponding power penalty is proposed and the model is validated by experiments. Experimental results show that for both down-link and up-link transmission the background light will result in several dB power penalty and it is more dominant in lower speed links. As the bit rate increases, the preamplifier induced noise becomes larger and eventually dominates the noise process.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. R. Gfeller and U. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE 67(11), 1474–1486 (1979).
    [CrossRef]
  2. J. M. Kahn, J. R. Barry, M. D. Audeh, J. B. Carruthers, W. J. Krause, and G. W. Marsh, “Non-directed infrared links for high-capacity wireless LANs,” IEEE Personal Commun. 1(2), 12–25 (1994).
    [CrossRef]
  3. J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
    [CrossRef]
  4. D. C. O’Brien and M. Katz, “Optical wireless communications within fourth-generation wireless systems,” J. Opt. Netw. 4(6), 312–322 (2005).
    [CrossRef]
  5. G. Yun and M. Kavehrad, “Spot-diffusing and fly-eye receivers for indoor infrared wireless communications,” in Proceedings of IEEE International Conference on Selected Topics in Wireless Communications (London, 1992), pp. 262–265.
  6. J. B. Carruther and J. M. Kahn, “Angle diversity for nondirected wireless infrared communication,” IEEE Trans. Commun. 48(6), 960–969 (2000).
    [CrossRef]
  7. K. L. Sterckx, J. M. H. Elmirghani, and R. A. Cryan, “Pyramidal fly-eye detection antenna for optical wireless systems,” in Proceedings of IEE Colloquium on Optical Wireless Communications (London, 1999), pp. 1–5.
  8. P. Djahani and J. M. Kahn, “Analysis of infrared wireless links employing multibeam transmitters and imaging diversity receivers,” IEEE Trans. Commun. 48(12), 2077–2088 (2000).
    [CrossRef]
  9. A. G. Al-Ghamdi and J. M. H. Elmirghani, “Spot diffusing technique and angle diversity performance for high speed indoor diffuse infra-red wireless transmission,” IEE Proc., Optoelectron. 151(1), 46–52 (2004).
    [CrossRef]
  10. A. G. Al-Ghamdi and J. M. H. Elmirghani, “Line strip spot-diffusing transmitter configuration for optical wireless systems influenced by background noise and multipath dispersion,” IEEE Trans. Commun. 52(1), 37–45 (2004).
    [CrossRef]
  11. S. T. Jovkova and M. Kavehard, “Multispot diffusing configuration for wireless infrared access,” IEEE Trans. Commun. 48(6), 970–978 (2000).
    [CrossRef]
  12. F. E. Alsaadi and J. M. H. Elmirghani, “Mobile multigigabit indoor optical wireless systems employing multibeam power adaptation and imaging diversity receivers,” J. Opt. Commun. Netw. 3(1), 27–39 (2011).
    [CrossRef]
  13. F. E. Alsaadi and J. M. H. Elmirghani, “Performance evaluation of 2.5 Gbit/s and 5 Gbit/s optical wireless systems employing a two dimensional adaptive beam clustering method and imaging diversity detection,” IEEE J. Sel. Areas Comm. 27(8), 1507–1519 (2009).
    [CrossRef]
  14. H. Le Minh, D. O’Brien, G. Faulkner, O. Bouchet, M. Wolf, L. Grobe, and J. Li, “A 1.25Gb/s Indoor Cellular Optical Wireless Communications Demonstrator,” IEEE Photon. Technol. Lett. 22(21), 1598–1600 (2010).
    [CrossRef]
  15. J. Fadlullah and M. Kavehard, “Indoor high-bandwidth optical wireless links for sensor networks,” J. Lightwave Technol. 28(21), 3086–3094 (2010).
  16. K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed duplex optical wireless communication system for indoor personal area networks,” Opt. Express 18(24), 25199–25216 (2010).
    [CrossRef] [PubMed]
  17. K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed 4×12.5Gbps WDM optical wireless communication systems for indoor applications,” in Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC, Los Angeles, 2011), pp. JWA081.
  18. K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed optical wireless communication system for indoor applications,” IEEE Photon. Technol. Lett. 23(8), 519–521 (2011).
    [CrossRef]
  19. P. J. Winzer and W. R. Leeb, “Fiber coupling efficiency for random light and its applications to lidar,” Opt. Lett. 23(13), 986–988 (1998).
    [CrossRef] [PubMed]
  20. K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed full-duplex optical wireless communication system for indoor applications,” in Proceedings of Conference of Lasers and Opto-Electronics (CLEO, Baltimore, 2011), pp. CFH6.
  21. J. B. Carruthers, “Multipath channels in wireless infrared communications: modeling, angle diversity and estimation,” Ph.D. dissertation (Univ. of California, Berkeley, 1997).
  22. F. Alsaadi and J. M. H. Elmirghani, “Adaptive mobile line strip multibeam MC-CDMA optical wireless system employing imaging detection in a real indoor environment,” IEEE J. Sel. Areas Comm. 27(9), 1663–1675 (2009).
    [CrossRef]
  23. B. Leskovar, “Optical receivers for wide band data transmission systems,” IEEE Trans. Nucl. Sci. 36(1), 787–793 (1989).
    [CrossRef]
  24. K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “Gigabit optical wireless communication system for indoor applications,” in Proceedings of Asia Communication and Photonics Conference and Exhibition (ACP, Shanghai, 2010), pp. 453–454.
  25. K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “Indoor gigabit optical wireless communication system for personal area networks,” in Proceedings of 23rd IEEE Photonics Society Annual Meeting (Denver, 2010), pp. 224–225.

2011

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed optical wireless communication system for indoor applications,” IEEE Photon. Technol. Lett. 23(8), 519–521 (2011).
[CrossRef]

F. E. Alsaadi and J. M. H. Elmirghani, “Mobile multigigabit indoor optical wireless systems employing multibeam power adaptation and imaging diversity receivers,” J. Opt. Commun. Netw. 3(1), 27–39 (2011).
[CrossRef]

2010

2009

F. Alsaadi and J. M. H. Elmirghani, “Adaptive mobile line strip multibeam MC-CDMA optical wireless system employing imaging detection in a real indoor environment,” IEEE J. Sel. Areas Comm. 27(9), 1663–1675 (2009).
[CrossRef]

F. E. Alsaadi and J. M. H. Elmirghani, “Performance evaluation of 2.5 Gbit/s and 5 Gbit/s optical wireless systems employing a two dimensional adaptive beam clustering method and imaging diversity detection,” IEEE J. Sel. Areas Comm. 27(8), 1507–1519 (2009).
[CrossRef]

2005

2004

A. G. Al-Ghamdi and J. M. H. Elmirghani, “Spot diffusing technique and angle diversity performance for high speed indoor diffuse infra-red wireless transmission,” IEE Proc., Optoelectron. 151(1), 46–52 (2004).
[CrossRef]

A. G. Al-Ghamdi and J. M. H. Elmirghani, “Line strip spot-diffusing transmitter configuration for optical wireless systems influenced by background noise and multipath dispersion,” IEEE Trans. Commun. 52(1), 37–45 (2004).
[CrossRef]

2000

S. T. Jovkova and M. Kavehard, “Multispot diffusing configuration for wireless infrared access,” IEEE Trans. Commun. 48(6), 970–978 (2000).
[CrossRef]

J. B. Carruther and J. M. Kahn, “Angle diversity for nondirected wireless infrared communication,” IEEE Trans. Commun. 48(6), 960–969 (2000).
[CrossRef]

P. Djahani and J. M. Kahn, “Analysis of infrared wireless links employing multibeam transmitters and imaging diversity receivers,” IEEE Trans. Commun. 48(12), 2077–2088 (2000).
[CrossRef]

1998

1997

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[CrossRef]

1994

J. M. Kahn, J. R. Barry, M. D. Audeh, J. B. Carruthers, W. J. Krause, and G. W. Marsh, “Non-directed infrared links for high-capacity wireless LANs,” IEEE Personal Commun. 1(2), 12–25 (1994).
[CrossRef]

1989

B. Leskovar, “Optical receivers for wide band data transmission systems,” IEEE Trans. Nucl. Sci. 36(1), 787–793 (1989).
[CrossRef]

1979

F. R. Gfeller and U. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE 67(11), 1474–1486 (1979).
[CrossRef]

Al-Ghamdi, A. G.

A. G. Al-Ghamdi and J. M. H. Elmirghani, “Spot diffusing technique and angle diversity performance for high speed indoor diffuse infra-red wireless transmission,” IEE Proc., Optoelectron. 151(1), 46–52 (2004).
[CrossRef]

A. G. Al-Ghamdi and J. M. H. Elmirghani, “Line strip spot-diffusing transmitter configuration for optical wireless systems influenced by background noise and multipath dispersion,” IEEE Trans. Commun. 52(1), 37–45 (2004).
[CrossRef]

Alsaadi, F.

F. Alsaadi and J. M. H. Elmirghani, “Adaptive mobile line strip multibeam MC-CDMA optical wireless system employing imaging detection in a real indoor environment,” IEEE J. Sel. Areas Comm. 27(9), 1663–1675 (2009).
[CrossRef]

Alsaadi, F. E.

F. E. Alsaadi and J. M. H. Elmirghani, “Mobile multigigabit indoor optical wireless systems employing multibeam power adaptation and imaging diversity receivers,” J. Opt. Commun. Netw. 3(1), 27–39 (2011).
[CrossRef]

F. E. Alsaadi and J. M. H. Elmirghani, “Performance evaluation of 2.5 Gbit/s and 5 Gbit/s optical wireless systems employing a two dimensional adaptive beam clustering method and imaging diversity detection,” IEEE J. Sel. Areas Comm. 27(8), 1507–1519 (2009).
[CrossRef]

Audeh, M. D.

J. M. Kahn, J. R. Barry, M. D. Audeh, J. B. Carruthers, W. J. Krause, and G. W. Marsh, “Non-directed infrared links for high-capacity wireless LANs,” IEEE Personal Commun. 1(2), 12–25 (1994).
[CrossRef]

Bapst, U.

F. R. Gfeller and U. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE 67(11), 1474–1486 (1979).
[CrossRef]

Barry, J. R.

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[CrossRef]

J. M. Kahn, J. R. Barry, M. D. Audeh, J. B. Carruthers, W. J. Krause, and G. W. Marsh, “Non-directed infrared links for high-capacity wireless LANs,” IEEE Personal Commun. 1(2), 12–25 (1994).
[CrossRef]

Bouchet, O.

H. Le Minh, D. O’Brien, G. Faulkner, O. Bouchet, M. Wolf, L. Grobe, and J. Li, “A 1.25Gb/s Indoor Cellular Optical Wireless Communications Demonstrator,” IEEE Photon. Technol. Lett. 22(21), 1598–1600 (2010).
[CrossRef]

Carruther, J. B.

J. B. Carruther and J. M. Kahn, “Angle diversity for nondirected wireless infrared communication,” IEEE Trans. Commun. 48(6), 960–969 (2000).
[CrossRef]

Carruthers, J. B.

J. M. Kahn, J. R. Barry, M. D. Audeh, J. B. Carruthers, W. J. Krause, and G. W. Marsh, “Non-directed infrared links for high-capacity wireless LANs,” IEEE Personal Commun. 1(2), 12–25 (1994).
[CrossRef]

Djahani, P.

P. Djahani and J. M. Kahn, “Analysis of infrared wireless links employing multibeam transmitters and imaging diversity receivers,” IEEE Trans. Commun. 48(12), 2077–2088 (2000).
[CrossRef]

Elmirghani, J. M. H.

F. E. Alsaadi and J. M. H. Elmirghani, “Mobile multigigabit indoor optical wireless systems employing multibeam power adaptation and imaging diversity receivers,” J. Opt. Commun. Netw. 3(1), 27–39 (2011).
[CrossRef]

F. Alsaadi and J. M. H. Elmirghani, “Adaptive mobile line strip multibeam MC-CDMA optical wireless system employing imaging detection in a real indoor environment,” IEEE J. Sel. Areas Comm. 27(9), 1663–1675 (2009).
[CrossRef]

F. E. Alsaadi and J. M. H. Elmirghani, “Performance evaluation of 2.5 Gbit/s and 5 Gbit/s optical wireless systems employing a two dimensional adaptive beam clustering method and imaging diversity detection,” IEEE J. Sel. Areas Comm. 27(8), 1507–1519 (2009).
[CrossRef]

A. G. Al-Ghamdi and J. M. H. Elmirghani, “Line strip spot-diffusing transmitter configuration for optical wireless systems influenced by background noise and multipath dispersion,” IEEE Trans. Commun. 52(1), 37–45 (2004).
[CrossRef]

A. G. Al-Ghamdi and J. M. H. Elmirghani, “Spot diffusing technique and angle diversity performance for high speed indoor diffuse infra-red wireless transmission,” IEE Proc., Optoelectron. 151(1), 46–52 (2004).
[CrossRef]

Fadlullah, J.

Faulkner, G.

H. Le Minh, D. O’Brien, G. Faulkner, O. Bouchet, M. Wolf, L. Grobe, and J. Li, “A 1.25Gb/s Indoor Cellular Optical Wireless Communications Demonstrator,” IEEE Photon. Technol. Lett. 22(21), 1598–1600 (2010).
[CrossRef]

Gfeller, F. R.

F. R. Gfeller and U. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE 67(11), 1474–1486 (1979).
[CrossRef]

Grobe, L.

H. Le Minh, D. O’Brien, G. Faulkner, O. Bouchet, M. Wolf, L. Grobe, and J. Li, “A 1.25Gb/s Indoor Cellular Optical Wireless Communications Demonstrator,” IEEE Photon. Technol. Lett. 22(21), 1598–1600 (2010).
[CrossRef]

Jovkova, S. T.

S. T. Jovkova and M. Kavehard, “Multispot diffusing configuration for wireless infrared access,” IEEE Trans. Commun. 48(6), 970–978 (2000).
[CrossRef]

Kahn, J. M.

J. B. Carruther and J. M. Kahn, “Angle diversity for nondirected wireless infrared communication,” IEEE Trans. Commun. 48(6), 960–969 (2000).
[CrossRef]

P. Djahani and J. M. Kahn, “Analysis of infrared wireless links employing multibeam transmitters and imaging diversity receivers,” IEEE Trans. Commun. 48(12), 2077–2088 (2000).
[CrossRef]

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[CrossRef]

J. M. Kahn, J. R. Barry, M. D. Audeh, J. B. Carruthers, W. J. Krause, and G. W. Marsh, “Non-directed infrared links for high-capacity wireless LANs,” IEEE Personal Commun. 1(2), 12–25 (1994).
[CrossRef]

Katz, M.

Kavehard, M.

J. Fadlullah and M. Kavehard, “Indoor high-bandwidth optical wireless links for sensor networks,” J. Lightwave Technol. 28(21), 3086–3094 (2010).

S. T. Jovkova and M. Kavehard, “Multispot diffusing configuration for wireless infrared access,” IEEE Trans. Commun. 48(6), 970–978 (2000).
[CrossRef]

Krause, W. J.

J. M. Kahn, J. R. Barry, M. D. Audeh, J. B. Carruthers, W. J. Krause, and G. W. Marsh, “Non-directed infrared links for high-capacity wireless LANs,” IEEE Personal Commun. 1(2), 12–25 (1994).
[CrossRef]

Le Minh, H.

H. Le Minh, D. O’Brien, G. Faulkner, O. Bouchet, M. Wolf, L. Grobe, and J. Li, “A 1.25Gb/s Indoor Cellular Optical Wireless Communications Demonstrator,” IEEE Photon. Technol. Lett. 22(21), 1598–1600 (2010).
[CrossRef]

Leeb, W. R.

Leskovar, B.

B. Leskovar, “Optical receivers for wide band data transmission systems,” IEEE Trans. Nucl. Sci. 36(1), 787–793 (1989).
[CrossRef]

Li, J.

H. Le Minh, D. O’Brien, G. Faulkner, O. Bouchet, M. Wolf, L. Grobe, and J. Li, “A 1.25Gb/s Indoor Cellular Optical Wireless Communications Demonstrator,” IEEE Photon. Technol. Lett. 22(21), 1598–1600 (2010).
[CrossRef]

Lim, C.

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed optical wireless communication system for indoor applications,” IEEE Photon. Technol. Lett. 23(8), 519–521 (2011).
[CrossRef]

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed duplex optical wireless communication system for indoor personal area networks,” Opt. Express 18(24), 25199–25216 (2010).
[CrossRef] [PubMed]

Marsh, G. W.

J. M. Kahn, J. R. Barry, M. D. Audeh, J. B. Carruthers, W. J. Krause, and G. W. Marsh, “Non-directed infrared links for high-capacity wireless LANs,” IEEE Personal Commun. 1(2), 12–25 (1994).
[CrossRef]

Nirmalathas, A.

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed optical wireless communication system for indoor applications,” IEEE Photon. Technol. Lett. 23(8), 519–521 (2011).
[CrossRef]

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed duplex optical wireless communication system for indoor personal area networks,” Opt. Express 18(24), 25199–25216 (2010).
[CrossRef] [PubMed]

O’Brien, D.

H. Le Minh, D. O’Brien, G. Faulkner, O. Bouchet, M. Wolf, L. Grobe, and J. Li, “A 1.25Gb/s Indoor Cellular Optical Wireless Communications Demonstrator,” IEEE Photon. Technol. Lett. 22(21), 1598–1600 (2010).
[CrossRef]

O’Brien, D. C.

Skafidas, E.

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed optical wireless communication system for indoor applications,” IEEE Photon. Technol. Lett. 23(8), 519–521 (2011).
[CrossRef]

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed duplex optical wireless communication system for indoor personal area networks,” Opt. Express 18(24), 25199–25216 (2010).
[CrossRef] [PubMed]

Wang, K.

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed optical wireless communication system for indoor applications,” IEEE Photon. Technol. Lett. 23(8), 519–521 (2011).
[CrossRef]

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed duplex optical wireless communication system for indoor personal area networks,” Opt. Express 18(24), 25199–25216 (2010).
[CrossRef] [PubMed]

Winzer, P. J.

Wolf, M.

H. Le Minh, D. O’Brien, G. Faulkner, O. Bouchet, M. Wolf, L. Grobe, and J. Li, “A 1.25Gb/s Indoor Cellular Optical Wireless Communications Demonstrator,” IEEE Photon. Technol. Lett. 22(21), 1598–1600 (2010).
[CrossRef]

IEE Proc., Optoelectron.

A. G. Al-Ghamdi and J. M. H. Elmirghani, “Spot diffusing technique and angle diversity performance for high speed indoor diffuse infra-red wireless transmission,” IEE Proc., Optoelectron. 151(1), 46–52 (2004).
[CrossRef]

IEEE J. Sel. Areas Comm.

F. E. Alsaadi and J. M. H. Elmirghani, “Performance evaluation of 2.5 Gbit/s and 5 Gbit/s optical wireless systems employing a two dimensional adaptive beam clustering method and imaging diversity detection,” IEEE J. Sel. Areas Comm. 27(8), 1507–1519 (2009).
[CrossRef]

F. Alsaadi and J. M. H. Elmirghani, “Adaptive mobile line strip multibeam MC-CDMA optical wireless system employing imaging detection in a real indoor environment,” IEEE J. Sel. Areas Comm. 27(9), 1663–1675 (2009).
[CrossRef]

IEEE Personal Commun.

J. M. Kahn, J. R. Barry, M. D. Audeh, J. B. Carruthers, W. J. Krause, and G. W. Marsh, “Non-directed infrared links for high-capacity wireless LANs,” IEEE Personal Commun. 1(2), 12–25 (1994).
[CrossRef]

IEEE Photon. Technol. Lett.

H. Le Minh, D. O’Brien, G. Faulkner, O. Bouchet, M. Wolf, L. Grobe, and J. Li, “A 1.25Gb/s Indoor Cellular Optical Wireless Communications Demonstrator,” IEEE Photon. Technol. Lett. 22(21), 1598–1600 (2010).
[CrossRef]

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed optical wireless communication system for indoor applications,” IEEE Photon. Technol. Lett. 23(8), 519–521 (2011).
[CrossRef]

IEEE Trans. Commun.

A. G. Al-Ghamdi and J. M. H. Elmirghani, “Line strip spot-diffusing transmitter configuration for optical wireless systems influenced by background noise and multipath dispersion,” IEEE Trans. Commun. 52(1), 37–45 (2004).
[CrossRef]

S. T. Jovkova and M. Kavehard, “Multispot diffusing configuration for wireless infrared access,” IEEE Trans. Commun. 48(6), 970–978 (2000).
[CrossRef]

J. B. Carruther and J. M. Kahn, “Angle diversity for nondirected wireless infrared communication,” IEEE Trans. Commun. 48(6), 960–969 (2000).
[CrossRef]

P. Djahani and J. M. Kahn, “Analysis of infrared wireless links employing multibeam transmitters and imaging diversity receivers,” IEEE Trans. Commun. 48(12), 2077–2088 (2000).
[CrossRef]

IEEE Trans. Nucl. Sci.

B. Leskovar, “Optical receivers for wide band data transmission systems,” IEEE Trans. Nucl. Sci. 36(1), 787–793 (1989).
[CrossRef]

J. Lightwave Technol.

J. Opt. Commun. Netw.

J. Opt. Netw.

Opt. Express

Opt. Lett.

Proc. IEEE

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[CrossRef]

F. R. Gfeller and U. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE 67(11), 1474–1486 (1979).
[CrossRef]

Other

G. Yun and M. Kavehrad, “Spot-diffusing and fly-eye receivers for indoor infrared wireless communications,” in Proceedings of IEEE International Conference on Selected Topics in Wireless Communications (London, 1992), pp. 262–265.

K. L. Sterckx, J. M. H. Elmirghani, and R. A. Cryan, “Pyramidal fly-eye detection antenna for optical wireless systems,” in Proceedings of IEE Colloquium on Optical Wireless Communications (London, 1999), pp. 1–5.

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed 4×12.5Gbps WDM optical wireless communication systems for indoor applications,” in Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC, Los Angeles, 2011), pp. JWA081.

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “Gigabit optical wireless communication system for indoor applications,” in Proceedings of Asia Communication and Photonics Conference and Exhibition (ACP, Shanghai, 2010), pp. 453–454.

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “Indoor gigabit optical wireless communication system for personal area networks,” in Proceedings of 23rd IEEE Photonics Society Annual Meeting (Denver, 2010), pp. 224–225.

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed full-duplex optical wireless communication system for indoor applications,” in Proceedings of Conference of Lasers and Opto-Electronics (CLEO, Baltimore, 2011), pp. CFH6.

J. B. Carruthers, “Multipath channels in wireless infrared communications: modeling, angle diversity and estimation,” Ph.D. dissertation (Univ. of California, Berkeley, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

System architecture.

Fig. 2
Fig. 2

Simulation result of the power penalty due to the background light for 1Gbps, 2.5Gbps, 5Gbps and 10Gbps system.

Fig. 3
Fig. 3

Simulated results of power penalty due to background light induced noise for different received background light power.

Fig. 4
Fig. 4

Experimental setup. The CPC here at the receiver end stands for compound parabolic concentrator.

Fig. 5
Fig. 5

Experimental results on receiver sensitivity when the free space transmission distances are 63cm, 104cm and 243cm respectively.

Fig. 6
Fig. 6

Experimental results on receiver sensitivity with and without free space transmission.

Fig. 7
Fig. 7

Experimental and simulation results of power penalty due to background light induced noise when the overhead lamps are turned on.

Fig. 8
Fig. 8

Experimental results of receiver sensitivity with and without free space transmission. The results when the overhead lamps are turned on and off are both shown.

Fig. 9
Fig. 9

Experimental and simulation results of power penalty due to background light induced noise when the overhead lamps are turned off.

Fig. 10
Fig. 10

Up-link experimental results on receiver sensitivity when the free space transmission distances are 63cm, 104cm and 243cm respectively.

Fig. 11
Fig. 11

Experimental and simulation results of power penalty due to background light induced noise in the up-link system.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

σ 0 2 = σ 1 2 = σ 2 = σ pr 2 + σ bn 2
σ pr 2 =( 4kT R F +2e I L ) I 2 B+ 4kTΓ g m (2π C T ) 2 A F f c B 2 + 4kTΓ g m (2π C T ) 2 I 3 B 3
σ pr 2 = 4kT R F I 2 B+ 4kTΓ g m (2π C T ) 2 I 3 B 3
σ bn 2 =2eR P bn I 2 B
I(φ)= n+1 2π × P t × cos n (φ)
P bn = i=1 4 n+1 2π × P lamp × cos n ( φ i )× B filter × R receiver
SNR= ( R×( P s1 P s0 ) σ 0 + σ 1 ) 2
SNR= ( R×( P s1 P s0 ) 2σ ) 2 = ( R×( P s1 P s0 ) 2 σ pr ) 2
PowerPenalty(dB)=5× log 10 σ pr 2 + σ bn 2 σ pr 2

Metrics