Abstract

The design of an all-solid, soft glass-based, large mode area Bragg fiber for effective single mode operation with mode effective area exceeding 1100 µm2 across the wavelength range of 2 – 4 μm is reported. The design adopts a new strategy to induce large differential loss between the fundamental and higher order modes for effective single-mode operation within few tens of centimetres length of an otherwise multimode fiber. In addition to having the potential for the targeted application in high power laser delivery systems; complemented by a zero dispersion wavelength at 2.04 µm and rapidly developing mid-IR optical sources, the proposed fiber should also be attractive for generation of high power, single mode and less divergent supercontinuum light over this mid-IR window.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Guo, Y. Wang, C. Peng, H. L. Zhang, G. P. Luo, H. Q. Le, C. Gmachl, D. L. Sivco, M. L. Peabody, and A. Y. Cho, “Laser-based mid-infrared reflectance imaging of biological tissues,” Opt. Express 12(1), 208–219 (2004).
    [CrossRef] [PubMed]
  2. P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
    [CrossRef]
  3. A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18(25), 26704–26719 (2010).
    [CrossRef] [PubMed]
  4. J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Room temperature mid-infrared quantum cascade lasers,” Electron. Lett. 32(6), 560–561 (1996).
    [CrossRef]
  5. J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, S. N. G. Chu, and A. Y. Cho, “High power mid-infrared (? ~ 5 ?m) quantum cascade lasers operating above room temperature,” Appl. Phys. Lett. 68(26), 3680–3682 (1996).
    [CrossRef]
  6. M. Lon?ar, B. G. Lee, L. Diehl, M. A. Belkin, F. Capasso, M. Giovannini, J. Faist, and E. Gini, “Design and fabrication of photonic crystal quantum cascade lasers for optofluidics,” Opt. Express 15(8), 4499–4514 (2007).
    [CrossRef] [PubMed]
  7. S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 µm,” IEEE J. Sel. Top. Quantum Electron. 13(3), 567–572 (2007).
    [CrossRef]
  8. Q. Wang, J. Geng, Z. Jiang, T. Luo, and S. Jiang, “Mode-locked Tm-Ho fiber laser with a Sb-based SESAM,” CMK2, OSA/ CLEO (2011).
  9. D. G. Lancaster, A. Sabella, A. Hemming, S. Bennetts, and S. D. Jackson, “Power-scalable thulium and holmium fibre lasers pumped by 793 nm diode lasers,” WE5, OSA/ASSP (2007).
  10. J. Wu, Z. Yao, J. Zong, and A. C. Pirson, “Single frequency fiber laser at 2.05 ?m based on Ho-doped germanate glass fiber,” Proc. SPIE 7195, 71951K (2009).
    [CrossRef]
  11. M. E. Likhachev, S. L. Semjonov, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Yu. Salganskii, M. A. Gurjanov, A. N. Gurjanov, R. Jamier, P. Viale, S. Fevrier, and J. M. Blondy, “Development and study of Bragg fibres with a large mode field and low optical losses,” IEEE J. Quantum Electron. 36(7), 581–586 (2006).
    [CrossRef]
  12. S. Février, R. Jamier, J. M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low-loss singlemode large mode area all-silica photonic bandgap fiber,” Opt. Express 14(2), 562–569 (2006).
    [CrossRef] [PubMed]
  13. S. Février, P. Viale, F. Gerome, P. Leproux, P. Roy, J. M. Blondy, B. Dussardier, and G. Monnom, “Very large effective area singlemode photonic bandgap fibre,” Electron. Lett. 39(17), 1240–1242 (2003).
    [CrossRef]
  14. X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Horak, P. Petropoulos, W. H. Loh, and D. J. Richardson, “Dispersion-shifted all-solid high index-contrast microstructured optical fiber for nonlinear applications at 1.55 microm,” Opt. Express 17(22), 20249–20255 (2009).
    [CrossRef] [PubMed]
  15. S. Dasgupta, B. P. Pal, and M. R. Shenoy, “Nonlinear spectral broadening in solid-core Bragg fibers,” J. Lightwave Technol. 25(9), 2475–2481 (2007).
    [CrossRef]
  16. H. T. Bookey, S. Dasgupta, N. Bezawada, B. P. Pal, A. Sysoliatin, J. E. McCarthy, M. Salganskii, V. Khopin, and A. K. Kar, “Experimental demonstration of spectral broadening in an all-silica Bragg fiber,” Opt. Express 17(19), 17130–17135 (2009).
    [CrossRef] [PubMed]
  17. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. 68(9), 1196–1201 (1978).
    [CrossRef]
  18. S. Dasgupta, B. P. Pal, and M. R. Shenoy, Chapter on Photonic bandgap guided Bragg fibers in Guided Wave Optical Components and Devices: Basics, Technology, and Applications, B. P. Pal (Ed.), (Elsevier Academic Press, 2006).
  19. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibers with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916), 650–653 (2002).
    [CrossRef] [PubMed]
  20. Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannepoulos, and E. L. Thomas, “Guiding optical light in air using an all-dielectric structure,” J. Lightwave Technol. 17(11), 2039–2041 (1999).
    [CrossRef]
  21. X. Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro, “Nonsilica glasses for holey fibers,” J. Lightwave Technol. 23(6), 2046–2054 (2005).
    [CrossRef]
  22. X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. J. Richardson, “Extruded single mode high-index core one-dimensional microstructured optical fiber with high index contrast for highly nonlinear optical deivces,” Appl. Phys. Lett. 87(8), 081110–081113 (2005).
    [CrossRef]
  23. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008).
    [CrossRef] [PubMed]
  24. G. Brambilla, F. Koizumi, V. Finazzi, and D. J. Richardson, “Supercontinuum generation in tapered bismuth silicate fibres,” Electron. Lett. 41(14), 795–797 (2005).
    [CrossRef]
  25. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Generating mid-IR source using As2 S3-based chalcogenide photonic crystal fibers,” CThN6, OSA/CLEO/IQEC (2009).
  26. G. Genty, T. Ritari, and H. Ludvigsen, “Supercontinuum generation in large mode-area microstructured fibers,” Opt. Express 13(21), 8625–8633 (2005).
    [CrossRef] [PubMed]
  27. K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, “A novel design of a dispersion compensating fiber,” IEEE Photon. Technol. Lett. 8(11), 1510–1512 (1996).
    [CrossRef]

2010 (1)

2009 (3)

2008 (1)

2007 (3)

2006 (2)

M. E. Likhachev, S. L. Semjonov, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Yu. Salganskii, M. A. Gurjanov, A. N. Gurjanov, R. Jamier, P. Viale, S. Fevrier, and J. M. Blondy, “Development and study of Bragg fibres with a large mode field and low optical losses,” IEEE J. Quantum Electron. 36(7), 581–586 (2006).
[CrossRef]

S. Février, R. Jamier, J. M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low-loss singlemode large mode area all-silica photonic bandgap fiber,” Opt. Express 14(2), 562–569 (2006).
[CrossRef] [PubMed]

2005 (4)

G. Brambilla, F. Koizumi, V. Finazzi, and D. J. Richardson, “Supercontinuum generation in tapered bismuth silicate fibres,” Electron. Lett. 41(14), 795–797 (2005).
[CrossRef]

G. Genty, T. Ritari, and H. Ludvigsen, “Supercontinuum generation in large mode-area microstructured fibers,” Opt. Express 13(21), 8625–8633 (2005).
[CrossRef] [PubMed]

X. Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro, “Nonsilica glasses for holey fibers,” J. Lightwave Technol. 23(6), 2046–2054 (2005).
[CrossRef]

X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. J. Richardson, “Extruded single mode high-index core one-dimensional microstructured optical fiber with high index contrast for highly nonlinear optical deivces,” Appl. Phys. Lett. 87(8), 081110–081113 (2005).
[CrossRef]

2004 (1)

2003 (1)

S. Février, P. Viale, F. Gerome, P. Leproux, P. Roy, J. M. Blondy, B. Dussardier, and G. Monnom, “Very large effective area singlemode photonic bandgap fibre,” Electron. Lett. 39(17), 1240–1242 (2003).
[CrossRef]

2002 (2)

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[CrossRef]

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibers with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916), 650–653 (2002).
[CrossRef] [PubMed]

1999 (1)

1996 (3)

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Room temperature mid-infrared quantum cascade lasers,” Electron. Lett. 32(6), 560–561 (1996).
[CrossRef]

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, S. N. G. Chu, and A. Y. Cho, “High power mid-infrared (? ~ 5 ?m) quantum cascade lasers operating above room temperature,” Appl. Phys. Lett. 68(26), 3680–3682 (1996).
[CrossRef]

K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, “A novel design of a dispersion compensating fiber,” IEEE Photon. Technol. Lett. 8(11), 1510–1512 (1996).
[CrossRef]

1978 (1)

Baillargeon, J. N.

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, S. N. G. Chu, and A. Y. Cho, “High power mid-infrared (? ~ 5 ?m) quantum cascade lasers operating above room temperature,” Appl. Phys. Lett. 68(26), 3680–3682 (1996).
[CrossRef]

Belkin, M. A.

Benoit, G.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibers with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916), 650–653 (2002).
[CrossRef] [PubMed]

Benson, T. M.

Bezawada, N.

Blondy, J. M.

M. E. Likhachev, S. L. Semjonov, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Yu. Salganskii, M. A. Gurjanov, A. N. Gurjanov, R. Jamier, P. Viale, S. Fevrier, and J. M. Blondy, “Development and study of Bragg fibres with a large mode field and low optical losses,” IEEE J. Quantum Electron. 36(7), 581–586 (2006).
[CrossRef]

S. Février, R. Jamier, J. M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low-loss singlemode large mode area all-silica photonic bandgap fiber,” Opt. Express 14(2), 562–569 (2006).
[CrossRef] [PubMed]

S. Février, P. Viale, F. Gerome, P. Leproux, P. Roy, J. M. Blondy, B. Dussardier, and G. Monnom, “Very large effective area singlemode photonic bandgap fibre,” Electron. Lett. 39(17), 1240–1242 (2003).
[CrossRef]

Bookey, H. T.

Brambilla, G.

G. Brambilla, F. Koizumi, V. Finazzi, and D. J. Richardson, “Supercontinuum generation in tapered bismuth silicate fibres,” Electron. Lett. 41(14), 795–797 (2005).
[CrossRef]

Bubnov, M. M.

S. Février, R. Jamier, J. M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low-loss singlemode large mode area all-silica photonic bandgap fiber,” Opt. Express 14(2), 562–569 (2006).
[CrossRef] [PubMed]

M. E. Likhachev, S. L. Semjonov, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Yu. Salganskii, M. A. Gurjanov, A. N. Gurjanov, R. Jamier, P. Viale, S. Fevrier, and J. M. Blondy, “Development and study of Bragg fibres with a large mode field and low optical losses,” IEEE J. Quantum Electron. 36(7), 581–586 (2006).
[CrossRef]

Camerlingo, A.

Capasso, F.

M. Lon?ar, B. G. Lee, L. Diehl, M. A. Belkin, F. Capasso, M. Giovannini, J. Faist, and E. Gini, “Design and fabrication of photonic crystal quantum cascade lasers for optofluidics,” Opt. Express 15(8), 4499–4514 (2007).
[CrossRef] [PubMed]

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Room temperature mid-infrared quantum cascade lasers,” Electron. Lett. 32(6), 560–561 (1996).
[CrossRef]

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, S. N. G. Chu, and A. Y. Cho, “High power mid-infrared (? ~ 5 ?m) quantum cascade lasers operating above room temperature,” Appl. Phys. Lett. 68(26), 3680–3682 (1996).
[CrossRef]

Chen, C.

Cho, A. Y.

B. Guo, Y. Wang, C. Peng, H. L. Zhang, G. P. Luo, H. Q. Le, C. Gmachl, D. L. Sivco, M. L. Peabody, and A. Y. Cho, “Laser-based mid-infrared reflectance imaging of biological tissues,” Opt. Express 12(1), 208–219 (2004).
[CrossRef] [PubMed]

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Room temperature mid-infrared quantum cascade lasers,” Electron. Lett. 32(6), 560–561 (1996).
[CrossRef]

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, S. N. G. Chu, and A. Y. Cho, “High power mid-infrared (? ~ 5 ?m) quantum cascade lasers operating above room temperature,” Appl. Phys. Lett. 68(26), 3680–3682 (1996).
[CrossRef]

Chu, S. N. G.

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, S. N. G. Chu, and A. Y. Cho, “High power mid-infrared (? ~ 5 ?m) quantum cascade lasers operating above room temperature,” Appl. Phys. Lett. 68(26), 3680–3682 (1996).
[CrossRef]

Cordeiro, C. M. B.

Cronin-Golomb, M.

Dasgupta, S.

Dianov, E. M.

M. E. Likhachev, S. L. Semjonov, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Yu. Salganskii, M. A. Gurjanov, A. N. Gurjanov, R. Jamier, P. Viale, S. Fevrier, and J. M. Blondy, “Development and study of Bragg fibres with a large mode field and low optical losses,” IEEE J. Quantum Electron. 36(7), 581–586 (2006).
[CrossRef]

S. Février, R. Jamier, J. M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low-loss singlemode large mode area all-silica photonic bandgap fiber,” Opt. Express 14(2), 562–569 (2006).
[CrossRef] [PubMed]

Diehl, L.

Domachuk, P.

Dussardier, B.

S. Février, P. Viale, F. Gerome, P. Leproux, P. Roy, J. M. Blondy, B. Dussardier, and G. Monnom, “Very large effective area singlemode photonic bandgap fibre,” Electron. Lett. 39(17), 1240–1242 (2003).
[CrossRef]

Faist, J.

M. Lon?ar, B. G. Lee, L. Diehl, M. A. Belkin, F. Capasso, M. Giovannini, J. Faist, and E. Gini, “Design and fabrication of photonic crystal quantum cascade lasers for optofluidics,” Opt. Express 15(8), 4499–4514 (2007).
[CrossRef] [PubMed]

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, S. N. G. Chu, and A. Y. Cho, “High power mid-infrared (? ~ 5 ?m) quantum cascade lasers operating above room temperature,” Appl. Phys. Lett. 68(26), 3680–3682 (1996).
[CrossRef]

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Room temperature mid-infrared quantum cascade lasers,” Electron. Lett. 32(6), 560–561 (1996).
[CrossRef]

Fan, S.

Feng, X.

Fevrier, S.

M. E. Likhachev, S. L. Semjonov, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Yu. Salganskii, M. A. Gurjanov, A. N. Gurjanov, R. Jamier, P. Viale, S. Fevrier, and J. M. Blondy, “Development and study of Bragg fibres with a large mode field and low optical losses,” IEEE J. Quantum Electron. 36(7), 581–586 (2006).
[CrossRef]

Février, S.

S. Février, R. Jamier, J. M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low-loss singlemode large mode area all-silica photonic bandgap fiber,” Opt. Express 14(2), 562–569 (2006).
[CrossRef] [PubMed]

S. Février, P. Viale, F. Gerome, P. Leproux, P. Roy, J. M. Blondy, B. Dussardier, and G. Monnom, “Very large effective area singlemode photonic bandgap fibre,” Electron. Lett. 39(17), 1240–1242 (2003).
[CrossRef]

Finazzi, V.

X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. J. Richardson, “Extruded single mode high-index core one-dimensional microstructured optical fiber with high index contrast for highly nonlinear optical deivces,” Appl. Phys. Lett. 87(8), 081110–081113 (2005).
[CrossRef]

G. Brambilla, F. Koizumi, V. Finazzi, and D. J. Richardson, “Supercontinuum generation in tapered bismuth silicate fibres,” Electron. Lett. 41(14), 795–797 (2005).
[CrossRef]

Fink, Y.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibers with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916), 650–653 (2002).
[CrossRef] [PubMed]

Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannepoulos, and E. L. Thomas, “Guiding optical light in air using an all-dielectric structure,” J. Lightwave Technol. 17(11), 2039–2041 (1999).
[CrossRef]

Furniss, D.

Genty, G.

George, A. K.

Gerome, F.

S. Février, P. Viale, F. Gerome, P. Leproux, P. Roy, J. M. Blondy, B. Dussardier, and G. Monnom, “Very large effective area singlemode photonic bandgap fibre,” Electron. Lett. 39(17), 1240–1242 (2003).
[CrossRef]

Ghatak, A. K.

K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, “A novel design of a dispersion compensating fiber,” IEEE Photon. Technol. Lett. 8(11), 1510–1512 (1996).
[CrossRef]

Gini, E.

Giovannini, M.

Gmachl, C.

Goyal, I. C.

K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, “A novel design of a dispersion compensating fiber,” IEEE Photon. Technol. Lett. 8(11), 1510–1512 (1996).
[CrossRef]

Guo, B.

Gurjanov, A. N.

M. E. Likhachev, S. L. Semjonov, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Yu. Salganskii, M. A. Gurjanov, A. N. Gurjanov, R. Jamier, P. Viale, S. Fevrier, and J. M. Blondy, “Development and study of Bragg fibres with a large mode field and low optical losses,” IEEE J. Quantum Electron. 36(7), 581–586 (2006).
[CrossRef]

Gurjanov, M. A.

M. E. Likhachev, S. L. Semjonov, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Yu. Salganskii, M. A. Gurjanov, A. N. Gurjanov, R. Jamier, P. Viale, S. Fevrier, and J. M. Blondy, “Development and study of Bragg fibres with a large mode field and low optical losses,” IEEE J. Quantum Electron. 36(7), 581–586 (2006).
[CrossRef]

Guryanov, A. N.

Hart, S. D.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibers with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916), 650–653 (2002).
[CrossRef] [PubMed]

Hewak, D. W.

Horak, P.

Hutchinson, A. L.

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Room temperature mid-infrared quantum cascade lasers,” Electron. Lett. 32(6), 560–561 (1996).
[CrossRef]

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, S. N. G. Chu, and A. Y. Cho, “High power mid-infrared (? ~ 5 ?m) quantum cascade lasers operating above room temperature,” Appl. Phys. Lett. 68(26), 3680–3682 (1996).
[CrossRef]

Jackson, S. D.

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 µm,” IEEE J. Sel. Top. Quantum Electron. 13(3), 567–572 (2007).
[CrossRef]

Jamier, R.

M. E. Likhachev, S. L. Semjonov, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Yu. Salganskii, M. A. Gurjanov, A. N. Gurjanov, R. Jamier, P. Viale, S. Fevrier, and J. M. Blondy, “Development and study of Bragg fibres with a large mode field and low optical losses,” IEEE J. Quantum Electron. 36(7), 581–586 (2006).
[CrossRef]

S. Février, R. Jamier, J. M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low-loss singlemode large mode area all-silica photonic bandgap fiber,” Opt. Express 14(2), 562–569 (2006).
[CrossRef] [PubMed]

Janker, B.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[CrossRef]

Joannepoulos, J. D.

Joannopoulos, J. D.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibers with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916), 650–653 (2002).
[CrossRef] [PubMed]

Kar, A. K.

Khopin, V.

Khopin, V. F.

S. Février, R. Jamier, J. M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low-loss singlemode large mode area all-silica photonic bandgap fiber,” Opt. Express 14(2), 562–569 (2006).
[CrossRef] [PubMed]

M. E. Likhachev, S. L. Semjonov, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Yu. Salganskii, M. A. Gurjanov, A. N. Gurjanov, R. Jamier, P. Viale, S. Fevrier, and J. M. Blondy, “Development and study of Bragg fibres with a large mode field and low optical losses,” IEEE J. Quantum Electron. 36(7), 581–586 (2006).
[CrossRef]

Knight, J. C.

Koizumi, F.

G. Brambilla, F. Koizumi, V. Finazzi, and D. J. Richardson, “Supercontinuum generation in tapered bismuth silicate fibres,” Electron. Lett. 41(14), 795–797 (2005).
[CrossRef]

Kormann, R.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[CrossRef]

Lancaster, D. G.

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 µm,” IEEE J. Sel. Top. Quantum Electron. 13(3), 567–572 (2007).
[CrossRef]

Le, H. Q.

Lee, B. G.

Leproux, P.

S. Février, P. Viale, F. Gerome, P. Leproux, P. Roy, J. M. Blondy, B. Dussardier, and G. Monnom, “Very large effective area singlemode photonic bandgap fibre,” Electron. Lett. 39(17), 1240–1242 (2003).
[CrossRef]

Likhachev, M. E.

S. Février, R. Jamier, J. M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low-loss singlemode large mode area all-silica photonic bandgap fiber,” Opt. Express 14(2), 562–569 (2006).
[CrossRef] [PubMed]

M. E. Likhachev, S. L. Semjonov, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Yu. Salganskii, M. A. Gurjanov, A. N. Gurjanov, R. Jamier, P. Viale, S. Fevrier, and J. M. Blondy, “Development and study of Bragg fibres with a large mode field and low optical losses,” IEEE J. Quantum Electron. 36(7), 581–586 (2006).
[CrossRef]

Loh, W. H.

Loncar, M.

Ludvigsen, H.

Luo, G. P.

Mairaj, A. K.

Marom, E.

Maurer, K.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[CrossRef]

McCarthy, J. E.

Monnom, G.

S. Février, P. Viale, F. Gerome, P. Leproux, P. Roy, J. M. Blondy, B. Dussardier, and G. Monnom, “Very large effective area singlemode photonic bandgap fibre,” Electron. Lett. 39(17), 1240–1242 (2003).
[CrossRef]

Monro, T. M.

X. Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro, “Nonsilica glasses for holey fibers,” J. Lightwave Technol. 23(6), 2046–2054 (2005).
[CrossRef]

X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. J. Richardson, “Extruded single mode high-index core one-dimensional microstructured optical fiber with high index contrast for highly nonlinear optical deivces,” Appl. Phys. Lett. 87(8), 081110–081113 (2005).
[CrossRef]

Mucke, R.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[CrossRef]

Omenetto, F. G.

Pal, B. P.

Palai, P.

K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, “A novel design of a dispersion compensating fiber,” IEEE Photon. Technol. Lett. 8(11), 1510–1512 (1996).
[CrossRef]

Parmigiani, F.

Peabody, M. L.

Peng, C.

Petropoulos, P.

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Horak, P. Petropoulos, W. H. Loh, and D. J. Richardson, “Dispersion-shifted all-solid high index-contrast microstructured optical fiber for nonlinear applications at 1.55 microm,” Opt. Express 17(22), 20249–20255 (2009).
[CrossRef] [PubMed]

X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. J. Richardson, “Extruded single mode high-index core one-dimensional microstructured optical fiber with high index contrast for highly nonlinear optical deivces,” Appl. Phys. Lett. 87(8), 081110–081113 (2005).
[CrossRef]

Pirson, A. C.

J. Wu, Z. Yao, J. Zong, and A. C. Pirson, “Single frequency fiber laser at 2.05 ?m based on Ho-doped germanate glass fiber,” Proc. SPIE 7195, 71951K (2009).
[CrossRef]

Poletti, F.

Richardson, D. J.

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Horak, P. Petropoulos, W. H. Loh, and D. J. Richardson, “Dispersion-shifted all-solid high index-contrast microstructured optical fiber for nonlinear applications at 1.55 microm,” Opt. Express 17(22), 20249–20255 (2009).
[CrossRef] [PubMed]

X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. J. Richardson, “Extruded single mode high-index core one-dimensional microstructured optical fiber with high index contrast for highly nonlinear optical deivces,” Appl. Phys. Lett. 87(8), 081110–081113 (2005).
[CrossRef]

G. Brambilla, F. Koizumi, V. Finazzi, and D. J. Richardson, “Supercontinuum generation in tapered bismuth silicate fibres,” Electron. Lett. 41(14), 795–797 (2005).
[CrossRef]

Ripin, D. J.

Ritari, T.

Roy, P.

S. Février, P. Viale, F. Gerome, P. Leproux, P. Roy, J. M. Blondy, B. Dussardier, and G. Monnom, “Very large effective area singlemode photonic bandgap fibre,” Electron. Lett. 39(17), 1240–1242 (2003).
[CrossRef]

Sabella, A.

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 µm,” IEEE J. Sel. Top. Quantum Electron. 13(3), 567–572 (2007).
[CrossRef]

Salganskii, M.

Salganskii, M. Y.

Salganskii, M. Yu.

M. E. Likhachev, S. L. Semjonov, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Yu. Salganskii, M. A. Gurjanov, A. N. Gurjanov, R. Jamier, P. Viale, S. Fevrier, and J. M. Blondy, “Development and study of Bragg fibres with a large mode field and low optical losses,” IEEE J. Quantum Electron. 36(7), 581–586 (2006).
[CrossRef]

Seddon, A. B.

Semjonov, S. L.

S. Février, R. Jamier, J. M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low-loss singlemode large mode area all-silica photonic bandgap fiber,” Opt. Express 14(2), 562–569 (2006).
[CrossRef] [PubMed]

M. E. Likhachev, S. L. Semjonov, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Yu. Salganskii, M. A. Gurjanov, A. N. Gurjanov, R. Jamier, P. Viale, S. Fevrier, and J. M. Blondy, “Development and study of Bragg fibres with a large mode field and low optical losses,” IEEE J. Quantum Electron. 36(7), 581–586 (2006).
[CrossRef]

Shenoy, M. R.

Sirtori, C.

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Room temperature mid-infrared quantum cascade lasers,” Electron. Lett. 32(6), 560–561 (1996).
[CrossRef]

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, S. N. G. Chu, and A. Y. Cho, “High power mid-infrared (? ~ 5 ?m) quantum cascade lasers operating above room temperature,” Appl. Phys. Lett. 68(26), 3680–3682 (1996).
[CrossRef]

Sivco, D. L.

B. Guo, Y. Wang, C. Peng, H. L. Zhang, G. P. Luo, H. Q. Le, C. Gmachl, D. L. Sivco, M. L. Peabody, and A. Y. Cho, “Laser-based mid-infrared reflectance imaging of biological tissues,” Opt. Express 12(1), 208–219 (2004).
[CrossRef] [PubMed]

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, S. N. G. Chu, and A. Y. Cho, “High power mid-infrared (? ~ 5 ?m) quantum cascade lasers operating above room temperature,” Appl. Phys. Lett. 68(26), 3680–3682 (1996).
[CrossRef]

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Room temperature mid-infrared quantum cascade lasers,” Electron. Lett. 32(6), 560–561 (1996).
[CrossRef]

Slemr, F.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[CrossRef]

Sujecki, S.

Sysoliatin, A.

Tang, Z.

Temelkuran, B.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibers with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916), 650–653 (2002).
[CrossRef] [PubMed]

Thomas, E. L.

Thyagarajan, K.

K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, “A novel design of a dispersion compensating fiber,” IEEE Photon. Technol. Lett. 8(11), 1510–1512 (1996).
[CrossRef]

Varshney, R. K.

K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, “A novel design of a dispersion compensating fiber,” IEEE Photon. Technol. Lett. 8(11), 1510–1512 (1996).
[CrossRef]

Viale, P.

M. E. Likhachev, S. L. Semjonov, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Yu. Salganskii, M. A. Gurjanov, A. N. Gurjanov, R. Jamier, P. Viale, S. Fevrier, and J. M. Blondy, “Development and study of Bragg fibres with a large mode field and low optical losses,” IEEE J. Quantum Electron. 36(7), 581–586 (2006).
[CrossRef]

S. Février, P. Viale, F. Gerome, P. Leproux, P. Roy, J. M. Blondy, B. Dussardier, and G. Monnom, “Very large effective area singlemode photonic bandgap fibre,” Electron. Lett. 39(17), 1240–1242 (2003).
[CrossRef]

Wang, A.

Wang, Y.

Werle, P.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[CrossRef]

Wolchover, N. A.

Wu, J.

J. Wu, Z. Yao, J. Zong, and A. C. Pirson, “Single frequency fiber laser at 2.05 ?m based on Ho-doped germanate glass fiber,” Proc. SPIE 7195, 71951K (2009).
[CrossRef]

Yao, Z.

J. Wu, Z. Yao, J. Zong, and A. C. Pirson, “Single frequency fiber laser at 2.05 ?m based on Ho-doped germanate glass fiber,” Proc. SPIE 7195, 71951K (2009).
[CrossRef]

Yariv, A.

Yeh, P.

Zhang, H. L.

Zong, J.

J. Wu, Z. Yao, J. Zong, and A. C. Pirson, “Single frequency fiber laser at 2.05 ?m based on Ho-doped germanate glass fiber,” Proc. SPIE 7195, 71951K (2009).
[CrossRef]

Appl. Phys. Lett. (2)

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, S. N. G. Chu, and A. Y. Cho, “High power mid-infrared (? ~ 5 ?m) quantum cascade lasers operating above room temperature,” Appl. Phys. Lett. 68(26), 3680–3682 (1996).
[CrossRef]

X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. J. Richardson, “Extruded single mode high-index core one-dimensional microstructured optical fiber with high index contrast for highly nonlinear optical deivces,” Appl. Phys. Lett. 87(8), 081110–081113 (2005).
[CrossRef]

Electron. Lett. (3)

G. Brambilla, F. Koizumi, V. Finazzi, and D. J. Richardson, “Supercontinuum generation in tapered bismuth silicate fibres,” Electron. Lett. 41(14), 795–797 (2005).
[CrossRef]

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Room temperature mid-infrared quantum cascade lasers,” Electron. Lett. 32(6), 560–561 (1996).
[CrossRef]

S. Février, P. Viale, F. Gerome, P. Leproux, P. Roy, J. M. Blondy, B. Dussardier, and G. Monnom, “Very large effective area singlemode photonic bandgap fibre,” Electron. Lett. 39(17), 1240–1242 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. E. Likhachev, S. L. Semjonov, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Yu. Salganskii, M. A. Gurjanov, A. N. Gurjanov, R. Jamier, P. Viale, S. Fevrier, and J. M. Blondy, “Development and study of Bragg fibres with a large mode field and low optical losses,” IEEE J. Quantum Electron. 36(7), 581–586 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 µm,” IEEE J. Sel. Top. Quantum Electron. 13(3), 567–572 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, “A novel design of a dispersion compensating fiber,” IEEE Photon. Technol. Lett. 8(11), 1510–1512 (1996).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. (1)

Nature (1)

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibers with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916), 650–653 (2002).
[CrossRef] [PubMed]

Opt. Express (8)

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008).
[CrossRef] [PubMed]

G. Genty, T. Ritari, and H. Ludvigsen, “Supercontinuum generation in large mode-area microstructured fibers,” Opt. Express 13(21), 8625–8633 (2005).
[CrossRef] [PubMed]

H. T. Bookey, S. Dasgupta, N. Bezawada, B. P. Pal, A. Sysoliatin, J. E. McCarthy, M. Salganskii, V. Khopin, and A. K. Kar, “Experimental demonstration of spectral broadening in an all-silica Bragg fiber,” Opt. Express 17(19), 17130–17135 (2009).
[CrossRef] [PubMed]

S. Février, R. Jamier, J. M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low-loss singlemode large mode area all-silica photonic bandgap fiber,” Opt. Express 14(2), 562–569 (2006).
[CrossRef] [PubMed]

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Horak, P. Petropoulos, W. H. Loh, and D. J. Richardson, “Dispersion-shifted all-solid high index-contrast microstructured optical fiber for nonlinear applications at 1.55 microm,” Opt. Express 17(22), 20249–20255 (2009).
[CrossRef] [PubMed]

M. Lon?ar, B. G. Lee, L. Diehl, M. A. Belkin, F. Capasso, M. Giovannini, J. Faist, and E. Gini, “Design and fabrication of photonic crystal quantum cascade lasers for optofluidics,” Opt. Express 15(8), 4499–4514 (2007).
[CrossRef] [PubMed]

A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18(25), 26704–26719 (2010).
[CrossRef] [PubMed]

B. Guo, Y. Wang, C. Peng, H. L. Zhang, G. P. Luo, H. Q. Le, C. Gmachl, D. L. Sivco, M. L. Peabody, and A. Y. Cho, “Laser-based mid-infrared reflectance imaging of biological tissues,” Opt. Express 12(1), 208–219 (2004).
[CrossRef] [PubMed]

Opt. Lasers Eng. (1)

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[CrossRef]

Proc. SPIE (1)

J. Wu, Z. Yao, J. Zong, and A. C. Pirson, “Single frequency fiber laser at 2.05 ?m based on Ho-doped germanate glass fiber,” Proc. SPIE 7195, 71951K (2009).
[CrossRef]

Other (4)

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Generating mid-IR source using As2 S3-based chalcogenide photonic crystal fibers,” CThN6, OSA/CLEO/IQEC (2009).

Q. Wang, J. Geng, Z. Jiang, T. Luo, and S. Jiang, “Mode-locked Tm-Ho fiber laser with a Sb-based SESAM,” CMK2, OSA/ CLEO (2011).

D. G. Lancaster, A. Sabella, A. Hemming, S. Bennetts, and S. D. Jackson, “Power-scalable thulium and holmium fibre lasers pumped by 793 nm diode lasers,” WE5, OSA/ASSP (2007).

S. Dasgupta, B. P. Pal, and M. R. Shenoy, Chapter on Photonic bandgap guided Bragg fibers in Guided Wave Optical Components and Devices: Basics, Technology, and Applications, B. P. Pal (Ed.), (Elsevier Academic Press, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Refractive index profile of the designed LMA Bragg fiber.

Fig. 2
Fig. 2

Confinement loss spectrum as a function of mode effective index of the designed fiber (with five cladding layers) at the operating wavelength of 2.1 µm. Each dot on the graph corresponds to one eigen mode supported by the fiber geometry. The dot encircled in red is the FM. We have divided the modes into three categories. Band-1 modes: these are modes that exhibit confinement loss less than or ~1 dB/m. Except the FM, LP02 and LP21 modes, there is no core localized mode; Band-2 modes: these are modes with confinement loss ranging within 1 dB/m to 100 dB/m; Band-3 modes: modes with losses greater than 100 dB/m. LP11 mode falls within this category. Three sample modes in Band-1 have been encircled in dashed and marked as 1, 2 and 3. Their corresponding field distributions are shown in the top panel of Fig. 3.

Fig. 3
Fig. 3

Typical filed distributions of different categories of modes supported by the designed fiber. We have calculated the modes using a quarter structure of the fiber and employed various symmetry conditions to calculate all possible modes. The grey lines indicate the fiber geometry with PML. Arrows indicate the polarization state of the electric field. Figures 3a1) to 3a3) show the field distribution corresponding to the modes encircled as 1, 2, and 3, respectively in Fig. 2 under Band-1 modes. From these distributions it is clearly evident that these modes are not core guided modes. In Figs. 3b1) to 3b3) we have shown the field distributions corresponding to LP03, LP31 and LP41 modes, respectively under the Band-2 modes. For the category of Band-3 modes, we have shown sample field distributions of LP11 (as Fig. 3c1) and two other HOMs of same symmetries (as Figs. 3c2 and 3c3).

Fig. 4
Fig. 4

Spectral response of the confinement loss of the FM and LP11 mode of the designed fiber.

Fig. 5
Fig. 5

Confinement loss spectrum of the LP02 mode as compared to the FM of the designed fiber.

Fig. 6
Fig. 6

Variation of effective area of the FM with wavelength. Inset shows the field profile of the FM in one-quarter of the fiber structure at λ = 2.1 µm. The grey lines indicate the fiber geometry. Arrows indicate the polarization state of the electric field.

Fig. 7
Fig. 7

Dispersion spectrum of the FM.

Tables (1)

Tables Icon

Table 1 Phase accumulated by the LP01 and LP11 modes in the designed Bragg fiber

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k 1 0 d 1 = k 2 0 d 2 = π 2
k 1 1 d 1 = k 2 1 d 2 =π

Metrics