Abstract

When the metallic near-field superlens is to image a planar object, which is itself metallic, such as that in the near-field lithography applications, the object nanometer features will act as the Hertzian dipole sources and launch homogeneous and evanescent waves. The imaging system can be modeled as a dielectric Fabry-Perot cavity with the two surface plasmon resonant mirrors. We show the expressions of the transfer function and optimize the imaging system configuration using the genetic algorithm. The effectiveness of the design is confirmed by the image intensity profile computed with the numerical finite difference in time domain method.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, “The electromagnetics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
    [CrossRef]
  2. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  3. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [CrossRef] [PubMed]
  4. D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13(6), 2127–2134 (2005).
    [CrossRef] [PubMed]
  5. H. Qin, X. Li, and S. Shen, “Novel optical lithography using silver superlens,” Chin. Opt. Lett. 6(2), 149–151 (2008).
    [CrossRef]
  6. Z. Shi, V. Kochergin, and F. Wang, “193nm Superlens imaging structure for 20nm lithography node,” Opt. Express 17(14), 11309–11314 (2009).
    [CrossRef] [PubMed]
  7. C. P. Moore, R. J. Blaikie, and M. D. Arnold, “An improved transfer-matrix model for optical superlenses,” Opt. Express 17(16), 14260–14269 (2009).
    [CrossRef] [PubMed]
  8. H. Raether, Surface Plasmons (Springer, Berlin, 1988).
  9. V. A. Podolskiy, N. A. Kuhta, and G. W. Milton, “Optimizing the superlens: manipulating geometry to enhance the resolution,” Appl. Phys. Lett. 87(23), 231113 (2005).
    [CrossRef]
  10. G. Tremblay and Y. Sheng, “Designing the metallic superlens close to the cutoff of the long-range mode,” Opt. Express 18(2), 740–745 (2010).
    [CrossRef] [PubMed]
  11. G. Tremblay and Y. Sheng, “Improving imaging performance of a metallic superlens using the long-range surface plasmon polariton mode cutoff technique,” Appl. Opt. 49(7), A36–A41 (2010).
    [CrossRef] [PubMed]
  12. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter 33(8), 5186–5201 (1986).
    [CrossRef] [PubMed]
  13. J. Chen, G. A. Smolyakov, S. R. J. Brueck, and K. J. Malloy, “Surface plasmon modes of finite, planar, metal-insulator-metal plasmonic waveguides,” Opt. Express 16(19), 14902–14909 (2008).
    [CrossRef] [PubMed]
  14. C. C. Katsidis and D. I. Siapkas, “General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference,” Appl. Opt. 41(19), 3978–3987 (2002).
    [CrossRef] [PubMed]
  15. G. Tremblay, J. N. Gillet, Y. Sheng, M. Bernier, and G. Paul-Hus, “Optimizing fiber Bragg gratings using the genetic algorithm with fabrication-constraint encoding,” J. Lightwave Technol. 23(12), 4382–4386 (2005).
    [CrossRef]

2010 (2)

2009 (2)

2008 (2)

2005 (4)

G. Tremblay, J. N. Gillet, Y. Sheng, M. Bernier, and G. Paul-Hus, “Optimizing fiber Bragg gratings using the genetic algorithm with fabrication-constraint encoding,” J. Lightwave Technol. 23(12), 4382–4386 (2005).
[CrossRef]

V. A. Podolskiy, N. A. Kuhta, and G. W. Milton, “Optimizing the superlens: manipulating geometry to enhance the resolution,” Appl. Phys. Lett. 87(23), 231113 (2005).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13(6), 2127–2134 (2005).
[CrossRef] [PubMed]

2002 (1)

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

1986 (1)

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter 33(8), 5186–5201 (1986).
[CrossRef] [PubMed]

1968 (1)

V. G. Veselago, “The electromagnetics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
[CrossRef]

Arnold, M. D.

Bernier, M.

Blaikie, R. J.

Brueck, S. R. J.

Burke, J. J.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter 33(8), 5186–5201 (1986).
[CrossRef] [PubMed]

Chen, J.

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Gillet, J. N.

Katsidis, C. C.

Kochergin, V.

Kuhta, N. A.

V. A. Podolskiy, N. A. Kuhta, and G. W. Milton, “Optimizing the superlens: manipulating geometry to enhance the resolution,” Appl. Phys. Lett. 87(23), 231113 (2005).
[CrossRef]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Li, X.

Malloy, K. J.

Melville, D. O. S.

Milton, G. W.

V. A. Podolskiy, N. A. Kuhta, and G. W. Milton, “Optimizing the superlens: manipulating geometry to enhance the resolution,” Appl. Phys. Lett. 87(23), 231113 (2005).
[CrossRef]

Moore, C. P.

Paul-Hus, G.

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Podolskiy, V. A.

V. A. Podolskiy, N. A. Kuhta, and G. W. Milton, “Optimizing the superlens: manipulating geometry to enhance the resolution,” Appl. Phys. Lett. 87(23), 231113 (2005).
[CrossRef]

Qin, H.

Shen, S.

Sheng, Y.

Shi, Z.

Siapkas, D. I.

Smolyakov, G. A.

Stegeman, G. I.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter 33(8), 5186–5201 (1986).
[CrossRef] [PubMed]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Tamir, T.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter 33(8), 5186–5201 (1986).
[CrossRef] [PubMed]

Tremblay, G.

Veselago, V. G.

V. G. Veselago, “The electromagnetics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
[CrossRef]

Wang, F.

Zhang, X.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

V. A. Podolskiy, N. A. Kuhta, and G. W. Milton, “Optimizing the superlens: manipulating geometry to enhance the resolution,” Appl. Phys. Lett. 87(23), 231113 (2005).
[CrossRef]

Chin. Opt. Lett. (1)

J. Lightwave Technol. (1)

Opt. Express (5)

Phys. Rev. B Condens. Matter (1)

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter 33(8), 5186–5201 (1986).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Science (1)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Sov. Phys. Usp. (1)

V. G. Veselago, “The electromagnetics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
[CrossRef]

Other (1)

H. Raether, Surface Plasmons (Springer, Berlin, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Metallic near-field superlens with a metallic object layer

Fig. 2
Fig. 2

(a) Transfer functions of the structure designed using the close-to-cutoff technique computed with Eqs. (4) and (5) considering the presence of metal object mask; (b) Image calculated by FDTD method.

Fig. 3
Fig. 3

(a) Transfer functions of the structure optimized by GA; (b) Image at the interface between the spacer and the photoresist layer calculated by FDTD method.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

τ tot = τ o τ d τ s =[ e o t 01 t od 1 e o 2 r od r o1 ][ e d 1 e d 2 ρ s + ρ o ][ e s t ds t s5 1 e s 2 r sd r s5 ]
r ij = ε j k zi ε i k zj ε j k zi + ε i k zj , t ij = 2 ε j k zi ε j k zi + ε i k zj
ρ s + = r ds + e s 2 r s5 1 e s 2 r sd r s5 and ρ o = r do + e o 2 r o1 1 e o 2 r o1 r od
τ B =[ e o t od 1 e o 2 r od r o1 ][ e d 1 e d 2 ρ s + ρ o ][ e s t ds t s5 1 e s 2 r sd r s5 ]
τ A = τ d τ s =[ e d 1 e d 2 ρ s + ρ o ][ e s t ds t s5 1 e s 2 r sd r s5 ]
C= n=0 N [ 1| TF A n | ] 2 + m=0 M [ | TF B ¯ || TF B m | ] 2 ,
a=[ a 1 , a 2 , a 3 ,..., a n ] b=[ b 1 , b 2 , b 3 ,..., b n ] }c=[ x 1 , x 2 , x 3 ,..., x n ],
c=(0,5+g)a+(1,5g)b,
m m =0.25(2 h 1)+0.75m,

Metrics