Abstract

We demonstrate an ultracompact, chip-based, all-optical exclusive-OR (XOR) logic gate via slow-light enhanced four-wave mixing (FWM) in a silicon photonic crystal waveguide (PhCWG). We achieve error-free operation (<10−9) for 40 Gbit/s differential phase-shift keying (DPSK) signals with a 2.8 dB power penalty. Slowing the light to vg = c/32 enables a FWM conversion efficiency, η, of −30 dB for a 396 μm device. The nonlinear FWM process is enhanced by 20 dB compared to a relatively fast mode of vg = c/5. The XOR operation requires ≈ 41 mW, corresponding to a switching energy of 1 pJ/bit. We compare the slow-light PhCWG device performance with experimentally demonstrated XOR DPSK logic gates in other platforms and discuss scaling the device operation to higher bit-rates. The ultracompact structure suggests the potential for device integration.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
    [CrossRef]
  2. T. D. Vo, M. D. Pelusi, J. Schröder, F. Luan, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Simultaneous multi-impairment monitoring of 640 gb/s signals using photonic chip based rf spectrum analyzer,” Opt. Express 18, 3938–3945 (2010).
    [CrossRef] [PubMed]
  3. H. Ji, M. Pu, H. Hu, M. Galili, L. Oxenløwe, K. Yvind, J. Hvam, and P. Jeppesen, “Optical waveform sampling and error-free demultiplexing of 1.28 Tb/s serial data in a nanoengineered silicon waveguide,” J. Lightwave Technol. 29, 426–431 (2011).
    [CrossRef]
  4. A. Willner, O. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17320–332 (2010).
  5. A. Bogoni, X. Wu, Z. Bakhtiari, S. Nuccio, and A. E. Willner, “640 Gbits/s photonic logic gates,” Opt. Lett. 35, 3955–3957 (2010).
    [CrossRef] [PubMed]
  6. A. H. Gnauck and P. J. Winzer, “Optical phase-shift-keyed transmission,” J. Lightwave Technol. 23, 115–130 (2005).
    [CrossRef]
  7. J. Wang, Q. Sun, and J. Sun, “All-optical 40 Gbit/s CSRZ-DPSK logic XOR gate and format conversion using four-wave mixing,” Opt. Express 17, 12555–12563 (2009).
    [CrossRef] [PubMed]
  8. I. Kang, C. Dorrer, and J. Leuthold, “All-optical xor operation of 40 gbit/s phase-shift-keyed data using four-wave mixing in semiconductor optical amplifier,” Electron. Lett. 40, 496–498 (2004).
    [CrossRef]
  9. N. Deng, K. Chan, C. K. Chan, and L. K. Chen, “An all-optical XOR logic gate for high-speed RZ-DPSK signals by FWM in semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 12, 702–707 (2006).
    [CrossRef]
  10. J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, “Ultrafast all-optical three-input Boolean XOR operation for differential phase-shift keying signals using periodically poled lithium niobate,” Opt. Lett. 33, 1419–1421 (2008).
    [CrossRef] [PubMed]
  11. M. V. Drummond, J. D. Reis, R. N. Nogueira, P. P. Monteiro, A. L. Teixeira, S. Shinada, N. Wada, and H. Ito, “Error-free wavelength conversion at 160 Gbit/s in PPLN waveguide at room temperature,” Electron. Lett. 45, 1135–1137 (2009).
    [CrossRef]
  12. T. D. Vo, R. Pant, M. D. Pelusi, J. Schröder, D. Y. Choi, S. K. Debbarma, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic chip-based all-optical XOR gate for 40 and 160 Gbit/s DPSK signals,” Opt. Lett. 36, 710–712 (2011).
    [CrossRef] [PubMed]
  13. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2007).
    [CrossRef]
  14. L. Zhang, R. Ji, L. Jia, L. Yang, P. Zhou, Y. Tian, P. Chen, Y. Lu, Z. Jiang, Y. Liu, and et al., “Demonstration of directed XOR/XNOR logic gates using two cascaded microring resonators,” Opt. Lett. 35, 1620–1622 (2010).
    [CrossRef] [PubMed]
  15. D. J. Moss, L. Fu, I. Littler, and B. J. Eggleton, “Ultrafast all-optical modulation via two-photon absorption in silicon-on-insulator waveguides,” Electron. Lett. 41, 320–321 (2005).
    [CrossRef]
  16. T. K. Liang, L. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absorption in silicon waveguides,” Opt. Commun. 265, 171–174 (2006).
    [CrossRef]
  17. V. M. N. Passaro and F. de Passaro, “All-optical and gate based on raman effect in silicon-on-insulator waveguide,” Opt. Quantum Electron. 38, 877–888 (2006).
    [CrossRef]
  18. A. Biberman, B. G. Lee, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Wavelength multicasting in silicon photonic nanowires,” Opt. Express 18, 18047–18055 (2010).
    [CrossRef] [PubMed]
  19. B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Optical signal processing on a silicon chip at 640 Gb/s using slow-light,” Opt. Express 18, 7770–7781 (2010).
    [CrossRef] [PubMed]
  20. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
    [CrossRef]
  21. M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
    [CrossRef]
  22. N. A. R. Bhat and J. E. Sipe, “Optical pulse propagation in nonlinear photonic crystals,” Phys. Rev. E 64, 056604 (2001).
    [CrossRef]
  23. T. F. Krauss, “−2670,” J. Phys. D: Appl. Phys. 40, 2666 (2007).
    [CrossRef]
  24. C. Monat, M. de Sterke, and B. J. Eggleton, “Slow light enhanced nonlinear optics in periodic structures,” J. Opt. 12, 104003 (2010).
    [CrossRef]
  25. C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. Eggleton, T. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17, 2944–2953 (2009).
    [CrossRef] [PubMed]
  26. P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, and A. De Rossi, “Observation of soliton pulse compression in photonic crystal waveguides,” in Quantum Electronics and Laser Science Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper QPDA10. http://www.opticsinfobase.org/abstract.cfm?URI=QELS-2010-QPDA10 .
  27. C. Husko, S. Combrié, Q. Tran, F. Raineri, C. Wong, and A. De Rossi, “Non-trivial scaling of self-phase modulation and three-photon absorption in III–V photonic crystal waveguides,” Opt. Express 17, 22442–22451 (2009).
    [CrossRef]
  28. K. Inoue, H. Oda, N. Ikeda, and K. Asakawa, “Enhanced third-order nonlinear effects in slow-light photonic-crystal slab waveguides of line defect,” Opt. Express 17, 7206–7216 (2009).
    [CrossRef] [PubMed]
  29. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
    [CrossRef]
  30. J. Li, L. O’Faolain, I. H. Rey, and T. F. Krauss, “Four-wave mixing in photonic crystal waveguides: slow light enhancement and limitations,” Opt. Express 19, 4458–4463 (2011).
    [CrossRef] [PubMed]
  31. C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. O’Faolain, J. Li, and T. F. Krauss, “Four-wave mixing in slow light engineered silicon photonic crystal waveguides,” Opt. Express 18, 22915–22927 (2010).
    [CrossRef] [PubMed]
  32. J. F. McMillan, M. Yu, D.-L. Kwong, and C. W. Wong, “Observation of four-wave mixing in slow-light silicon photonic crystal waveguides,” Opt. Express 18, 15484–15497 (2010).
    [CrossRef] [PubMed]
  33. V. Eckhouse, I. Cestier, G. Eisenstein, S. Combrié, P. Colman, A. De Rossi, M. Santagiustina, C. Someda, and G. Vadalà, “Highly efficient four wave mixing in GaInP photonic crystal waveguides,” Opt. Lett. 35, 1440–1442 (2010).
    [CrossRef] [PubMed]
  34. K. Suzuki, Y. Hamachi, and T. Baba, “Fabrication and characterization of chalcogenide glass photonic crystal waveguides,” Opt. Express 17, 22393–22400 (2009).
    [CrossRef]
  35. B. Corcoran, M. D. Pelusi, C. Monat, J. Li, L. O’Faolain, T. F. Krauss, and B. J. Eggleton, “Ultracompact 160 gbaud all-optical demultiplexing exploiting slow light in an engineered silicon photonic crystal waveguide,” Opt. Lett. 36, 1728–1730 (2011).
    [CrossRef] [PubMed]
  36. M. Santagiustina, C. Someda, G. Vadala, S. Combrie, and A. De Rossi, “Theory of slow light enhanced four-wave mixing in photonic crystal waveguides,” Opt. Express 18, 21024–21029 (2010).
    [CrossRef] [PubMed]
  37. A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
    [CrossRef]
  38. J. Li, T. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
    [CrossRef] [PubMed]
  39. M. A. F. Roelens, S. Frisken, J. Bolger, D. Abakoumov, G. Baxter, S. Poole, and B. J. Eggleton, “Dispersion trimming in a reconfigurable wavelength selective switch,” J. Lightwave Technol. 26, 73–78 (2008).
    [CrossRef]
  40. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444–9450 (2006).
    [CrossRef] [PubMed]
  41. L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–27638 (2010).
    [CrossRef]
  42. R. Tucker, “Green Optical Communications—Part II: Energy Limitations in Networks,” IEEE J. Selected Topics in Quantum Electronics, pp. 1–14 (2011).
  43. F. Li, T. D. Vo, C. Husko, M. Pelusi, D.-X. Xu, A. Densmore, R. Ma, S. Janz, B. J. Eggleton, and D. J. Moss, “All-optical XOR logic gate for 40Gb/s DPSK signals via FWM in a silicon nanowire,” IEEE Photonics ConferenceArlington, VA, USA (2011).

2011 (4)

2010 (13)

T. D. Vo, M. D. Pelusi, J. Schröder, F. Luan, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Simultaneous multi-impairment monitoring of 640 gb/s signals using photonic chip based rf spectrum analyzer,” Opt. Express 18, 3938–3945 (2010).
[CrossRef] [PubMed]

B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Optical signal processing on a silicon chip at 640 Gb/s using slow-light,” Opt. Express 18, 7770–7781 (2010).
[CrossRef] [PubMed]

V. Eckhouse, I. Cestier, G. Eisenstein, S. Combrié, P. Colman, A. De Rossi, M. Santagiustina, C. Someda, and G. Vadalà, “Highly efficient four wave mixing in GaInP photonic crystal waveguides,” Opt. Lett. 35, 1440–1442 (2010).
[CrossRef] [PubMed]

L. Zhang, R. Ji, L. Jia, L. Yang, P. Zhou, Y. Tian, P. Chen, Y. Lu, Z. Jiang, Y. Liu, and et al., “Demonstration of directed XOR/XNOR logic gates using two cascaded microring resonators,” Opt. Lett. 35, 1620–1622 (2010).
[CrossRef] [PubMed]

J. F. McMillan, M. Yu, D.-L. Kwong, and C. W. Wong, “Observation of four-wave mixing in slow-light silicon photonic crystal waveguides,” Opt. Express 18, 15484–15497 (2010).
[CrossRef] [PubMed]

A. Biberman, B. G. Lee, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Wavelength multicasting in silicon photonic nanowires,” Opt. Express 18, 18047–18055 (2010).
[CrossRef] [PubMed]

M. Santagiustina, C. Someda, G. Vadala, S. Combrie, and A. De Rossi, “Theory of slow light enhanced four-wave mixing in photonic crystal waveguides,” Opt. Express 18, 21024–21029 (2010).
[CrossRef] [PubMed]

C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. O’Faolain, J. Li, and T. F. Krauss, “Four-wave mixing in slow light engineered silicon photonic crystal waveguides,” Opt. Express 18, 22915–22927 (2010).
[CrossRef] [PubMed]

A. Bogoni, X. Wu, Z. Bakhtiari, S. Nuccio, and A. E. Willner, “640 Gbits/s photonic logic gates,” Opt. Lett. 35, 3955–3957 (2010).
[CrossRef] [PubMed]

L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–27638 (2010).
[CrossRef]

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[CrossRef]

A. Willner, O. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17320–332 (2010).

C. Monat, M. de Sterke, and B. J. Eggleton, “Slow light enhanced nonlinear optics in periodic structures,” J. Opt. 12, 104003 (2010).
[CrossRef]

2009 (7)

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[CrossRef]

M. V. Drummond, J. D. Reis, R. N. Nogueira, P. P. Monteiro, A. L. Teixeira, S. Shinada, N. Wada, and H. Ito, “Error-free wavelength conversion at 160 Gbit/s in PPLN waveguide at room temperature,” Electron. Lett. 45, 1135–1137 (2009).
[CrossRef]

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. Eggleton, T. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17, 2944–2953 (2009).
[CrossRef] [PubMed]

K. Inoue, H. Oda, N. Ikeda, and K. Asakawa, “Enhanced third-order nonlinear effects in slow-light photonic-crystal slab waveguides of line defect,” Opt. Express 17, 7206–7216 (2009).
[CrossRef] [PubMed]

J. Wang, Q. Sun, and J. Sun, “All-optical 40 Gbit/s CSRZ-DPSK logic XOR gate and format conversion using four-wave mixing,” Opt. Express 17, 12555–12563 (2009).
[CrossRef] [PubMed]

K. Suzuki, Y. Hamachi, and T. Baba, “Fabrication and characterization of chalcogenide glass photonic crystal waveguides,” Opt. Express 17, 22393–22400 (2009).
[CrossRef]

C. Husko, S. Combrié, Q. Tran, F. Raineri, C. Wong, and A. De Rossi, “Non-trivial scaling of self-phase modulation and three-photon absorption in III–V photonic crystal waveguides,” Opt. Express 17, 22442–22451 (2009).
[CrossRef]

2008 (4)

2007 (2)

T. F. Krauss, “−2670,” J. Phys. D: Appl. Phys. 40, 2666 (2007).
[CrossRef]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2007).
[CrossRef]

2006 (4)

T. K. Liang, L. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absorption in silicon waveguides,” Opt. Commun. 265, 171–174 (2006).
[CrossRef]

V. M. N. Passaro and F. de Passaro, “All-optical and gate based on raman effect in silicon-on-insulator waveguide,” Opt. Quantum Electron. 38, 877–888 (2006).
[CrossRef]

N. Deng, K. Chan, C. K. Chan, and L. K. Chen, “An all-optical XOR logic gate for high-speed RZ-DPSK signals by FWM in semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 12, 702–707 (2006).
[CrossRef]

L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444–9450 (2006).
[CrossRef] [PubMed]

2005 (2)

A. H. Gnauck and P. J. Winzer, “Optical phase-shift-keyed transmission,” J. Lightwave Technol. 23, 115–130 (2005).
[CrossRef]

D. J. Moss, L. Fu, I. Littler, and B. J. Eggleton, “Ultrafast all-optical modulation via two-photon absorption in silicon-on-insulator waveguides,” Electron. Lett. 41, 320–321 (2005).
[CrossRef]

2004 (3)

I. Kang, C. Dorrer, and J. Leuthold, “All-optical xor operation of 40 gbit/s phase-shift-keyed data using four-wave mixing in semiconductor optical amplifier,” Electron. Lett. 40, 496–498 (2004).
[CrossRef]

M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
[CrossRef]

A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[CrossRef]

2001 (1)

N. A. R. Bhat and J. E. Sipe, “Optical pulse propagation in nonlinear photonic crystals,” Phys. Rev. E 64, 056604 (2001).
[CrossRef]

Abakoumov, D.

Abedin, K. S.

T. K. Liang, L. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absorption in silicon waveguides,” Opt. Commun. 265, 171–174 (2006).
[CrossRef]

Andrekson, P. A.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[CrossRef]

Asakawa, K.

Baba, T.

Baets, R.

T. K. Liang, L. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absorption in silicon waveguides,” Opt. Commun. 265, 171–174 (2006).
[CrossRef]

Bakhtiari, Z.

Baxter, G.

Beggs, D. M.

Bergman, K.

Bhat, N. A. R.

N. A. R. Bhat and J. E. Sipe, “Optical pulse propagation in nonlinear photonic crystals,” Phys. Rev. E 64, 056604 (2001).
[CrossRef]

Biberman, A.

Bogaerts, W.

T. K. Liang, L. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absorption in silicon waveguides,” Opt. Commun. 265, 171–174 (2006).
[CrossRef]

Bogoni, A.

A. Willner, O. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17320–332 (2010).

A. Bogoni, X. Wu, Z. Bakhtiari, S. Nuccio, and A. E. Willner, “640 Gbits/s photonic logic gates,” Opt. Lett. 35, 3955–3957 (2010).
[CrossRef] [PubMed]

Bogris, A.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[CrossRef]

Bolger, J.

Borel, P. I.

Bulla, D. A. P.

Cestier, I.

Chan, C. K.

N. Deng, K. Chan, C. K. Chan, and L. K. Chen, “An all-optical XOR logic gate for high-speed RZ-DPSK signals by FWM in semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 12, 702–707 (2006).
[CrossRef]

Chan, K.

N. Deng, K. Chan, C. K. Chan, and L. K. Chen, “An all-optical XOR logic gate for high-speed RZ-DPSK signals by FWM in semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 12, 702–707 (2006).
[CrossRef]

Chen, L. K.

N. Deng, K. Chan, C. K. Chan, and L. K. Chen, “An all-optical XOR logic gate for high-speed RZ-DPSK signals by FWM in semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 12, 702–707 (2006).
[CrossRef]

Chen, P.

Choi, D. Y.

Choi, D.-Y.

Colman, P.

Combrie, S.

Combrié, S.

Corcoran, B.

Dasgupta, S.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[CrossRef]

de Passaro, F.

V. M. N. Passaro and F. de Passaro, “All-optical and gate based on raman effect in silicon-on-insulator waveguide,” Opt. Quantum Electron. 38, 877–888 (2006).
[CrossRef]

De Rossi, A.

de Sterke, M.

C. Monat, M. de Sterke, and B. J. Eggleton, “Slow light enhanced nonlinear optics in periodic structures,” J. Opt. 12, 104003 (2010).
[CrossRef]

Debbarma, S. K.

Deng, N.

N. Deng, K. Chan, C. K. Chan, and L. K. Chen, “An all-optical XOR logic gate for high-speed RZ-DPSK signals by FWM in semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 12, 702–707 (2006).
[CrossRef]

Densmore, A.

F. Li, T. D. Vo, C. Husko, M. Pelusi, D.-X. Xu, A. Densmore, R. Ma, S. Janz, B. J. Eggleton, and D. J. Moss, “All-optical XOR logic gate for 40Gb/s DPSK signals via FWM in a silicon nanowire,” IEEE Photonics ConferenceArlington, VA, USA (2011).

Dorrer, C.

I. Kang, C. Dorrer, and J. Leuthold, “All-optical xor operation of 40 gbit/s phase-shift-keyed data using four-wave mixing in semiconductor optical amplifier,” Electron. Lett. 40, 496–498 (2004).
[CrossRef]

Drummond, M. V.

M. V. Drummond, J. D. Reis, R. N. Nogueira, P. P. Monteiro, A. L. Teixeira, S. Shinada, N. Wada, and H. Ito, “Error-free wavelength conversion at 160 Gbit/s in PPLN waveguide at room temperature,” Electron. Lett. 45, 1135–1137 (2009).
[CrossRef]

Dumon, P.

T. K. Liang, L. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absorption in silicon waveguides,” Opt. Commun. 265, 171–174 (2006).
[CrossRef]

Ebnali-Heidari, M.

Eckhouse, V.

Eggleton, B.

Eggleton, B. J.

T. D. Vo, R. Pant, M. D. Pelusi, J. Schröder, D. Y. Choi, S. K. Debbarma, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic chip-based all-optical XOR gate for 40 and 160 Gbit/s DPSK signals,” Opt. Lett. 36, 710–712 (2011).
[CrossRef] [PubMed]

B. Corcoran, M. D. Pelusi, C. Monat, J. Li, L. O’Faolain, T. F. Krauss, and B. J. Eggleton, “Ultracompact 160 gbaud all-optical demultiplexing exploiting slow light in an engineered silicon photonic crystal waveguide,” Opt. Lett. 36, 1728–1730 (2011).
[CrossRef] [PubMed]

B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Optical signal processing on a silicon chip at 640 Gb/s using slow-light,” Opt. Express 18, 7770–7781 (2010).
[CrossRef] [PubMed]

T. D. Vo, M. D. Pelusi, J. Schröder, F. Luan, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Simultaneous multi-impairment monitoring of 640 gb/s signals using photonic chip based rf spectrum analyzer,” Opt. Express 18, 3938–3945 (2010).
[CrossRef] [PubMed]

C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. O’Faolain, J. Li, and T. F. Krauss, “Four-wave mixing in slow light engineered silicon photonic crystal waveguides,” Opt. Express 18, 22915–22927 (2010).
[CrossRef] [PubMed]

C. Monat, M. de Sterke, and B. J. Eggleton, “Slow light enhanced nonlinear optics in periodic structures,” J. Opt. 12, 104003 (2010).
[CrossRef]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[CrossRef]

M. A. F. Roelens, S. Frisken, J. Bolger, D. Abakoumov, G. Baxter, S. Poole, and B. J. Eggleton, “Dispersion trimming in a reconfigurable wavelength selective switch,” J. Lightwave Technol. 26, 73–78 (2008).
[CrossRef]

D. J. Moss, L. Fu, I. Littler, and B. J. Eggleton, “Ultrafast all-optical modulation via two-photon absorption in silicon-on-insulator waveguides,” Electron. Lett. 41, 320–321 (2005).
[CrossRef]

F. Li, T. D. Vo, C. Husko, M. Pelusi, D.-X. Xu, A. Densmore, R. Ma, S. Janz, B. J. Eggleton, and D. J. Moss, “All-optical XOR logic gate for 40Gb/s DPSK signals via FWM in a silicon nanowire,” IEEE Photonics ConferenceArlington, VA, USA (2011).

Eich, M.

A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[CrossRef]

Eisenstein, G.

Ellis, A. D.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[CrossRef]

Fage-Pedersen, J.

Fejer, M. M.

Foster, M. A.

A. Biberman, B. G. Lee, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Wavelength multicasting in silicon photonic nanowires,” Opt. Express 18, 18047–18055 (2010).
[CrossRef] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2007).
[CrossRef]

Frandsen, L. H.

Frisken, S.

Fu, L.

D. J. Moss, L. Fu, I. Littler, and B. J. Eggleton, “Ultrafast all-optical modulation via two-photon absorption in silicon-on-insulator waveguides,” Electron. Lett. 41, 320–321 (2005).
[CrossRef]

Gaeta, A. L.

A. Biberman, B. G. Lee, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Wavelength multicasting in silicon photonic nanowires,” Opt. Express 18, 18047–18055 (2010).
[CrossRef] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2007).
[CrossRef]

Galili, M.

Geraghty, D. F.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2007).
[CrossRef]

Gnauck, A. H.

Gomez-Iglesias, A.

Grillet, C.

Grüner-Nielsen, L.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[CrossRef]

Hamachi, Y.

Herstrom, S.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[CrossRef]

Hu, H.

Huang, D.

Hugonin, J. P.

Husko, C.

C. Husko, S. Combrié, Q. Tran, F. Raineri, C. Wong, and A. De Rossi, “Non-trivial scaling of self-phase modulation and three-photon absorption in III–V photonic crystal waveguides,” Opt. Express 17, 22442–22451 (2009).
[CrossRef]

F. Li, T. D. Vo, C. Husko, M. Pelusi, D.-X. Xu, A. Densmore, R. Ma, S. Janz, B. J. Eggleton, and D. J. Moss, “All-optical XOR logic gate for 40Gb/s DPSK signals via FWM in a silicon nanowire,” IEEE Photonics ConferenceArlington, VA, USA (2011).

Hvam, J.

Ikeda, N.

Inoue, K.

Ito, H.

M. V. Drummond, J. D. Reis, R. N. Nogueira, P. P. Monteiro, A. L. Teixeira, S. Shinada, N. Wada, and H. Ito, “Error-free wavelength conversion at 160 Gbit/s in PPLN waveguide at room temperature,” Electron. Lett. 45, 1135–1137 (2009).
[CrossRef]

Jakobsen, D.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[CrossRef]

Janz, S.

F. Li, T. D. Vo, C. Husko, M. Pelusi, D.-X. Xu, A. Densmore, R. Ma, S. Janz, B. J. Eggleton, and D. J. Moss, “All-optical XOR logic gate for 40Gb/s DPSK signals via FWM in a silicon nanowire,” IEEE Photonics ConferenceArlington, VA, USA (2011).

Jeppesen, P.

Ji, H.

Ji, R.

Jia, L.

Jiang, Z.

Joannopoulos, J. D.

M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
[CrossRef]

Kakande, J.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[CrossRef]

Kang, I.

I. Kang, C. Dorrer, and J. Leuthold, “All-optical xor operation of 40 gbit/s phase-shift-keyed data using four-wave mixing in semiconductor optical amplifier,” Electron. Lett. 40, 496–498 (2004).
[CrossRef]

Krauss, T. F.

J. Li, L. O’Faolain, I. H. Rey, and T. F. Krauss, “Four-wave mixing in photonic crystal waveguides: slow light enhancement and limitations,” Opt. Express 19, 4458–4463 (2011).
[CrossRef] [PubMed]

B. Corcoran, M. D. Pelusi, C. Monat, J. Li, L. O’Faolain, T. F. Krauss, and B. J. Eggleton, “Ultracompact 160 gbaud all-optical demultiplexing exploiting slow light in an engineered silicon photonic crystal waveguide,” Opt. Lett. 36, 1728–1730 (2011).
[CrossRef] [PubMed]

L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–27638 (2010).
[CrossRef]

C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. O’Faolain, J. Li, and T. F. Krauss, “Four-wave mixing in slow light engineered silicon photonic crystal waveguides,” Opt. Express 18, 22915–22927 (2010).
[CrossRef] [PubMed]

B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Optical signal processing on a silicon chip at 640 Gb/s using slow-light,” Opt. Express 18, 7770–7781 (2010).
[CrossRef] [PubMed]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[CrossRef]

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. Eggleton, T. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17, 2944–2953 (2009).
[CrossRef] [PubMed]

J. Li, T. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[CrossRef] [PubMed]

T. F. Krauss, “−2670,” J. Phys. D: Appl. Phys. 40, 2666 (2007).
[CrossRef]

Kuipers, L.

Kwong, D.-L.

Lalanne, P.

Lavrinenko, A. V.

Lee, B. G.

Leuthold, J.

I. Kang, C. Dorrer, and J. Leuthold, “All-optical xor operation of 40 gbit/s phase-shift-keyed data using four-wave mixing in semiconductor optical amplifier,” Electron. Lett. 40, 496–498 (2004).
[CrossRef]

Li, F.

F. Li, T. D. Vo, C. Husko, M. Pelusi, D.-X. Xu, A. Densmore, R. Ma, S. Janz, B. J. Eggleton, and D. J. Moss, “All-optical XOR logic gate for 40Gb/s DPSK signals via FWM in a silicon nanowire,” IEEE Photonics ConferenceArlington, VA, USA (2011).

Li, J.

Liang, T. K.

T. K. Liang, L. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absorption in silicon waveguides,” Opt. Commun. 265, 171–174 (2006).
[CrossRef]

Lipson, M.

A. Biberman, B. G. Lee, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Wavelength multicasting in silicon photonic nanowires,” Opt. Express 18, 18047–18055 (2010).
[CrossRef] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2007).
[CrossRef]

Littler, I.

D. J. Moss, L. Fu, I. Littler, and B. J. Eggleton, “Ultrafast all-optical modulation via two-photon absorption in silicon-on-insulator waveguides,” Electron. Lett. 41, 320–321 (2005).
[CrossRef]

Liu, Y.

Lu, Y.

Luan, F.

Lundström, C.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[CrossRef]

Luther-Davies, B.

Ma, R.

F. Li, T. D. Vo, C. Husko, M. Pelusi, D.-X. Xu, A. Densmore, R. Ma, S. Janz, B. J. Eggleton, and D. J. Moss, “All-optical XOR logic gate for 40Gb/s DPSK signals via FWM in a silicon nanowire,” IEEE Photonics ConferenceArlington, VA, USA (2011).

Madden, S. J.

Mazoyer, S.

McMillan, J. F.

Melloni, A.

Miyazaki, T.

T. K. Liang, L. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absorption in silicon waveguides,” Opt. Commun. 265, 171–174 (2006).
[CrossRef]

Monat, C.

B. Corcoran, M. D. Pelusi, C. Monat, J. Li, L. O’Faolain, T. F. Krauss, and B. J. Eggleton, “Ultracompact 160 gbaud all-optical demultiplexing exploiting slow light in an engineered silicon photonic crystal waveguide,” Opt. Lett. 36, 1728–1730 (2011).
[CrossRef] [PubMed]

C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. O’Faolain, J. Li, and T. F. Krauss, “Four-wave mixing in slow light engineered silicon photonic crystal waveguides,” Opt. Express 18, 22915–22927 (2010).
[CrossRef] [PubMed]

B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Optical signal processing on a silicon chip at 640 Gb/s using slow-light,” Opt. Express 18, 7770–7781 (2010).
[CrossRef] [PubMed]

C. Monat, M. de Sterke, and B. J. Eggleton, “Slow light enhanced nonlinear optics in periodic structures,” J. Opt. 12, 104003 (2010).
[CrossRef]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[CrossRef]

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. Eggleton, T. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17, 2944–2953 (2009).
[CrossRef] [PubMed]

Monteiro, P. P.

M. V. Drummond, J. D. Reis, R. N. Nogueira, P. P. Monteiro, A. L. Teixeira, S. Shinada, N. Wada, and H. Ito, “Error-free wavelength conversion at 160 Gbit/s in PPLN waveguide at room temperature,” Electron. Lett. 45, 1135–1137 (2009).
[CrossRef]

Morichetti, F.

Moss, D. J.

B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Optical signal processing on a silicon chip at 640 Gb/s using slow-light,” Opt. Express 18, 7770–7781 (2010).
[CrossRef] [PubMed]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[CrossRef]

D. J. Moss, L. Fu, I. Littler, and B. J. Eggleton, “Ultrafast all-optical modulation via two-photon absorption in silicon-on-insulator waveguides,” Electron. Lett. 41, 320–321 (2005).
[CrossRef]

F. Li, T. D. Vo, C. Husko, M. Pelusi, D.-X. Xu, A. Densmore, R. Ma, S. Janz, B. J. Eggleton, and D. J. Moss, “All-optical XOR logic gate for 40Gb/s DPSK signals via FWM in a silicon nanowire,” IEEE Photonics ConferenceArlington, VA, USA (2011).

Nogueira, R. N.

M. V. Drummond, J. D. Reis, R. N. Nogueira, P. P. Monteiro, A. L. Teixeira, S. Shinada, N. Wada, and H. Ito, “Error-free wavelength conversion at 160 Gbit/s in PPLN waveguide at room temperature,” Electron. Lett. 45, 1135–1137 (2009).
[CrossRef]

Nuccio, S.

A. Willner, O. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17320–332 (2010).

A. Bogoni, X. Wu, Z. Bakhtiari, S. Nuccio, and A. E. Willner, “640 Gbits/s photonic logic gates,” Opt. Lett. 35, 3955–3957 (2010).
[CrossRef] [PubMed]

Nunes, L.

T. K. Liang, L. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absorption in silicon waveguides,” Opt. Commun. 265, 171–174 (2006).
[CrossRef]

O’Faolain, L.

B. Corcoran, M. D. Pelusi, C. Monat, J. Li, L. O’Faolain, T. F. Krauss, and B. J. Eggleton, “Ultracompact 160 gbaud all-optical demultiplexing exploiting slow light in an engineered silicon photonic crystal waveguide,” Opt. Lett. 36, 1728–1730 (2011).
[CrossRef] [PubMed]

J. Li, L. O’Faolain, I. H. Rey, and T. F. Krauss, “Four-wave mixing in photonic crystal waveguides: slow light enhancement and limitations,” Opt. Express 19, 4458–4463 (2011).
[CrossRef] [PubMed]

L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–27638 (2010).
[CrossRef]

C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. O’Faolain, J. Li, and T. F. Krauss, “Four-wave mixing in slow light engineered silicon photonic crystal waveguides,” Opt. Express 18, 22915–22927 (2010).
[CrossRef] [PubMed]

B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Optical signal processing on a silicon chip at 640 Gb/s using slow-light,” Opt. Express 18, 7770–7781 (2010).
[CrossRef] [PubMed]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[CrossRef]

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. Eggleton, T. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17, 2944–2953 (2009).
[CrossRef] [PubMed]

J. Li, T. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[CrossRef] [PubMed]

O’Gorman, J.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[CrossRef]

Oda, H.

Oxenløwe, L.

Pant, R.

Parmigiani, F.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[CrossRef]

Passaro, V. M. N.

V. M. N. Passaro and F. de Passaro, “All-optical and gate based on raman effect in silicon-on-insulator waveguide,” Opt. Quantum Electron. 38, 877–888 (2006).
[CrossRef]

Pelusi, M.

B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Optical signal processing on a silicon chip at 640 Gb/s using slow-light,” Opt. Express 18, 7770–7781 (2010).
[CrossRef] [PubMed]

F. Li, T. D. Vo, C. Husko, M. Pelusi, D.-X. Xu, A. Densmore, R. Ma, S. Janz, B. J. Eggleton, and D. J. Moss, “All-optical XOR logic gate for 40Gb/s DPSK signals via FWM in a silicon nanowire,” IEEE Photonics ConferenceArlington, VA, USA (2011).

Pelusi, M. D.

Petropoulos, P.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[CrossRef]

Petrov, A. Y.

A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[CrossRef]

Phelan, R.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[CrossRef]

Poole, S.

Pu, M.

Raineri, F.

Reis, J. D.

M. V. Drummond, J. D. Reis, R. N. Nogueira, P. P. Monteiro, A. L. Teixeira, S. Shinada, N. Wada, and H. Ito, “Error-free wavelength conversion at 160 Gbit/s in PPLN waveguide at room temperature,” Electron. Lett. 45, 1135–1137 (2009).
[CrossRef]

Rey, I. H.

Richardson, D. J.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[CrossRef]

Roelens, M. A. F.

Salem, R.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2007).
[CrossRef]

Santagiustina, M.

Schröder, J.

Schulz, S. A.

Shinada, S.

M. V. Drummond, J. D. Reis, R. N. Nogueira, P. P. Monteiro, A. L. Teixeira, S. Shinada, N. Wada, and H. Ito, “Error-free wavelength conversion at 160 Gbit/s in PPLN waveguide at room temperature,” Electron. Lett. 45, 1135–1137 (2009).
[CrossRef]

Sipe, J. E.

N. A. R. Bhat and J. E. Sipe, “Optical pulse propagation in nonlinear photonic crystals,” Phys. Rev. E 64, 056604 (2001).
[CrossRef]

Sjödin, M.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[CrossRef]

Slavík, R.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[CrossRef]

Soljacic, M.

M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
[CrossRef]

Someda, C.

Spasenovic, M.

Sun, J.

Sun, Q.

Suzuki, K.

Sygletos, S.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[CrossRef]

Syvridis, D.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[CrossRef]

Teixeira, A. L.

M. V. Drummond, J. D. Reis, R. N. Nogueira, P. P. Monteiro, A. L. Teixeira, S. Shinada, N. Wada, and H. Ito, “Error-free wavelength conversion at 160 Gbit/s in PPLN waveguide at room temperature,” Electron. Lett. 45, 1135–1137 (2009).
[CrossRef]

Tian, Y.

Tran, Q.

Tsang, H. K.

T. K. Liang, L. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absorption in silicon waveguides,” Opt. Commun. 265, 171–174 (2006).
[CrossRef]

Tsuchiya, M.

T. K. Liang, L. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absorption in silicon waveguides,” Opt. Commun. 265, 171–174 (2006).
[CrossRef]

Tucker, R.

R. Tucker, “Green Optical Communications—Part II: Energy Limitations in Networks,” IEEE J. Selected Topics in Quantum Electronics, pp. 1–14 (2011).

Turner, A. C.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2007).
[CrossRef]

Turner-Foster, A. C.

Vadala, G.

Vadalà, G.

Van Thourhout, D.

T. K. Liang, L. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absorption in silicon waveguides,” Opt. Commun. 265, 171–174 (2006).
[CrossRef]

Vo, T. D.

Wada, N.

M. V. Drummond, J. D. Reis, R. N. Nogueira, P. P. Monteiro, A. L. Teixeira, S. Shinada, N. Wada, and H. Ito, “Error-free wavelength conversion at 160 Gbit/s in PPLN waveguide at room temperature,” Electron. Lett. 45, 1135–1137 (2009).
[CrossRef]

Wang, J.

Weerasuriya, R.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[CrossRef]

White, T.

White, T. P.

Willner, A.

A. Willner, O. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17320–332 (2010).

Willner, A. E.

Winzer, P. J.

Wong, C.

Wong, C. W.

Wu, X.

A. Bogoni, X. Wu, Z. Bakhtiari, S. Nuccio, and A. E. Willner, “640 Gbits/s photonic logic gates,” Opt. Lett. 35, 3955–3957 (2010).
[CrossRef] [PubMed]

A. Willner, O. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17320–332 (2010).

Xu, D.-X.

F. Li, T. D. Vo, C. Husko, M. Pelusi, D.-X. Xu, A. Densmore, R. Ma, S. Janz, B. J. Eggleton, and D. J. Moss, “All-optical XOR logic gate for 40Gb/s DPSK signals via FWM in a silicon nanowire,” IEEE Photonics ConferenceArlington, VA, USA (2011).

Yang, L.

Yilmaz, O.

A. Willner, O. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17320–332 (2010).

Yu, M.

Yvind, K.

Zhang, L.

L. Zhang, R. Ji, L. Jia, L. Yang, P. Zhou, Y. Tian, P. Chen, Y. Lu, Z. Jiang, Y. Liu, and et al., “Demonstration of directed XOR/XNOR logic gates using two cascaded microring resonators,” Opt. Lett. 35, 1620–1622 (2010).
[CrossRef] [PubMed]

A. Willner, O. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17320–332 (2010).

Zhang, X.

Zhou, P.

Appl. Phys. Lett. (1)

A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[CrossRef]

Electron. Lett. (3)

I. Kang, C. Dorrer, and J. Leuthold, “All-optical xor operation of 40 gbit/s phase-shift-keyed data using four-wave mixing in semiconductor optical amplifier,” Electron. Lett. 40, 496–498 (2004).
[CrossRef]

M. V. Drummond, J. D. Reis, R. N. Nogueira, P. P. Monteiro, A. L. Teixeira, S. Shinada, N. Wada, and H. Ito, “Error-free wavelength conversion at 160 Gbit/s in PPLN waveguide at room temperature,” Electron. Lett. 45, 1135–1137 (2009).
[CrossRef]

D. J. Moss, L. Fu, I. Littler, and B. J. Eggleton, “Ultrafast all-optical modulation via two-photon absorption in silicon-on-insulator waveguides,” Electron. Lett. 41, 320–321 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

N. Deng, K. Chan, C. K. Chan, and L. K. Chen, “An all-optical XOR logic gate for high-speed RZ-DPSK signals by FWM in semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 12, 702–707 (2006).
[CrossRef]

A. Willner, O. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17320–332 (2010).

J. Lightwave Technol. (3)

J. Opt. (1)

C. Monat, M. de Sterke, and B. J. Eggleton, “Slow light enhanced nonlinear optics in periodic structures,” J. Opt. 12, 104003 (2010).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

T. F. Krauss, “−2670,” J. Phys. D: Appl. Phys. 40, 2666 (2007).
[CrossRef]

Nat. Mater. (1)

M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
[CrossRef]

Nat. Photonics (4)

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
[CrossRef]

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[CrossRef]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2007).
[CrossRef]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[CrossRef]

Opt. Commun. (1)

T. K. Liang, L. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absorption in silicon waveguides,” Opt. Commun. 265, 171–174 (2006).
[CrossRef]

Opt. Express (15)

L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444–9450 (2006).
[CrossRef] [PubMed]

J. Li, T. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[CrossRef] [PubMed]

J. F. McMillan, M. Yu, D.-L. Kwong, and C. W. Wong, “Observation of four-wave mixing in slow-light silicon photonic crystal waveguides,” Opt. Express 18, 15484–15497 (2010).
[CrossRef] [PubMed]

A. Biberman, B. G. Lee, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Wavelength multicasting in silicon photonic nanowires,” Opt. Express 18, 18047–18055 (2010).
[CrossRef] [PubMed]

M. Santagiustina, C. Someda, G. Vadala, S. Combrie, and A. De Rossi, “Theory of slow light enhanced four-wave mixing in photonic crystal waveguides,” Opt. Express 18, 21024–21029 (2010).
[CrossRef] [PubMed]

C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. O’Faolain, J. Li, and T. F. Krauss, “Four-wave mixing in slow light engineered silicon photonic crystal waveguides,” Opt. Express 18, 22915–22927 (2010).
[CrossRef] [PubMed]

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. Eggleton, T. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17, 2944–2953 (2009).
[CrossRef] [PubMed]

K. Inoue, H. Oda, N. Ikeda, and K. Asakawa, “Enhanced third-order nonlinear effects in slow-light photonic-crystal slab waveguides of line defect,” Opt. Express 17, 7206–7216 (2009).
[CrossRef] [PubMed]

J. Wang, Q. Sun, and J. Sun, “All-optical 40 Gbit/s CSRZ-DPSK logic XOR gate and format conversion using four-wave mixing,” Opt. Express 17, 12555–12563 (2009).
[CrossRef] [PubMed]

K. Suzuki, Y. Hamachi, and T. Baba, “Fabrication and characterization of chalcogenide glass photonic crystal waveguides,” Opt. Express 17, 22393–22400 (2009).
[CrossRef]

C. Husko, S. Combrié, Q. Tran, F. Raineri, C. Wong, and A. De Rossi, “Non-trivial scaling of self-phase modulation and three-photon absorption in III–V photonic crystal waveguides,” Opt. Express 17, 22442–22451 (2009).
[CrossRef]

T. D. Vo, M. D. Pelusi, J. Schröder, F. Luan, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Simultaneous multi-impairment monitoring of 640 gb/s signals using photonic chip based rf spectrum analyzer,” Opt. Express 18, 3938–3945 (2010).
[CrossRef] [PubMed]

B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Optical signal processing on a silicon chip at 640 Gb/s using slow-light,” Opt. Express 18, 7770–7781 (2010).
[CrossRef] [PubMed]

L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–27638 (2010).
[CrossRef]

J. Li, L. O’Faolain, I. H. Rey, and T. F. Krauss, “Four-wave mixing in photonic crystal waveguides: slow light enhancement and limitations,” Opt. Express 19, 4458–4463 (2011).
[CrossRef] [PubMed]

Opt. Lett. (6)

Opt. Quantum Electron. (1)

V. M. N. Passaro and F. de Passaro, “All-optical and gate based on raman effect in silicon-on-insulator waveguide,” Opt. Quantum Electron. 38, 877–888 (2006).
[CrossRef]

Phys. Rev. E (1)

N. A. R. Bhat and J. E. Sipe, “Optical pulse propagation in nonlinear photonic crystals,” Phys. Rev. E 64, 056604 (2001).
[CrossRef]

Other (3)

P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, and A. De Rossi, “Observation of soliton pulse compression in photonic crystal waveguides,” in Quantum Electronics and Laser Science Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper QPDA10. http://www.opticsinfobase.org/abstract.cfm?URI=QELS-2010-QPDA10 .

R. Tucker, “Green Optical Communications—Part II: Energy Limitations in Networks,” IEEE J. Selected Topics in Quantum Electronics, pp. 1–14 (2011).

F. Li, T. D. Vo, C. Husko, M. Pelusi, D.-X. Xu, A. Densmore, R. Ma, S. Janz, B. J. Eggleton, and D. J. Moss, “All-optical XOR logic gate for 40Gb/s DPSK signals via FWM in a silicon nanowire,” IEEE Photonics ConferenceArlington, VA, USA (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of the all-optical XOR logic gate employing non-degenerate four-wave mixing in a dispersion-engineered photonic crystal waveguide (b) Truth table for the XOR logic gate based on DPSK

Fig. 2
Fig. 2

Measured linear transmission and group index ng of the sample [30]

Fig. 3
Fig. 3

Experimental setup for the 40 Gbit/s DPSK all-optical XOR logic gate in the compact silicon photonic crystal waveguide

Fig. 4
Fig. 4

Four-wave mixing spectra at the output of the chip. The two input data channels, CW probe and generated XOR idler are indicated. Inset: Measured four-wave mixing (FWM) conversion efficiency.

Fig. 5
Fig. 5

(a) Temporal waveforms of the two input data channels and output XOR idler. (b) Eye diagrams of the respective channels. (c) Bit-error rate measurements of the various data 40 Gb/s DPSK signals. The device is error free (BER< 10−9) with ∼2.8 dB power penalty, primarily attributed to the small signal amplified off-chip.

Tables (2)

Tables Icon

Table 1 Quantitative enhancement of four-wave mixing due to slow-light. Po = 40 mW.

Tables Icon

Table 2 Comparison of experimentally demonstrated exclusive-OR (XOR) logic gates

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η = P idler ( L ) P signal ( 0 ) = S 4 ( γ P pump L eff ) 2 ϕ e α L ,

Metrics