Abstract

This paper studies the effects of the obstacle on non-line-of-sight ultraviolet communication links using multiple-scatter model based on a Monte Carlo method. On the condition that transmitter beam and receiver FOV just pass the top of the obstacle, and ranges is fixed, the received energy density is at its maximum. The path loss increases when the transmitter or the receiver is much near to the obstacle, because the nearby common scattering volumes decrease intensively. The optimal received range decreases with the increasing of the distance between transmitter and obstacle. The predictions are validated with experimental measurements. This work can be used for the guidance of UV system design and network technology to apply in complex surroundings, such as mountain, buildings, etc.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Charles, B. Hughes, A. Erickson, and et al.., “An ultraviolet laser based communication system for short-range tactical applications,” Proc. SPIE 2115, 79–86 (1994).
    [CrossRef]
  2. J. J. Puschell and R. Bayse, “High data rate ultraviolet communication systems for the tactical battlefield,” Proc. IEEE Tactical Commun. Conf. (IEEE, 1990), pp. 1253–267.
  3. D. M. Reilly and C. Warde, “Temporal characteristics of single scatter radiation,” J. Opt. Soc. Am. A 69(3), 464–470 (1979).
    [CrossRef]
  4. M. R. Luettgen, J. H. Shapiro, and D. M. Reilly, “Non-line-of-sight single-scatter propagation model,” J. Opt. Soc. Am. A 8(12), 1964–1972 (1991).
    [CrossRef]
  5. Z. Xu, H. Ding, B. M. Sadler, and G. Chen, “Analytical performance study of solar blind non-line-of-sight ultraviolet short-range communication links,” Opt. Lett. 33(16), 1860–1862 (2008).
    [CrossRef] [PubMed]
  6. H. Yin, S. Chang, X. Wang, J. Yang, J. Yang, and J. Tan, “Analytical model of non-line-of-sight single-scatter propagation,” J. Opt. Soc. Am. A 27(7), 1505–1509 (2010).
    [CrossRef] [PubMed]
  7. L. Wang, Z. Xu, and B. M. Sadler, “Non-line-of-sight ultraviolet link loss in noncoplanar geometry,” Opt. Lett. 35(8), 1263–1265 (2010).
    [CrossRef] [PubMed]
  8. G. Chen, Z. Xu, H. Ding, and B. M. Sadler, “Path loss modeling and performance trade-off study for short-range non-line-of-sight ultraviolet communications,” Opt. Express 17(5), 3929–3940 (2009).
    [CrossRef] [PubMed]
  9. H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Top. Comm. 27(9), 1535–1544 (2009).
    [CrossRef]
  10. H. Yin, S. Chang, H. Jia, J. Yang, and J. Yang, “Non-line-of-sight multiscatter propagation model,” J. Opt. Soc. Am. A 26(11), 2466–2469 (2009).
    [CrossRef] [PubMed]
  11. Z. Xu, H. Ding, B. M. Sadler, and G. Chen, “Analytical performance study of solar blind non-line-of-sight ultraviolet short-range communication links,” Opt. Lett. 33(16), 1860–1862 (2008).
    [CrossRef] [PubMed]
  12. M. R. Luettgen, J. H. Shapiro, and D. M. Reilly, “Non-line of-sight single-scatter propagation model,” J. Opt. Soc. Am. A 8(12), 1964–1972 (1991).
    [CrossRef]
  13. A. S. Zachor, “Aureole radiance field about a source in a scattering-absorbing medium,” Appl. Opt. 17(12), 1911–1922 (1978).
    [CrossRef] [PubMed]
  14. A. Bucholtz, “Rayleigh-scattering calculations for the terrestrial atmosphere,” Appl. Opt. 34(15), 2765–2773 (1995).
    [CrossRef] [PubMed]
  15. H. Ding, G. Chen, A. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Comm. 27(9), 1535–1544 (2009).
    [CrossRef]
  16. G. Chen, Z. Xu, and B. M. Sadler, “Experimental demonstration of ultraviolet pulse broadening in short-range non-line-of-sight communication channels,” Opt. Express 18(10), 10500–10509 (2010).
    [CrossRef] [PubMed]

2010 (3)

2009 (4)

H. Ding, G. Chen, A. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Comm. 27(9), 1535–1544 (2009).
[CrossRef]

G. Chen, Z. Xu, H. Ding, and B. M. Sadler, “Path loss modeling and performance trade-off study for short-range non-line-of-sight ultraviolet communications,” Opt. Express 17(5), 3929–3940 (2009).
[CrossRef] [PubMed]

H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Top. Comm. 27(9), 1535–1544 (2009).
[CrossRef]

H. Yin, S. Chang, H. Jia, J. Yang, and J. Yang, “Non-line-of-sight multiscatter propagation model,” J. Opt. Soc. Am. A 26(11), 2466–2469 (2009).
[CrossRef] [PubMed]

2008 (2)

1995 (1)

1994 (1)

B. Charles, B. Hughes, A. Erickson, and et al.., “An ultraviolet laser based communication system for short-range tactical applications,” Proc. SPIE 2115, 79–86 (1994).
[CrossRef]

1991 (2)

1979 (1)

D. M. Reilly and C. Warde, “Temporal characteristics of single scatter radiation,” J. Opt. Soc. Am. A 69(3), 464–470 (1979).
[CrossRef]

1978 (1)

Bucholtz, A.

Chang, S.

Charles, B.

B. Charles, B. Hughes, A. Erickson, and et al.., “An ultraviolet laser based communication system for short-range tactical applications,” Proc. SPIE 2115, 79–86 (1994).
[CrossRef]

Chen, G.

Ding, H.

Erickson, A.

B. Charles, B. Hughes, A. Erickson, and et al.., “An ultraviolet laser based communication system for short-range tactical applications,” Proc. SPIE 2115, 79–86 (1994).
[CrossRef]

Hughes, B.

B. Charles, B. Hughes, A. Erickson, and et al.., “An ultraviolet laser based communication system for short-range tactical applications,” Proc. SPIE 2115, 79–86 (1994).
[CrossRef]

Jia, H.

Luettgen, M. R.

Majumdar, A.

H. Ding, G. Chen, A. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Comm. 27(9), 1535–1544 (2009).
[CrossRef]

Majumdar, A. K.

H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Top. Comm. 27(9), 1535–1544 (2009).
[CrossRef]

Reilly, D. M.

Sadler, B. M.

Shapiro, J. H.

Tan, J.

Wang, L.

Wang, X.

Warde, C.

D. M. Reilly and C. Warde, “Temporal characteristics of single scatter radiation,” J. Opt. Soc. Am. A 69(3), 464–470 (1979).
[CrossRef]

Xu, Z.

Yang, J.

Yin, H.

Zachor, A. S.

Appl. Opt. (2)

IEEE J. Sel. Areas Comm. (1)

H. Ding, G. Chen, A. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Comm. 27(9), 1535–1544 (2009).
[CrossRef]

IEEE J. Sel. Top. Comm. (1)

H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Top. Comm. 27(9), 1535–1544 (2009).
[CrossRef]

J. Opt. Soc. Am. A (5)

Opt. Express (2)

Opt. Lett. (3)

Proc. SPIE (1)

B. Charles, B. Hughes, A. Erickson, and et al.., “An ultraviolet laser based communication system for short-range tactical applications,” Proc. SPIE 2115, 79–86 (1994).
[CrossRef]

Other (1)

J. J. Puschell and R. Bayse, “High data rate ultraviolet communication systems for the tactical battlefield,” Proc. IEEE Tactical Commun. Conf. (IEEE, 1990), pp. 1253–267.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

UV communications link with obstacle.

Fig. 2
Fig. 2

Energy density versus the transmitter elevation angle.

Fig. 3
Fig. 3

Energy density versus the receiver elevation angle.

Fig. 4
Fig. 4

FWHM of the peak versus transmitter divergence (θT) and receiver FOV (θR).

Fig. 5
Fig. 5

Energy density versus different distance between receiver and obstacle.

Fig. 6
Fig. 6

The relationship between the scattering phase function and the scattering angle.

Fig. 7
Fig. 7

Predicted energy density for different transmitter divergence and receiver FOV.

Fig. 8
Fig. 8

Energy density versus different the height of obstacle.

Fig. 9
Fig. 9

Predicted energy density for the height and the distance between receiver and obstacle.

Fig. 10
Fig. 10

NLOS UV channel with obstacle measurement test-bed. (a)Outer door scene. (b) Sketch map.

Fig. 11
Fig. 11

Measured and simulated path loss for different receiver elevation angle.

Fig. 12
Fig. 12

Measured and simulated path loss for different transmitter elevation angle.

Fig. 13
Fig. 13

Path loss of measurement and simulation for the distance between receiver and obstacle.

Tables (2)

Tables Icon

Table 1 Simulation Parameters

Tables Icon

Table 2 Experiment Parameters

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

δ E r = E T k s P(cos β s ) A r δVcosζ Ω r 1 2 r 2 2 exp[ k e ( r 1 + r 2 )]

Metrics