Abstract

A photonic approach to measuring microwave frequency with digital results is proposed and experimentally demonstrated. In the proposed approach, N photonic phase-shifted filters with a phase shift increment of π/N in the transmission responses are designed. The filters are then employed to process the single optical sideband generated by applying a microwave signal to a single sideband suppressed-carrier (SSB-SC) modulation module, to perform frequency-to-amplitude conversion and analog-to-digital conversion simultaneously. After the implementation of power detection and decision operation to the filtered optical sideband, an N-bit result in the form of the circular code is obtained, which indicates the frequency of the microwave signal. A proof-of-concept experiment is performed to verify the proposed approach and a 5-bit circular code is generated to indicate microwave frequency up to 40 GHz.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Boashash, “Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals,” Proc. IEEE 80(4), 520–538 (1992).
    [CrossRef]
  2. B. Boashash, “Estimating and interpreting the instantaneous frequency of a signal. II. Algorithms and applications,” Proc. IEEE 80(4), 540–568 (1992).
    [CrossRef]
  3. J. B. Y. Tsui, Digital techniques for wideband receivers (second version) (SciTech Publishing, Inc., Raleigh, 2004).
  4. R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
    [CrossRef]
  5. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [CrossRef]
  6. G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007).
    [CrossRef] [PubMed]
  7. C. Wang and J. Yao, “Photonic generation of chirped millimeter-wave pulses based on nonlinear frequency-to-time mapping in a nonlinearly chirped fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 56(2), 542–553 (2008).
    [CrossRef]
  8. L. V. T. Nguyen and D. B. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photon. Technol. Lett. 18(10), 1188–1190 (2006).
    [CrossRef]
  9. X. Zou and J. P. Yao, “An optical approach to microwave frequency measurement with adjustable measurement range and resolution,” IEEE Photon. Technol. Lett. 20(23), 1989–1991 (2008).
    [CrossRef]
  10. M. Attygalle and D. B. Hunter, “Improved photonic technique for radio-frequency measurement,” IEEE Photon. Technol. Lett. 21(4), 206–208 (2009).
    [CrossRef]
  11. B. Vidal, “Photonic-based instantaneous microwave frequency measurement with extended range,” Opt. Commun. 284(16-17), 3996–3999 (2011).
    [CrossRef]
  12. Y. Wang, J. Ni, H. Chi, X. Zhang, S. Zheng, and X. Jin, “Photonic instantaneous microwave frequency measurement based on two different phase modulation to intensity modulation conversions,” Opt. Commun. 284(16-17), 3928–3932 (2011).
    [CrossRef]
  13. J. Zhou, S. Aditya, P. P. Shum, and J. P. Yao, “Instantaneous microwave frequency measurement using a photonic microwave filter with an infinite impulse response,” IEEE Photon. Technol. Lett. 22(10), 682–684 (2010).
    [CrossRef]
  14. S. Pan and J. P. Yao, “Instantaneous microwave frequency measurement using a photonic microwave filter pair,” IEEE Photon. Technol. Lett. 22(19), 1437–1439 (2010).
    [CrossRef]
  15. S. Fu, J. Zhou, P. P. Shum, and K. Lee, “Instantaneous microwave frequency measurement using programmable differential group delay (DGD) modules,” IEEE Photon. J. 2, 967–973 (2010).
  16. J. Niu, S. N. Fu, K. Xu, J. Q. Zhou, S. Aditya, J. Wu, P. P. Shum, and J. T. Lin, “Instantaneous microwave frequency measurement based on amplified fiber-optic recirculating delay loop and broadband incoherent light source,” J. Lightwave Technol. 29(1), 78–84 (2011).
    [CrossRef]
  17. S. T. Winnall, A. C. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, “A microwave channelizer and spectroscope based on an integrated optical Bragg-grating Fabry-Perot and integrated hybrid Fresnel lens system,” IEEE Trans. Microw. Theory Tech. 54(2), 868–872 (2006).
    [CrossRef]
  18. X. Zou, W. Pan, B. Luo, and L. Yan, “Photonic approach for multiple-frequency-component measurement using spectrally sliced incoherent source,” Opt. Lett. 35(3), 438–440 (2010).
    [CrossRef] [PubMed]
  19. N. Sarkhosh, H. Emami, L. Bui, and A. Mitchell, “Reduced cost photonic instantaneous frequency measurement system,” IEEE Photon. Technol. Lett. 20(18), 1521–1523 (2008).
    [CrossRef]
  20. L. A. Bui, M. D. Pelusi, T. D. Vo, N. Sarkhosh, H. Emami, B. J. Eggleton, and A. Mitchell, “Instantaneous frequency measurement system using optical mixing in highly nonlinear fiber,” Opt. Express 17(25), 22983–22991 (2009).
    [CrossRef] [PubMed]
  21. M. V. Drummond, C. A. F. Marques, P. P. Monteiro, and R. N. Nogueira, “Photonic instantaneous microwave frequency measurement system based on signal remodulation,” IEEE Photon. Technol. Lett. 22(16), 1226–1228 (2010).
    [CrossRef]
  22. H. Chi, X. Zou, and J. P. Yao, “An approach to the measurement of microwave frequency based on optical power monitoring,” IEEE Photon. Technol. Lett. 20(14), 1249–1251 (2008).
    [CrossRef]
  23. J. Dai, K. Xu, X. Sun, J. Niu, Q. Lv, J. Wu, X. Hong, W. Li, and J. Lin, “A simple photonic-assisted microwave frequency measurement system based on MZI with tunable measurement range and high resolution,” IEEE Photon. Technol. Lett. 22(15), 1162–1164 (2010).
    [CrossRef]
  24. Z. Li, B. Yang, H. Chi, X. Zhang, S. Zheng, and X. Jin, “Photonic instantaneous measurement of microwave frequency using fiber Bragg grating,” Opt. Commun. 283(3), 396–399 (2010).
    [CrossRef]
  25. X. Zou, W. Pan, B. Luo, and L. Yan, “Photonic instantaneous frequency measurement using a single laser source and two quadrature optical filters,” IEEE Photon. Technol. Lett. 23(1), 39–41 (2011).
    [CrossRef]
  26. R. van de Plassche, CMOS integrated analog-to-digital and digital-to- analog converters (2nd edition), (Boston, MA: Kluwer, 2003)

2011 (4)

B. Vidal, “Photonic-based instantaneous microwave frequency measurement with extended range,” Opt. Commun. 284(16-17), 3996–3999 (2011).
[CrossRef]

Y. Wang, J. Ni, H. Chi, X. Zhang, S. Zheng, and X. Jin, “Photonic instantaneous microwave frequency measurement based on two different phase modulation to intensity modulation conversions,” Opt. Commun. 284(16-17), 3928–3932 (2011).
[CrossRef]

J. Niu, S. N. Fu, K. Xu, J. Q. Zhou, S. Aditya, J. Wu, P. P. Shum, and J. T. Lin, “Instantaneous microwave frequency measurement based on amplified fiber-optic recirculating delay loop and broadband incoherent light source,” J. Lightwave Technol. 29(1), 78–84 (2011).
[CrossRef]

X. Zou, W. Pan, B. Luo, and L. Yan, “Photonic instantaneous frequency measurement using a single laser source and two quadrature optical filters,” IEEE Photon. Technol. Lett. 23(1), 39–41 (2011).
[CrossRef]

2010 (7)

J. Dai, K. Xu, X. Sun, J. Niu, Q. Lv, J. Wu, X. Hong, W. Li, and J. Lin, “A simple photonic-assisted microwave frequency measurement system based on MZI with tunable measurement range and high resolution,” IEEE Photon. Technol. Lett. 22(15), 1162–1164 (2010).
[CrossRef]

Z. Li, B. Yang, H. Chi, X. Zhang, S. Zheng, and X. Jin, “Photonic instantaneous measurement of microwave frequency using fiber Bragg grating,” Opt. Commun. 283(3), 396–399 (2010).
[CrossRef]

M. V. Drummond, C. A. F. Marques, P. P. Monteiro, and R. N. Nogueira, “Photonic instantaneous microwave frequency measurement system based on signal remodulation,” IEEE Photon. Technol. Lett. 22(16), 1226–1228 (2010).
[CrossRef]

X. Zou, W. Pan, B. Luo, and L. Yan, “Photonic approach for multiple-frequency-component measurement using spectrally sliced incoherent source,” Opt. Lett. 35(3), 438–440 (2010).
[CrossRef] [PubMed]

J. Zhou, S. Aditya, P. P. Shum, and J. P. Yao, “Instantaneous microwave frequency measurement using a photonic microwave filter with an infinite impulse response,” IEEE Photon. Technol. Lett. 22(10), 682–684 (2010).
[CrossRef]

S. Pan and J. P. Yao, “Instantaneous microwave frequency measurement using a photonic microwave filter pair,” IEEE Photon. Technol. Lett. 22(19), 1437–1439 (2010).
[CrossRef]

S. Fu, J. Zhou, P. P. Shum, and K. Lee, “Instantaneous microwave frequency measurement using programmable differential group delay (DGD) modules,” IEEE Photon. J. 2, 967–973 (2010).

2009 (2)

2008 (4)

H. Chi, X. Zou, and J. P. Yao, “An approach to the measurement of microwave frequency based on optical power monitoring,” IEEE Photon. Technol. Lett. 20(14), 1249–1251 (2008).
[CrossRef]

N. Sarkhosh, H. Emami, L. Bui, and A. Mitchell, “Reduced cost photonic instantaneous frequency measurement system,” IEEE Photon. Technol. Lett. 20(18), 1521–1523 (2008).
[CrossRef]

C. Wang and J. Yao, “Photonic generation of chirped millimeter-wave pulses based on nonlinear frequency-to-time mapping in a nonlinearly chirped fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 56(2), 542–553 (2008).
[CrossRef]

X. Zou and J. P. Yao, “An optical approach to microwave frequency measurement with adjustable measurement range and resolution,” IEEE Photon. Technol. Lett. 20(23), 1989–1991 (2008).
[CrossRef]

2007 (2)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007).
[CrossRef] [PubMed]

2006 (3)

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
[CrossRef]

L. V. T. Nguyen and D. B. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photon. Technol. Lett. 18(10), 1188–1190 (2006).
[CrossRef]

S. T. Winnall, A. C. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, “A microwave channelizer and spectroscope based on an integrated optical Bragg-grating Fabry-Perot and integrated hybrid Fresnel lens system,” IEEE Trans. Microw. Theory Tech. 54(2), 868–872 (2006).
[CrossRef]

1992 (2)

B. Boashash, “Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals,” Proc. IEEE 80(4), 520–538 (1992).
[CrossRef]

B. Boashash, “Estimating and interpreting the instantaneous frequency of a signal. II. Algorithms and applications,” Proc. IEEE 80(4), 540–568 (1992).
[CrossRef]

Aditya, S.

J. Niu, S. N. Fu, K. Xu, J. Q. Zhou, S. Aditya, J. Wu, P. P. Shum, and J. T. Lin, “Instantaneous microwave frequency measurement based on amplified fiber-optic recirculating delay loop and broadband incoherent light source,” J. Lightwave Technol. 29(1), 78–84 (2011).
[CrossRef]

J. Zhou, S. Aditya, P. P. Shum, and J. P. Yao, “Instantaneous microwave frequency measurement using a photonic microwave filter with an infinite impulse response,” IEEE Photon. Technol. Lett. 22(10), 682–684 (2010).
[CrossRef]

Attygalle, M.

M. Attygalle and D. B. Hunter, “Improved photonic technique for radio-frequency measurement,” IEEE Photon. Technol. Lett. 21(4), 206–208 (2009).
[CrossRef]

Austin, M. W.

S. T. Winnall, A. C. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, “A microwave channelizer and spectroscope based on an integrated optical Bragg-grating Fabry-Perot and integrated hybrid Fresnel lens system,” IEEE Trans. Microw. Theory Tech. 54(2), 868–872 (2006).
[CrossRef]

Boashash, B.

B. Boashash, “Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals,” Proc. IEEE 80(4), 520–538 (1992).
[CrossRef]

B. Boashash, “Estimating and interpreting the instantaneous frequency of a signal. II. Algorithms and applications,” Proc. IEEE 80(4), 540–568 (1992).
[CrossRef]

Bui, L.

N. Sarkhosh, H. Emami, L. Bui, and A. Mitchell, “Reduced cost photonic instantaneous frequency measurement system,” IEEE Photon. Technol. Lett. 20(18), 1521–1523 (2008).
[CrossRef]

Bui, L. A.

Canning, J.

S. T. Winnall, A. C. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, “A microwave channelizer and spectroscope based on an integrated optical Bragg-grating Fabry-Perot and integrated hybrid Fresnel lens system,” IEEE Trans. Microw. Theory Tech. 54(2), 868–872 (2006).
[CrossRef]

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

Chi, H.

Y. Wang, J. Ni, H. Chi, X. Zhang, S. Zheng, and X. Jin, “Photonic instantaneous microwave frequency measurement based on two different phase modulation to intensity modulation conversions,” Opt. Commun. 284(16-17), 3928–3932 (2011).
[CrossRef]

Z. Li, B. Yang, H. Chi, X. Zhang, S. Zheng, and X. Jin, “Photonic instantaneous measurement of microwave frequency using fiber Bragg grating,” Opt. Commun. 283(3), 396–399 (2010).
[CrossRef]

H. Chi, X. Zou, and J. P. Yao, “An approach to the measurement of microwave frequency based on optical power monitoring,” IEEE Photon. Technol. Lett. 20(14), 1249–1251 (2008).
[CrossRef]

Dai, J.

J. Dai, K. Xu, X. Sun, J. Niu, Q. Lv, J. Wu, X. Hong, W. Li, and J. Lin, “A simple photonic-assisted microwave frequency measurement system based on MZI with tunable measurement range and high resolution,” IEEE Photon. Technol. Lett. 22(15), 1162–1164 (2010).
[CrossRef]

Drummond, M. V.

M. V. Drummond, C. A. F. Marques, P. P. Monteiro, and R. N. Nogueira, “Photonic instantaneous microwave frequency measurement system based on signal remodulation,” IEEE Photon. Technol. Lett. 22(16), 1226–1228 (2010).
[CrossRef]

Eggleton, B. J.

Emami, H.

L. A. Bui, M. D. Pelusi, T. D. Vo, N. Sarkhosh, H. Emami, B. J. Eggleton, and A. Mitchell, “Instantaneous frequency measurement system using optical mixing in highly nonlinear fiber,” Opt. Express 17(25), 22983–22991 (2009).
[CrossRef] [PubMed]

N. Sarkhosh, H. Emami, L. Bui, and A. Mitchell, “Reduced cost photonic instantaneous frequency measurement system,” IEEE Photon. Technol. Lett. 20(18), 1521–1523 (2008).
[CrossRef]

Fu, S.

S. Fu, J. Zhou, P. P. Shum, and K. Lee, “Instantaneous microwave frequency measurement using programmable differential group delay (DGD) modules,” IEEE Photon. J. 2, 967–973 (2010).

Fu, S. N.

Hong, X.

J. Dai, K. Xu, X. Sun, J. Niu, Q. Lv, J. Wu, X. Hong, W. Li, and J. Lin, “A simple photonic-assisted microwave frequency measurement system based on MZI with tunable measurement range and high resolution,” IEEE Photon. Technol. Lett. 22(15), 1162–1164 (2010).
[CrossRef]

Hunter, D. B.

M. Attygalle and D. B. Hunter, “Improved photonic technique for radio-frequency measurement,” IEEE Photon. Technol. Lett. 21(4), 206–208 (2009).
[CrossRef]

L. V. T. Nguyen and D. B. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photon. Technol. Lett. 18(10), 1188–1190 (2006).
[CrossRef]

Jin, X.

Y. Wang, J. Ni, H. Chi, X. Zhang, S. Zheng, and X. Jin, “Photonic instantaneous microwave frequency measurement based on two different phase modulation to intensity modulation conversions,” Opt. Commun. 284(16-17), 3928–3932 (2011).
[CrossRef]

Z. Li, B. Yang, H. Chi, X. Zhang, S. Zheng, and X. Jin, “Photonic instantaneous measurement of microwave frequency using fiber Bragg grating,” Opt. Commun. 283(3), 396–399 (2010).
[CrossRef]

Lee, K.

S. Fu, J. Zhou, P. P. Shum, and K. Lee, “Instantaneous microwave frequency measurement using programmable differential group delay (DGD) modules,” IEEE Photon. J. 2, 967–973 (2010).

Li, W.

J. Dai, K. Xu, X. Sun, J. Niu, Q. Lv, J. Wu, X. Hong, W. Li, and J. Lin, “A simple photonic-assisted microwave frequency measurement system based on MZI with tunable measurement range and high resolution,” IEEE Photon. Technol. Lett. 22(15), 1162–1164 (2010).
[CrossRef]

Li, Z.

Z. Li, B. Yang, H. Chi, X. Zhang, S. Zheng, and X. Jin, “Photonic instantaneous measurement of microwave frequency using fiber Bragg grating,” Opt. Commun. 283(3), 396–399 (2010).
[CrossRef]

Lin, J.

J. Dai, K. Xu, X. Sun, J. Niu, Q. Lv, J. Wu, X. Hong, W. Li, and J. Lin, “A simple photonic-assisted microwave frequency measurement system based on MZI with tunable measurement range and high resolution,” IEEE Photon. Technol. Lett. 22(15), 1162–1164 (2010).
[CrossRef]

Lin, J. T.

Lindsay, A. C.

S. T. Winnall, A. C. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, “A microwave channelizer and spectroscope based on an integrated optical Bragg-grating Fabry-Perot and integrated hybrid Fresnel lens system,” IEEE Trans. Microw. Theory Tech. 54(2), 868–872 (2006).
[CrossRef]

Luo, B.

X. Zou, W. Pan, B. Luo, and L. Yan, “Photonic instantaneous frequency measurement using a single laser source and two quadrature optical filters,” IEEE Photon. Technol. Lett. 23(1), 39–41 (2011).
[CrossRef]

X. Zou, W. Pan, B. Luo, and L. Yan, “Photonic approach for multiple-frequency-component measurement using spectrally sliced incoherent source,” Opt. Lett. 35(3), 438–440 (2010).
[CrossRef] [PubMed]

Lv, Q.

J. Dai, K. Xu, X. Sun, J. Niu, Q. Lv, J. Wu, X. Hong, W. Li, and J. Lin, “A simple photonic-assisted microwave frequency measurement system based on MZI with tunable measurement range and high resolution,” IEEE Photon. Technol. Lett. 22(15), 1162–1164 (2010).
[CrossRef]

Marques, C. A. F.

M. V. Drummond, C. A. F. Marques, P. P. Monteiro, and R. N. Nogueira, “Photonic instantaneous microwave frequency measurement system based on signal remodulation,” IEEE Photon. Technol. Lett. 22(16), 1226–1228 (2010).
[CrossRef]

Minasian, R. A.

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
[CrossRef]

Mitchell, A.

L. A. Bui, M. D. Pelusi, T. D. Vo, N. Sarkhosh, H. Emami, B. J. Eggleton, and A. Mitchell, “Instantaneous frequency measurement system using optical mixing in highly nonlinear fiber,” Opt. Express 17(25), 22983–22991 (2009).
[CrossRef] [PubMed]

N. Sarkhosh, H. Emami, L. Bui, and A. Mitchell, “Reduced cost photonic instantaneous frequency measurement system,” IEEE Photon. Technol. Lett. 20(18), 1521–1523 (2008).
[CrossRef]

S. T. Winnall, A. C. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, “A microwave channelizer and spectroscope based on an integrated optical Bragg-grating Fabry-Perot and integrated hybrid Fresnel lens system,” IEEE Trans. Microw. Theory Tech. 54(2), 868–872 (2006).
[CrossRef]

Monteiro, P. P.

M. V. Drummond, C. A. F. Marques, P. P. Monteiro, and R. N. Nogueira, “Photonic instantaneous microwave frequency measurement system based on signal remodulation,” IEEE Photon. Technol. Lett. 22(16), 1226–1228 (2010).
[CrossRef]

Nguyen, L. V. T.

L. V. T. Nguyen and D. B. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photon. Technol. Lett. 18(10), 1188–1190 (2006).
[CrossRef]

Ni, J.

Y. Wang, J. Ni, H. Chi, X. Zhang, S. Zheng, and X. Jin, “Photonic instantaneous microwave frequency measurement based on two different phase modulation to intensity modulation conversions,” Opt. Commun. 284(16-17), 3928–3932 (2011).
[CrossRef]

Niu, J.

J. Niu, S. N. Fu, K. Xu, J. Q. Zhou, S. Aditya, J. Wu, P. P. Shum, and J. T. Lin, “Instantaneous microwave frequency measurement based on amplified fiber-optic recirculating delay loop and broadband incoherent light source,” J. Lightwave Technol. 29(1), 78–84 (2011).
[CrossRef]

J. Dai, K. Xu, X. Sun, J. Niu, Q. Lv, J. Wu, X. Hong, W. Li, and J. Lin, “A simple photonic-assisted microwave frequency measurement system based on MZI with tunable measurement range and high resolution,” IEEE Photon. Technol. Lett. 22(15), 1162–1164 (2010).
[CrossRef]

Nogueira, R. N.

M. V. Drummond, C. A. F. Marques, P. P. Monteiro, and R. N. Nogueira, “Photonic instantaneous microwave frequency measurement system based on signal remodulation,” IEEE Photon. Technol. Lett. 22(16), 1226–1228 (2010).
[CrossRef]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

Pan, S.

S. Pan and J. P. Yao, “Instantaneous microwave frequency measurement using a photonic microwave filter pair,” IEEE Photon. Technol. Lett. 22(19), 1437–1439 (2010).
[CrossRef]

Pan, W.

X. Zou, W. Pan, B. Luo, and L. Yan, “Photonic instantaneous frequency measurement using a single laser source and two quadrature optical filters,” IEEE Photon. Technol. Lett. 23(1), 39–41 (2011).
[CrossRef]

X. Zou, W. Pan, B. Luo, and L. Yan, “Photonic approach for multiple-frequency-component measurement using spectrally sliced incoherent source,” Opt. Lett. 35(3), 438–440 (2010).
[CrossRef] [PubMed]

Pelusi, M. D.

Sarkhosh, N.

L. A. Bui, M. D. Pelusi, T. D. Vo, N. Sarkhosh, H. Emami, B. J. Eggleton, and A. Mitchell, “Instantaneous frequency measurement system using optical mixing in highly nonlinear fiber,” Opt. Express 17(25), 22983–22991 (2009).
[CrossRef] [PubMed]

N. Sarkhosh, H. Emami, L. Bui, and A. Mitchell, “Reduced cost photonic instantaneous frequency measurement system,” IEEE Photon. Technol. Lett. 20(18), 1521–1523 (2008).
[CrossRef]

Shum, P. P.

J. Niu, S. N. Fu, K. Xu, J. Q. Zhou, S. Aditya, J. Wu, P. P. Shum, and J. T. Lin, “Instantaneous microwave frequency measurement based on amplified fiber-optic recirculating delay loop and broadband incoherent light source,” J. Lightwave Technol. 29(1), 78–84 (2011).
[CrossRef]

J. Zhou, S. Aditya, P. P. Shum, and J. P. Yao, “Instantaneous microwave frequency measurement using a photonic microwave filter with an infinite impulse response,” IEEE Photon. Technol. Lett. 22(10), 682–684 (2010).
[CrossRef]

S. Fu, J. Zhou, P. P. Shum, and K. Lee, “Instantaneous microwave frequency measurement using programmable differential group delay (DGD) modules,” IEEE Photon. J. 2, 967–973 (2010).

Sun, X.

J. Dai, K. Xu, X. Sun, J. Niu, Q. Lv, J. Wu, X. Hong, W. Li, and J. Lin, “A simple photonic-assisted microwave frequency measurement system based on MZI with tunable measurement range and high resolution,” IEEE Photon. Technol. Lett. 22(15), 1162–1164 (2010).
[CrossRef]

Valley, G. C.

Vidal, B.

B. Vidal, “Photonic-based instantaneous microwave frequency measurement with extended range,” Opt. Commun. 284(16-17), 3996–3999 (2011).
[CrossRef]

Vo, T. D.

Wang, C.

C. Wang and J. Yao, “Photonic generation of chirped millimeter-wave pulses based on nonlinear frequency-to-time mapping in a nonlinearly chirped fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 56(2), 542–553 (2008).
[CrossRef]

Wang, Y.

Y. Wang, J. Ni, H. Chi, X. Zhang, S. Zheng, and X. Jin, “Photonic instantaneous microwave frequency measurement based on two different phase modulation to intensity modulation conversions,” Opt. Commun. 284(16-17), 3928–3932 (2011).
[CrossRef]

Winnall, S. T.

S. T. Winnall, A. C. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, “A microwave channelizer and spectroscope based on an integrated optical Bragg-grating Fabry-Perot and integrated hybrid Fresnel lens system,” IEEE Trans. Microw. Theory Tech. 54(2), 868–872 (2006).
[CrossRef]

Wu, J.

J. Niu, S. N. Fu, K. Xu, J. Q. Zhou, S. Aditya, J. Wu, P. P. Shum, and J. T. Lin, “Instantaneous microwave frequency measurement based on amplified fiber-optic recirculating delay loop and broadband incoherent light source,” J. Lightwave Technol. 29(1), 78–84 (2011).
[CrossRef]

J. Dai, K. Xu, X. Sun, J. Niu, Q. Lv, J. Wu, X. Hong, W. Li, and J. Lin, “A simple photonic-assisted microwave frequency measurement system based on MZI with tunable measurement range and high resolution,” IEEE Photon. Technol. Lett. 22(15), 1162–1164 (2010).
[CrossRef]

Xu, K.

J. Niu, S. N. Fu, K. Xu, J. Q. Zhou, S. Aditya, J. Wu, P. P. Shum, and J. T. Lin, “Instantaneous microwave frequency measurement based on amplified fiber-optic recirculating delay loop and broadband incoherent light source,” J. Lightwave Technol. 29(1), 78–84 (2011).
[CrossRef]

J. Dai, K. Xu, X. Sun, J. Niu, Q. Lv, J. Wu, X. Hong, W. Li, and J. Lin, “A simple photonic-assisted microwave frequency measurement system based on MZI with tunable measurement range and high resolution,” IEEE Photon. Technol. Lett. 22(15), 1162–1164 (2010).
[CrossRef]

Yan, L.

X. Zou, W. Pan, B. Luo, and L. Yan, “Photonic instantaneous frequency measurement using a single laser source and two quadrature optical filters,” IEEE Photon. Technol. Lett. 23(1), 39–41 (2011).
[CrossRef]

X. Zou, W. Pan, B. Luo, and L. Yan, “Photonic approach for multiple-frequency-component measurement using spectrally sliced incoherent source,” Opt. Lett. 35(3), 438–440 (2010).
[CrossRef] [PubMed]

Yang, B.

Z. Li, B. Yang, H. Chi, X. Zhang, S. Zheng, and X. Jin, “Photonic instantaneous measurement of microwave frequency using fiber Bragg grating,” Opt. Commun. 283(3), 396–399 (2010).
[CrossRef]

Yao, J.

C. Wang and J. Yao, “Photonic generation of chirped millimeter-wave pulses based on nonlinear frequency-to-time mapping in a nonlinearly chirped fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 56(2), 542–553 (2008).
[CrossRef]

Yao, J. P.

J. Zhou, S. Aditya, P. P. Shum, and J. P. Yao, “Instantaneous microwave frequency measurement using a photonic microwave filter with an infinite impulse response,” IEEE Photon. Technol. Lett. 22(10), 682–684 (2010).
[CrossRef]

S. Pan and J. P. Yao, “Instantaneous microwave frequency measurement using a photonic microwave filter pair,” IEEE Photon. Technol. Lett. 22(19), 1437–1439 (2010).
[CrossRef]

X. Zou and J. P. Yao, “An optical approach to microwave frequency measurement with adjustable measurement range and resolution,” IEEE Photon. Technol. Lett. 20(23), 1989–1991 (2008).
[CrossRef]

H. Chi, X. Zou, and J. P. Yao, “An approach to the measurement of microwave frequency based on optical power monitoring,” IEEE Photon. Technol. Lett. 20(14), 1249–1251 (2008).
[CrossRef]

Zhang, X.

Y. Wang, J. Ni, H. Chi, X. Zhang, S. Zheng, and X. Jin, “Photonic instantaneous microwave frequency measurement based on two different phase modulation to intensity modulation conversions,” Opt. Commun. 284(16-17), 3928–3932 (2011).
[CrossRef]

Z. Li, B. Yang, H. Chi, X. Zhang, S. Zheng, and X. Jin, “Photonic instantaneous measurement of microwave frequency using fiber Bragg grating,” Opt. Commun. 283(3), 396–399 (2010).
[CrossRef]

Zheng, S.

Y. Wang, J. Ni, H. Chi, X. Zhang, S. Zheng, and X. Jin, “Photonic instantaneous microwave frequency measurement based on two different phase modulation to intensity modulation conversions,” Opt. Commun. 284(16-17), 3928–3932 (2011).
[CrossRef]

Z. Li, B. Yang, H. Chi, X. Zhang, S. Zheng, and X. Jin, “Photonic instantaneous measurement of microwave frequency using fiber Bragg grating,” Opt. Commun. 283(3), 396–399 (2010).
[CrossRef]

Zhou, J.

S. Fu, J. Zhou, P. P. Shum, and K. Lee, “Instantaneous microwave frequency measurement using programmable differential group delay (DGD) modules,” IEEE Photon. J. 2, 967–973 (2010).

J. Zhou, S. Aditya, P. P. Shum, and J. P. Yao, “Instantaneous microwave frequency measurement using a photonic microwave filter with an infinite impulse response,” IEEE Photon. Technol. Lett. 22(10), 682–684 (2010).
[CrossRef]

Zhou, J. Q.

Zou, X.

X. Zou, W. Pan, B. Luo, and L. Yan, “Photonic instantaneous frequency measurement using a single laser source and two quadrature optical filters,” IEEE Photon. Technol. Lett. 23(1), 39–41 (2011).
[CrossRef]

X. Zou, W. Pan, B. Luo, and L. Yan, “Photonic approach for multiple-frequency-component measurement using spectrally sliced incoherent source,” Opt. Lett. 35(3), 438–440 (2010).
[CrossRef] [PubMed]

H. Chi, X. Zou, and J. P. Yao, “An approach to the measurement of microwave frequency based on optical power monitoring,” IEEE Photon. Technol. Lett. 20(14), 1249–1251 (2008).
[CrossRef]

X. Zou and J. P. Yao, “An optical approach to microwave frequency measurement with adjustable measurement range and resolution,” IEEE Photon. Technol. Lett. 20(23), 1989–1991 (2008).
[CrossRef]

IEEE Photon. J. (1)

S. Fu, J. Zhou, P. P. Shum, and K. Lee, “Instantaneous microwave frequency measurement using programmable differential group delay (DGD) modules,” IEEE Photon. J. 2, 967–973 (2010).

IEEE Photon. Technol. Lett. (10)

J. Zhou, S. Aditya, P. P. Shum, and J. P. Yao, “Instantaneous microwave frequency measurement using a photonic microwave filter with an infinite impulse response,” IEEE Photon. Technol. Lett. 22(10), 682–684 (2010).
[CrossRef]

S. Pan and J. P. Yao, “Instantaneous microwave frequency measurement using a photonic microwave filter pair,” IEEE Photon. Technol. Lett. 22(19), 1437–1439 (2010).
[CrossRef]

N. Sarkhosh, H. Emami, L. Bui, and A. Mitchell, “Reduced cost photonic instantaneous frequency measurement system,” IEEE Photon. Technol. Lett. 20(18), 1521–1523 (2008).
[CrossRef]

L. V. T. Nguyen and D. B. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photon. Technol. Lett. 18(10), 1188–1190 (2006).
[CrossRef]

X. Zou and J. P. Yao, “An optical approach to microwave frequency measurement with adjustable measurement range and resolution,” IEEE Photon. Technol. Lett. 20(23), 1989–1991 (2008).
[CrossRef]

M. Attygalle and D. B. Hunter, “Improved photonic technique for radio-frequency measurement,” IEEE Photon. Technol. Lett. 21(4), 206–208 (2009).
[CrossRef]

M. V. Drummond, C. A. F. Marques, P. P. Monteiro, and R. N. Nogueira, “Photonic instantaneous microwave frequency measurement system based on signal remodulation,” IEEE Photon. Technol. Lett. 22(16), 1226–1228 (2010).
[CrossRef]

H. Chi, X. Zou, and J. P. Yao, “An approach to the measurement of microwave frequency based on optical power monitoring,” IEEE Photon. Technol. Lett. 20(14), 1249–1251 (2008).
[CrossRef]

J. Dai, K. Xu, X. Sun, J. Niu, Q. Lv, J. Wu, X. Hong, W. Li, and J. Lin, “A simple photonic-assisted microwave frequency measurement system based on MZI with tunable measurement range and high resolution,” IEEE Photon. Technol. Lett. 22(15), 1162–1164 (2010).
[CrossRef]

X. Zou, W. Pan, B. Luo, and L. Yan, “Photonic instantaneous frequency measurement using a single laser source and two quadrature optical filters,” IEEE Photon. Technol. Lett. 23(1), 39–41 (2011).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (3)

C. Wang and J. Yao, “Photonic generation of chirped millimeter-wave pulses based on nonlinear frequency-to-time mapping in a nonlinearly chirped fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 56(2), 542–553 (2008).
[CrossRef]

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
[CrossRef]

S. T. Winnall, A. C. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, “A microwave channelizer and spectroscope based on an integrated optical Bragg-grating Fabry-Perot and integrated hybrid Fresnel lens system,” IEEE Trans. Microw. Theory Tech. 54(2), 868–872 (2006).
[CrossRef]

J. Lightwave Technol. (1)

Nat. Photonics (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

Opt. Commun. (3)

B. Vidal, “Photonic-based instantaneous microwave frequency measurement with extended range,” Opt. Commun. 284(16-17), 3996–3999 (2011).
[CrossRef]

Y. Wang, J. Ni, H. Chi, X. Zhang, S. Zheng, and X. Jin, “Photonic instantaneous microwave frequency measurement based on two different phase modulation to intensity modulation conversions,” Opt. Commun. 284(16-17), 3928–3932 (2011).
[CrossRef]

Z. Li, B. Yang, H. Chi, X. Zhang, S. Zheng, and X. Jin, “Photonic instantaneous measurement of microwave frequency using fiber Bragg grating,” Opt. Commun. 283(3), 396–399 (2010).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Proc. IEEE (2)

B. Boashash, “Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals,” Proc. IEEE 80(4), 520–538 (1992).
[CrossRef]

B. Boashash, “Estimating and interpreting the instantaneous frequency of a signal. II. Algorithms and applications,” Proc. IEEE 80(4), 540–568 (1992).
[CrossRef]

Other (2)

J. B. Y. Tsui, Digital techniques for wideband receivers (second version) (SciTech Publishing, Inc., Raleigh, 2004).

R. van de Plassche, CMOS integrated analog-to-digital and digital-to- analog converters (2nd edition), (Boston, MA: Kluwer, 2003)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Apparatus of the proposed approach. (PD: photo-detector)

Fig. 2
Fig. 2

Demonstration of the transmission responses and the power ratios when N = 8.

Fig. 3
Fig. 3

(a) Design configuration for the phase-shifted filters and the distribution of (b) the detected optical powers and (c) the derived power ratios.

Fig. 4
Fig. 4

Digital results for frequency measurement. (circles: experimental data; solid lines: theoretical data.)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

F k ( f m )= 1+cos[2π f m /FSR+ θ 0 +(k1)π/N] 2 , 1kN,
P k ( f m )= P 0 1+cos[2π f m /FSR+ θ 0 +(k1)π/N] 2 ,
R k ( f m )= 1+cos[2π f m /FSR+ θ 0 +(k1)π/N] 2 .

Metrics