Abstract

With quasi-periodic microstructures, great enhancement of infrared light absorption of Au film over a broad wavelength band (2.7~15.1 μm) was realized experimentally for the first time. The microstructured Au film was prepared by replica molding of the surface of femtosecond (fs) laser microstructured silicon (black silicon). This unique absorption characteristic is mainly ascribed to good impedance match from free space to Au film. The surface of the sample was examined by X-ray photoelectron spectroscopy (XPS) and the four peaks of absorptance were ascribed to residual polydimethylsiloxane (PDMS), H2SO4, adsorbed water and CO2 in the air, respectively.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Bauer, S. Bauer-Gogonea, W. Becker, R. Fettig, B. Ploss, W. Ruppel, and W. von Münch, “Thin metal films as absorbers for infrared sensors,” Sens. Actuators A Phys. 37–38, 497–501 (1993).
    [CrossRef]
  2. W. R. Blevin and J. Geist, “Influence of Black Coatings on Pyroelectric Detectors,” Appl. Opt. 13(5), 1171–1178 (1974).
    [CrossRef] [PubMed]
  3. C. G. Granqvist, “Solar Energy Materials,” Adv. Mater. (Deerfield Beach Fla.) 15(21), 1789–1803 (2003).
    [CrossRef]
  4. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008).
    [CrossRef]
  5. V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Kravets, “Plasmonic blackbody: Strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B 81(16), 165401 (2010).
    [CrossRef]
  6. E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92(21), 211107 (2008).
    [CrossRef]
  7. T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673 (1998).
    [CrossRef]
  8. C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850 (2001).
    [CrossRef]
  9. Y. Liu, S. Liu, Y. Wang, G. Feng, J. Zhu, and L. Zhao, “Broad band enhanced infrared light absorption of a femtosecond laser microstructured silicon,” Laser Phys. 18(10), 1148–1152 (2008).
    [CrossRef]
  10. R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys. 93(5), 2626 (2003).
    [CrossRef]
  11. J. Zhu, G. Yin, M. Zhao, D. Chen, and L. Zhao, “Evolution of silicon surface microstructures by picosecond and femtosecond laser irradiations,” Appl. Surf. Sci. 245(1-4), 102–108 (2005).
    [CrossRef]
  12. Y. Mo, M. Z. Bazant, and E. Kaxiras, “Sulfur point defects in crystalline and amorphous silicon,” Phys. Rev. B 70(20), 205210 (2004).
    [CrossRef]
  13. Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89(3), 033506 (2006).
    [CrossRef]
  14. M. Halbwax, T. Sarnet, Ph. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: Application to silicon photovoltaic cells fabrication,” Thin Solid Films 516(20), 6791–6795 (2008).
    [CrossRef]
  15. M. T. Winkler, D. Recht, M. J. Sher, A. J. Said, E. Mazur, and M. J. Aziz, “Insulator-to-metal transition in sulfur-doped silicon,” Phys. Rev. Lett. 106(17), 178701 (2011).
    [CrossRef] [PubMed]
  16. C. Reinhardt, S. Passinger, V. Zorba, B. N. Chichkov, and C. Fotakis, “Replica molding of picosecond laser fabricated Si microstructures,” Appl. Phys., A Mater. Sci. Process. 87(4), 673–677 (2007).
    [CrossRef]
  17. G. B. Smith, G. A. Niklasson, J. S. E. M. Svensson, and C. G. Granqvist, “Noble-metal-based transparent infrared reflectors: Experiments and theoretical analyses for very thin gold films,” J. Appl. Phys. 59(2), 571 (1986).
    [CrossRef]
  18. K. Sopian, N. Asim, N. Amin, and S. H. Zaidi, “Enhancement of Optical Absorption in Thin-Film Silicon Solar Cells in Silicon-On-Insulator (SOI) Configuration,” Eur. J. Sci. Res. 24, 358 (2008).
  19. B. Schnyder, T. Lippert, R. Kotz, A. Wokaun, V.-M. Graubner, and O. Nuyken, “UV-irradiation induced modification of PDMS films investigated by XPS and spectroscopic ellipsometry,” Surf. Sci. 532–535, 1067–1071 (2003).
    [CrossRef]
  20. J. Xu, X. H. Huang, N. L. Zhou, J. S. Zhang, J. Ch. Bao, T. H. Lu, and C. Li, “Synthesis, XPS and fluorescence properties of Eu3+ complex with polydimethylsiloxane,” Mater. Lett. 58(12-13), 1938–1942 (2004).
    [CrossRef]
  21. X. Deng, T. Herranz, C. Weis, H. Bluhm, and M. Salmeron, “Adsorption of Water on Cu2O and Al2O3 Thin Films,” J. Phys. Chem. C 112(26), 9668–9672 (2008).
    [CrossRef]
  22. K. J. Hwang, S. H. Lee, H. J. Kim, J. Y. Lee, and J. S. Kim, “A Balloon Filled with Nitrogen Gas Does Not Satisfy the Air- or Moisture-Free Reaction Condition,” Bull. Korean Chem. Soc. 31(2), 515–516 (2010).
    [CrossRef]
  23. D. Bodas and C. Khan-Malek, “Formation of more stable hydrophilic surfaces of PDMS by plasma and chemical treatments,” Microelectron. Eng. 83(4-9), 1277–1279 (2006).
    [CrossRef]
  24. R. F. Majkowski, “Infrared absorption coefficient of H2SO4 vapor from 1190 to 1260 cm−1,” J. Opt. Soc. Am. 67(5), 624 (1977).
    [CrossRef]
  25. B. C. Zhu, S. Y. Xiao, and L. Zhou, Fudan University, 220 Handan Road, Shanghai, 200433, are preparing a manuscript to be called “Strong and wide-angular infrared absorption of metallic spike arrays”.

2011 (1)

M. T. Winkler, D. Recht, M. J. Sher, A. J. Said, E. Mazur, and M. J. Aziz, “Insulator-to-metal transition in sulfur-doped silicon,” Phys. Rev. Lett. 106(17), 178701 (2011).
[CrossRef] [PubMed]

2010 (2)

V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Kravets, “Plasmonic blackbody: Strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B 81(16), 165401 (2010).
[CrossRef]

K. J. Hwang, S. H. Lee, H. J. Kim, J. Y. Lee, and J. S. Kim, “A Balloon Filled with Nitrogen Gas Does Not Satisfy the Air- or Moisture-Free Reaction Condition,” Bull. Korean Chem. Soc. 31(2), 515–516 (2010).
[CrossRef]

2008 (6)

M. Halbwax, T. Sarnet, Ph. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: Application to silicon photovoltaic cells fabrication,” Thin Solid Films 516(20), 6791–6795 (2008).
[CrossRef]

X. Deng, T. Herranz, C. Weis, H. Bluhm, and M. Salmeron, “Adsorption of Water on Cu2O and Al2O3 Thin Films,” J. Phys. Chem. C 112(26), 9668–9672 (2008).
[CrossRef]

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92(21), 211107 (2008).
[CrossRef]

Y. Liu, S. Liu, Y. Wang, G. Feng, J. Zhu, and L. Zhao, “Broad band enhanced infrared light absorption of a femtosecond laser microstructured silicon,” Laser Phys. 18(10), 1148–1152 (2008).
[CrossRef]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008).
[CrossRef]

K. Sopian, N. Asim, N. Amin, and S. H. Zaidi, “Enhancement of Optical Absorption in Thin-Film Silicon Solar Cells in Silicon-On-Insulator (SOI) Configuration,” Eur. J. Sci. Res. 24, 358 (2008).

2007 (1)

C. Reinhardt, S. Passinger, V. Zorba, B. N. Chichkov, and C. Fotakis, “Replica molding of picosecond laser fabricated Si microstructures,” Appl. Phys., A Mater. Sci. Process. 87(4), 673–677 (2007).
[CrossRef]

2006 (2)

Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89(3), 033506 (2006).
[CrossRef]

D. Bodas and C. Khan-Malek, “Formation of more stable hydrophilic surfaces of PDMS by plasma and chemical treatments,” Microelectron. Eng. 83(4-9), 1277–1279 (2006).
[CrossRef]

2005 (1)

J. Zhu, G. Yin, M. Zhao, D. Chen, and L. Zhao, “Evolution of silicon surface microstructures by picosecond and femtosecond laser irradiations,” Appl. Surf. Sci. 245(1-4), 102–108 (2005).
[CrossRef]

2004 (2)

Y. Mo, M. Z. Bazant, and E. Kaxiras, “Sulfur point defects in crystalline and amorphous silicon,” Phys. Rev. B 70(20), 205210 (2004).
[CrossRef]

J. Xu, X. H. Huang, N. L. Zhou, J. S. Zhang, J. Ch. Bao, T. H. Lu, and C. Li, “Synthesis, XPS and fluorescence properties of Eu3+ complex with polydimethylsiloxane,” Mater. Lett. 58(12-13), 1938–1942 (2004).
[CrossRef]

2003 (3)

B. Schnyder, T. Lippert, R. Kotz, A. Wokaun, V.-M. Graubner, and O. Nuyken, “UV-irradiation induced modification of PDMS films investigated by XPS and spectroscopic ellipsometry,” Surf. Sci. 532–535, 1067–1071 (2003).
[CrossRef]

C. G. Granqvist, “Solar Energy Materials,” Adv. Mater. (Deerfield Beach Fla.) 15(21), 1789–1803 (2003).
[CrossRef]

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys. 93(5), 2626 (2003).
[CrossRef]

2001 (1)

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850 (2001).
[CrossRef]

1998 (1)

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673 (1998).
[CrossRef]

1993 (1)

S. Bauer, S. Bauer-Gogonea, W. Becker, R. Fettig, B. Ploss, W. Ruppel, and W. von Münch, “Thin metal films as absorbers for infrared sensors,” Sens. Actuators A Phys. 37–38, 497–501 (1993).
[CrossRef]

1986 (1)

G. B. Smith, G. A. Niklasson, J. S. E. M. Svensson, and C. G. Granqvist, “Noble-metal-based transparent infrared reflectors: Experiments and theoretical analyses for very thin gold films,” J. Appl. Phys. 59(2), 571 (1986).
[CrossRef]

1977 (1)

1974 (1)

Amin, N.

K. Sopian, N. Asim, N. Amin, and S. H. Zaidi, “Enhancement of Optical Absorption in Thin-Film Silicon Solar Cells in Silicon-On-Insulator (SOI) Configuration,” Eur. J. Sci. Res. 24, 358 (2008).

Asim, N.

K. Sopian, N. Asim, N. Amin, and S. H. Zaidi, “Enhancement of Optical Absorption in Thin-Film Silicon Solar Cells in Silicon-On-Insulator (SOI) Configuration,” Eur. J. Sci. Res. 24, 358 (2008).

Aziz, M. J.

M. T. Winkler, D. Recht, M. J. Sher, A. J. Said, E. Mazur, and M. J. Aziz, “Insulator-to-metal transition in sulfur-doped silicon,” Phys. Rev. Lett. 106(17), 178701 (2011).
[CrossRef] [PubMed]

Bao, J. Ch.

J. Xu, X. H. Huang, N. L. Zhou, J. S. Zhang, J. Ch. Bao, T. H. Lu, and C. Li, “Synthesis, XPS and fluorescence properties of Eu3+ complex with polydimethylsiloxane,” Mater. Lett. 58(12-13), 1938–1942 (2004).
[CrossRef]

Bauer, S.

S. Bauer, S. Bauer-Gogonea, W. Becker, R. Fettig, B. Ploss, W. Ruppel, and W. von Münch, “Thin metal films as absorbers for infrared sensors,” Sens. Actuators A Phys. 37–38, 497–501 (1993).
[CrossRef]

Bauer-Gogonea, S.

S. Bauer, S. Bauer-Gogonea, W. Becker, R. Fettig, B. Ploss, W. Ruppel, and W. von Münch, “Thin metal films as absorbers for infrared sensors,” Sens. Actuators A Phys. 37–38, 497–501 (1993).
[CrossRef]

Bazant, M. Z.

Y. Mo, M. Z. Bazant, and E. Kaxiras, “Sulfur point defects in crystalline and amorphous silicon,” Phys. Rev. B 70(20), 205210 (2004).
[CrossRef]

Becker, W.

S. Bauer, S. Bauer-Gogonea, W. Becker, R. Fettig, B. Ploss, W. Ruppel, and W. von Münch, “Thin metal films as absorbers for infrared sensors,” Sens. Actuators A Phys. 37–38, 497–501 (1993).
[CrossRef]

Blevin, W. R.

Bluhm, H.

X. Deng, T. Herranz, C. Weis, H. Bluhm, and M. Salmeron, “Adsorption of Water on Cu2O and Al2O3 Thin Films,” J. Phys. Chem. C 112(26), 9668–9672 (2008).
[CrossRef]

Bodas, D.

D. Bodas and C. Khan-Malek, “Formation of more stable hydrophilic surfaces of PDMS by plasma and chemical treatments,” Microelectron. Eng. 83(4-9), 1277–1279 (2006).
[CrossRef]

Campbell, J. C.

Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89(3), 033506 (2006).
[CrossRef]

Carey, J. E.

Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89(3), 033506 (2006).
[CrossRef]

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys. 93(5), 2626 (2003).
[CrossRef]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850 (2001).
[CrossRef]

Chen, D.

J. Zhu, G. Yin, M. Zhao, D. Chen, and L. Zhao, “Evolution of silicon surface microstructures by picosecond and femtosecond laser irradiations,” Appl. Surf. Sci. 245(1-4), 102–108 (2005).
[CrossRef]

Chichkov, B. N.

C. Reinhardt, S. Passinger, V. Zorba, B. N. Chichkov, and C. Fotakis, “Replica molding of picosecond laser fabricated Si microstructures,” Appl. Phys., A Mater. Sci. Process. 87(4), 673–677 (2007).
[CrossRef]

Crouch, C. H.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850 (2001).
[CrossRef]

Delaporte, Ph.

M. Halbwax, T. Sarnet, Ph. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: Application to silicon photovoltaic cells fabrication,” Thin Solid Films 516(20), 6791–6795 (2008).
[CrossRef]

Deliwala, S.

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673 (1998).
[CrossRef]

Deng, X.

X. Deng, T. Herranz, C. Weis, H. Bluhm, and M. Salmeron, “Adsorption of Water on Cu2O and Al2O3 Thin Films,” J. Phys. Chem. C 112(26), 9668–9672 (2008).
[CrossRef]

Etienne, H.

M. Halbwax, T. Sarnet, Ph. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: Application to silicon photovoltaic cells fabrication,” Thin Solid Films 516(20), 6791–6795 (2008).
[CrossRef]

Fan, S.

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92(21), 211107 (2008).
[CrossRef]

Farrell, R. M.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850 (2001).
[CrossRef]

Feng, G.

Y. Liu, S. Liu, Y. Wang, G. Feng, J. Zhu, and L. Zhao, “Broad band enhanced infrared light absorption of a femtosecond laser microstructured silicon,” Laser Phys. 18(10), 1148–1152 (2008).
[CrossRef]

Fettig, R.

S. Bauer, S. Bauer-Gogonea, W. Becker, R. Fettig, B. Ploss, W. Ruppel, and W. von Münch, “Thin metal films as absorbers for infrared sensors,” Sens. Actuators A Phys. 37–38, 497–501 (1993).
[CrossRef]

Finlay, R. J.

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673 (1998).
[CrossRef]

Fotakis, C.

C. Reinhardt, S. Passinger, V. Zorba, B. N. Chichkov, and C. Fotakis, “Replica molding of picosecond laser fabricated Si microstructures,” Appl. Phys., A Mater. Sci. Process. 87(4), 673–677 (2007).
[CrossRef]

Friend, C. M.

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys. 93(5), 2626 (2003).
[CrossRef]

Geist, J.

Gothoskar, P.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850 (2001).
[CrossRef]

Granqvist, C. G.

C. G. Granqvist, “Solar Energy Materials,” Adv. Mater. (Deerfield Beach Fla.) 15(21), 1789–1803 (2003).
[CrossRef]

G. B. Smith, G. A. Niklasson, J. S. E. M. Svensson, and C. G. Granqvist, “Noble-metal-based transparent infrared reflectors: Experiments and theoretical analyses for very thin gold films,” J. Appl. Phys. 59(2), 571 (1986).
[CrossRef]

Graubner, V.-M.

B. Schnyder, T. Lippert, R. Kotz, A. Wokaun, V.-M. Graubner, and O. Nuyken, “UV-irradiation induced modification of PDMS films investigated by XPS and spectroscopic ellipsometry,” Surf. Sci. 532–535, 1067–1071 (2003).
[CrossRef]

Grigorenko, A. N.

V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Kravets, “Plasmonic blackbody: Strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B 81(16), 165401 (2010).
[CrossRef]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008).
[CrossRef]

Guo, X.

Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89(3), 033506 (2006).
[CrossRef]

Halbwax, M.

M. Halbwax, T. Sarnet, Ph. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: Application to silicon photovoltaic cells fabrication,” Thin Solid Films 516(20), 6791–6795 (2008).
[CrossRef]

Her, T. H.

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673 (1998).
[CrossRef]

Herranz, T.

X. Deng, T. Herranz, C. Weis, H. Bluhm, and M. Salmeron, “Adsorption of Water on Cu2O and Al2O3 Thin Films,” J. Phys. Chem. C 112(26), 9668–9672 (2008).
[CrossRef]

Huang, X. H.

J. Xu, X. H. Huang, N. L. Zhou, J. S. Zhang, J. Ch. Bao, T. H. Lu, and C. Li, “Synthesis, XPS and fluorescence properties of Eu3+ complex with polydimethylsiloxane,” Mater. Lett. 58(12-13), 1938–1942 (2004).
[CrossRef]

Huang, Z.

Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89(3), 033506 (2006).
[CrossRef]

Hwang, K. J.

K. J. Hwang, S. H. Lee, H. J. Kim, J. Y. Lee, and J. S. Kim, “A Balloon Filled with Nitrogen Gas Does Not Satisfy the Air- or Moisture-Free Reaction Condition,” Bull. Korean Chem. Soc. 31(2), 515–516 (2010).
[CrossRef]

Karger, A.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850 (2001).
[CrossRef]

Kaxiras, E.

Y. Mo, M. Z. Bazant, and E. Kaxiras, “Sulfur point defects in crystalline and amorphous silicon,” Phys. Rev. B 70(20), 205210 (2004).
[CrossRef]

Khan-Malek, C.

D. Bodas and C. Khan-Malek, “Formation of more stable hydrophilic surfaces of PDMS by plasma and chemical treatments,” Microelectron. Eng. 83(4-9), 1277–1279 (2006).
[CrossRef]

Kim, H. J.

K. J. Hwang, S. H. Lee, H. J. Kim, J. Y. Lee, and J. S. Kim, “A Balloon Filled with Nitrogen Gas Does Not Satisfy the Air- or Moisture-Free Reaction Condition,” Bull. Korean Chem. Soc. 31(2), 515–516 (2010).
[CrossRef]

Kim, J. S.

K. J. Hwang, S. H. Lee, H. J. Kim, J. Y. Lee, and J. S. Kim, “A Balloon Filled with Nitrogen Gas Does Not Satisfy the Air- or Moisture-Free Reaction Condition,” Bull. Korean Chem. Soc. 31(2), 515–516 (2010).
[CrossRef]

Kotz, R.

B. Schnyder, T. Lippert, R. Kotz, A. Wokaun, V.-M. Graubner, and O. Nuyken, “UV-irradiation induced modification of PDMS films investigated by XPS and spectroscopic ellipsometry,” Surf. Sci. 532–535, 1067–1071 (2003).
[CrossRef]

Kravets, A. F.

V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Kravets, “Plasmonic blackbody: Strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B 81(16), 165401 (2010).
[CrossRef]

Kravets, V. G.

V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Kravets, “Plasmonic blackbody: Strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B 81(16), 165401 (2010).
[CrossRef]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008).
[CrossRef]

Lee, J. Y.

K. J. Hwang, S. H. Lee, H. J. Kim, J. Y. Lee, and J. S. Kim, “A Balloon Filled with Nitrogen Gas Does Not Satisfy the Air- or Moisture-Free Reaction Condition,” Bull. Korean Chem. Soc. 31(2), 515–516 (2010).
[CrossRef]

Lee, S. H.

K. J. Hwang, S. H. Lee, H. J. Kim, J. Y. Lee, and J. S. Kim, “A Balloon Filled with Nitrogen Gas Does Not Satisfy the Air- or Moisture-Free Reaction Condition,” Bull. Korean Chem. Soc. 31(2), 515–516 (2010).
[CrossRef]

Levinson, J. A.

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys. 93(5), 2626 (2003).
[CrossRef]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850 (2001).
[CrossRef]

Li, C.

J. Xu, X. H. Huang, N. L. Zhou, J. S. Zhang, J. Ch. Bao, T. H. Lu, and C. Li, “Synthesis, XPS and fluorescence properties of Eu3+ complex with polydimethylsiloxane,” Mater. Lett. 58(12-13), 1938–1942 (2004).
[CrossRef]

Lippert, T.

B. Schnyder, T. Lippert, R. Kotz, A. Wokaun, V.-M. Graubner, and O. Nuyken, “UV-irradiation induced modification of PDMS films investigated by XPS and spectroscopic ellipsometry,” Surf. Sci. 532–535, 1067–1071 (2003).
[CrossRef]

Liu, M.

Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89(3), 033506 (2006).
[CrossRef]

Liu, S.

Y. Liu, S. Liu, Y. Wang, G. Feng, J. Zhu, and L. Zhao, “Broad band enhanced infrared light absorption of a femtosecond laser microstructured silicon,” Laser Phys. 18(10), 1148–1152 (2008).
[CrossRef]

Liu, Y.

Y. Liu, S. Liu, Y. Wang, G. Feng, J. Zhu, and L. Zhao, “Broad band enhanced infrared light absorption of a femtosecond laser microstructured silicon,” Laser Phys. 18(10), 1148–1152 (2008).
[CrossRef]

Lu, T. H.

J. Xu, X. H. Huang, N. L. Zhou, J. S. Zhang, J. Ch. Bao, T. H. Lu, and C. Li, “Synthesis, XPS and fluorescence properties of Eu3+ complex with polydimethylsiloxane,” Mater. Lett. 58(12-13), 1938–1942 (2004).
[CrossRef]

Majkowski, R. F.

Martinuzzi, S.

M. Halbwax, T. Sarnet, Ph. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: Application to silicon photovoltaic cells fabrication,” Thin Solid Films 516(20), 6791–6795 (2008).
[CrossRef]

Mazur, E.

M. T. Winkler, D. Recht, M. J. Sher, A. J. Said, E. Mazur, and M. J. Aziz, “Insulator-to-metal transition in sulfur-doped silicon,” Phys. Rev. Lett. 106(17), 178701 (2011).
[CrossRef] [PubMed]

Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89(3), 033506 (2006).
[CrossRef]

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys. 93(5), 2626 (2003).
[CrossRef]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850 (2001).
[CrossRef]

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673 (1998).
[CrossRef]

Mo, Y.

Y. Mo, M. Z. Bazant, and E. Kaxiras, “Sulfur point defects in crystalline and amorphous silicon,” Phys. Rev. B 70(20), 205210 (2004).
[CrossRef]

Neubeck, S.

V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Kravets, “Plasmonic blackbody: Strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B 81(16), 165401 (2010).
[CrossRef]

Niklasson, G. A.

G. B. Smith, G. A. Niklasson, J. S. E. M. Svensson, and C. G. Granqvist, “Noble-metal-based transparent infrared reflectors: Experiments and theoretical analyses for very thin gold films,” J. Appl. Phys. 59(2), 571 (1986).
[CrossRef]

Nuyken, O.

B. Schnyder, T. Lippert, R. Kotz, A. Wokaun, V.-M. Graubner, and O. Nuyken, “UV-irradiation induced modification of PDMS films investigated by XPS and spectroscopic ellipsometry,” Surf. Sci. 532–535, 1067–1071 (2003).
[CrossRef]

Passinger, S.

C. Reinhardt, S. Passinger, V. Zorba, B. N. Chichkov, and C. Fotakis, “Replica molding of picosecond laser fabricated Si microstructures,” Appl. Phys., A Mater. Sci. Process. 87(4), 673–677 (2007).
[CrossRef]

Perichaud, I.

M. Halbwax, T. Sarnet, Ph. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: Application to silicon photovoltaic cells fabrication,” Thin Solid Films 516(20), 6791–6795 (2008).
[CrossRef]

Ploss, B.

S. Bauer, S. Bauer-Gogonea, W. Becker, R. Fettig, B. Ploss, W. Ruppel, and W. von Münch, “Thin metal films as absorbers for infrared sensors,” Sens. Actuators A Phys. 37–38, 497–501 (1993).
[CrossRef]

Recht, D.

M. T. Winkler, D. Recht, M. J. Sher, A. J. Said, E. Mazur, and M. J. Aziz, “Insulator-to-metal transition in sulfur-doped silicon,” Phys. Rev. Lett. 106(17), 178701 (2011).
[CrossRef] [PubMed]

Reinhardt, C.

C. Reinhardt, S. Passinger, V. Zorba, B. N. Chichkov, and C. Fotakis, “Replica molding of picosecond laser fabricated Si microstructures,” Appl. Phys., A Mater. Sci. Process. 87(4), 673–677 (2007).
[CrossRef]

Rephaeli, E.

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92(21), 211107 (2008).
[CrossRef]

Ruppel, W.

S. Bauer, S. Bauer-Gogonea, W. Becker, R. Fettig, B. Ploss, W. Ruppel, and W. von Münch, “Thin metal films as absorbers for infrared sensors,” Sens. Actuators A Phys. 37–38, 497–501 (1993).
[CrossRef]

Said, A. J.

M. T. Winkler, D. Recht, M. J. Sher, A. J. Said, E. Mazur, and M. J. Aziz, “Insulator-to-metal transition in sulfur-doped silicon,” Phys. Rev. Lett. 106(17), 178701 (2011).
[CrossRef] [PubMed]

Salmeron, M.

X. Deng, T. Herranz, C. Weis, H. Bluhm, and M. Salmeron, “Adsorption of Water on Cu2O and Al2O3 Thin Films,” J. Phys. Chem. C 112(26), 9668–9672 (2008).
[CrossRef]

Sarnet, T.

M. Halbwax, T. Sarnet, Ph. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: Application to silicon photovoltaic cells fabrication,” Thin Solid Films 516(20), 6791–6795 (2008).
[CrossRef]

Schedin, F.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008).
[CrossRef]

Schnyder, B.

B. Schnyder, T. Lippert, R. Kotz, A. Wokaun, V.-M. Graubner, and O. Nuyken, “UV-irradiation induced modification of PDMS films investigated by XPS and spectroscopic ellipsometry,” Surf. Sci. 532–535, 1067–1071 (2003).
[CrossRef]

Sentis, M.

M. Halbwax, T. Sarnet, Ph. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: Application to silicon photovoltaic cells fabrication,” Thin Solid Films 516(20), 6791–6795 (2008).
[CrossRef]

Sher, M. J.

M. T. Winkler, D. Recht, M. J. Sher, A. J. Said, E. Mazur, and M. J. Aziz, “Insulator-to-metal transition in sulfur-doped silicon,” Phys. Rev. Lett. 106(17), 178701 (2011).
[CrossRef] [PubMed]

Smith, G. B.

G. B. Smith, G. A. Niklasson, J. S. E. M. Svensson, and C. G. Granqvist, “Noble-metal-based transparent infrared reflectors: Experiments and theoretical analyses for very thin gold films,” J. Appl. Phys. 59(2), 571 (1986).
[CrossRef]

Sopian, K.

K. Sopian, N. Asim, N. Amin, and S. H. Zaidi, “Enhancement of Optical Absorption in Thin-Film Silicon Solar Cells in Silicon-On-Insulator (SOI) Configuration,” Eur. J. Sci. Res. 24, 358 (2008).

Svensson, J. S. E. M.

G. B. Smith, G. A. Niklasson, J. S. E. M. Svensson, and C. G. Granqvist, “Noble-metal-based transparent infrared reflectors: Experiments and theoretical analyses for very thin gold films,” J. Appl. Phys. 59(2), 571 (1986).
[CrossRef]

Torregrosa, F.

M. Halbwax, T. Sarnet, Ph. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: Application to silicon photovoltaic cells fabrication,” Thin Solid Films 516(20), 6791–6795 (2008).
[CrossRef]

Vervisch, V.

M. Halbwax, T. Sarnet, Ph. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: Application to silicon photovoltaic cells fabrication,” Thin Solid Films 516(20), 6791–6795 (2008).
[CrossRef]

von Münch, W.

S. Bauer, S. Bauer-Gogonea, W. Becker, R. Fettig, B. Ploss, W. Ruppel, and W. von Münch, “Thin metal films as absorbers for infrared sensors,” Sens. Actuators A Phys. 37–38, 497–501 (1993).
[CrossRef]

Wang, Y.

Y. Liu, S. Liu, Y. Wang, G. Feng, J. Zhu, and L. Zhao, “Broad band enhanced infrared light absorption of a femtosecond laser microstructured silicon,” Laser Phys. 18(10), 1148–1152 (2008).
[CrossRef]

Weis, C.

X. Deng, T. Herranz, C. Weis, H. Bluhm, and M. Salmeron, “Adsorption of Water on Cu2O and Al2O3 Thin Films,” J. Phys. Chem. C 112(26), 9668–9672 (2008).
[CrossRef]

Winkler, M. T.

M. T. Winkler, D. Recht, M. J. Sher, A. J. Said, E. Mazur, and M. J. Aziz, “Insulator-to-metal transition in sulfur-doped silicon,” Phys. Rev. Lett. 106(17), 178701 (2011).
[CrossRef] [PubMed]

Wokaun, A.

B. Schnyder, T. Lippert, R. Kotz, A. Wokaun, V.-M. Graubner, and O. Nuyken, “UV-irradiation induced modification of PDMS films investigated by XPS and spectroscopic ellipsometry,” Surf. Sci. 532–535, 1067–1071 (2003).
[CrossRef]

Wu, C.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850 (2001).
[CrossRef]

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673 (1998).
[CrossRef]

Xu, J.

J. Xu, X. H. Huang, N. L. Zhou, J. S. Zhang, J. Ch. Bao, T. H. Lu, and C. Li, “Synthesis, XPS and fluorescence properties of Eu3+ complex with polydimethylsiloxane,” Mater. Lett. 58(12-13), 1938–1942 (2004).
[CrossRef]

Yin, G.

J. Zhu, G. Yin, M. Zhao, D. Chen, and L. Zhao, “Evolution of silicon surface microstructures by picosecond and femtosecond laser irradiations,” Appl. Surf. Sci. 245(1-4), 102–108 (2005).
[CrossRef]

Younkin, R.

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys. 93(5), 2626 (2003).
[CrossRef]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850 (2001).
[CrossRef]

Zaidi, S. H.

K. Sopian, N. Asim, N. Amin, and S. H. Zaidi, “Enhancement of Optical Absorption in Thin-Film Silicon Solar Cells in Silicon-On-Insulator (SOI) Configuration,” Eur. J. Sci. Res. 24, 358 (2008).

Zhang, J. S.

J. Xu, X. H. Huang, N. L. Zhou, J. S. Zhang, J. Ch. Bao, T. H. Lu, and C. Li, “Synthesis, XPS and fluorescence properties of Eu3+ complex with polydimethylsiloxane,” Mater. Lett. 58(12-13), 1938–1942 (2004).
[CrossRef]

Zhao, L.

Y. Liu, S. Liu, Y. Wang, G. Feng, J. Zhu, and L. Zhao, “Broad band enhanced infrared light absorption of a femtosecond laser microstructured silicon,” Laser Phys. 18(10), 1148–1152 (2008).
[CrossRef]

J. Zhu, G. Yin, M. Zhao, D. Chen, and L. Zhao, “Evolution of silicon surface microstructures by picosecond and femtosecond laser irradiations,” Appl. Surf. Sci. 245(1-4), 102–108 (2005).
[CrossRef]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850 (2001).
[CrossRef]

Zhao, M.

J. Zhu, G. Yin, M. Zhao, D. Chen, and L. Zhao, “Evolution of silicon surface microstructures by picosecond and femtosecond laser irradiations,” Appl. Surf. Sci. 245(1-4), 102–108 (2005).
[CrossRef]

Zhou, N. L.

J. Xu, X. H. Huang, N. L. Zhou, J. S. Zhang, J. Ch. Bao, T. H. Lu, and C. Li, “Synthesis, XPS and fluorescence properties of Eu3+ complex with polydimethylsiloxane,” Mater. Lett. 58(12-13), 1938–1942 (2004).
[CrossRef]

Zhu, J.

Y. Liu, S. Liu, Y. Wang, G. Feng, J. Zhu, and L. Zhao, “Broad band enhanced infrared light absorption of a femtosecond laser microstructured silicon,” Laser Phys. 18(10), 1148–1152 (2008).
[CrossRef]

J. Zhu, G. Yin, M. Zhao, D. Chen, and L. Zhao, “Evolution of silicon surface microstructures by picosecond and femtosecond laser irradiations,” Appl. Surf. Sci. 245(1-4), 102–108 (2005).
[CrossRef]

Zorba, V.

C. Reinhardt, S. Passinger, V. Zorba, B. N. Chichkov, and C. Fotakis, “Replica molding of picosecond laser fabricated Si microstructures,” Appl. Phys., A Mater. Sci. Process. 87(4), 673–677 (2007).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

C. G. Granqvist, “Solar Energy Materials,” Adv. Mater. (Deerfield Beach Fla.) 15(21), 1789–1803 (2003).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92(21), 211107 (2008).
[CrossRef]

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673 (1998).
[CrossRef]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850 (2001).
[CrossRef]

Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89(3), 033506 (2006).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

C. Reinhardt, S. Passinger, V. Zorba, B. N. Chichkov, and C. Fotakis, “Replica molding of picosecond laser fabricated Si microstructures,” Appl. Phys., A Mater. Sci. Process. 87(4), 673–677 (2007).
[CrossRef]

Appl. Surf. Sci. (1)

J. Zhu, G. Yin, M. Zhao, D. Chen, and L. Zhao, “Evolution of silicon surface microstructures by picosecond and femtosecond laser irradiations,” Appl. Surf. Sci. 245(1-4), 102–108 (2005).
[CrossRef]

Bull. Korean Chem. Soc. (1)

K. J. Hwang, S. H. Lee, H. J. Kim, J. Y. Lee, and J. S. Kim, “A Balloon Filled with Nitrogen Gas Does Not Satisfy the Air- or Moisture-Free Reaction Condition,” Bull. Korean Chem. Soc. 31(2), 515–516 (2010).
[CrossRef]

Eur. J. Sci. Res. (1)

K. Sopian, N. Asim, N. Amin, and S. H. Zaidi, “Enhancement of Optical Absorption in Thin-Film Silicon Solar Cells in Silicon-On-Insulator (SOI) Configuration,” Eur. J. Sci. Res. 24, 358 (2008).

J. Appl. Phys. (2)

G. B. Smith, G. A. Niklasson, J. S. E. M. Svensson, and C. G. Granqvist, “Noble-metal-based transparent infrared reflectors: Experiments and theoretical analyses for very thin gold films,” J. Appl. Phys. 59(2), 571 (1986).
[CrossRef]

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys. 93(5), 2626 (2003).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. Chem. C (1)

X. Deng, T. Herranz, C. Weis, H. Bluhm, and M. Salmeron, “Adsorption of Water on Cu2O and Al2O3 Thin Films,” J. Phys. Chem. C 112(26), 9668–9672 (2008).
[CrossRef]

Laser Phys. (1)

Y. Liu, S. Liu, Y. Wang, G. Feng, J. Zhu, and L. Zhao, “Broad band enhanced infrared light absorption of a femtosecond laser microstructured silicon,” Laser Phys. 18(10), 1148–1152 (2008).
[CrossRef]

Mater. Lett. (1)

J. Xu, X. H. Huang, N. L. Zhou, J. S. Zhang, J. Ch. Bao, T. H. Lu, and C. Li, “Synthesis, XPS and fluorescence properties of Eu3+ complex with polydimethylsiloxane,” Mater. Lett. 58(12-13), 1938–1942 (2004).
[CrossRef]

Microelectron. Eng. (1)

D. Bodas and C. Khan-Malek, “Formation of more stable hydrophilic surfaces of PDMS by plasma and chemical treatments,” Microelectron. Eng. 83(4-9), 1277–1279 (2006).
[CrossRef]

Phys. Rev. B (3)

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008).
[CrossRef]

V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Kravets, “Plasmonic blackbody: Strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B 81(16), 165401 (2010).
[CrossRef]

Y. Mo, M. Z. Bazant, and E. Kaxiras, “Sulfur point defects in crystalline and amorphous silicon,” Phys. Rev. B 70(20), 205210 (2004).
[CrossRef]

Phys. Rev. Lett. (1)

M. T. Winkler, D. Recht, M. J. Sher, A. J. Said, E. Mazur, and M. J. Aziz, “Insulator-to-metal transition in sulfur-doped silicon,” Phys. Rev. Lett. 106(17), 178701 (2011).
[CrossRef] [PubMed]

Sens. Actuators A Phys. (1)

S. Bauer, S. Bauer-Gogonea, W. Becker, R. Fettig, B. Ploss, W. Ruppel, and W. von Münch, “Thin metal films as absorbers for infrared sensors,” Sens. Actuators A Phys. 37–38, 497–501 (1993).
[CrossRef]

Surf. Sci. (1)

B. Schnyder, T. Lippert, R. Kotz, A. Wokaun, V.-M. Graubner, and O. Nuyken, “UV-irradiation induced modification of PDMS films investigated by XPS and spectroscopic ellipsometry,” Surf. Sci. 532–535, 1067–1071 (2003).
[CrossRef]

Thin Solid Films (1)

M. Halbwax, T. Sarnet, Ph. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: Application to silicon photovoltaic cells fabrication,” Thin Solid Films 516(20), 6791–6795 (2008).
[CrossRef]

Other (1)

B. C. Zhu, S. Y. Xiao, and L. Zhou, Fudan University, 220 Handan Road, Shanghai, 200433, are preparing a manuscript to be called “Strong and wide-angular infrared absorption of metallic spike arrays”.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of sample preparation: (a) fabrication of a black silicon by fs laser assisted chemical etching, (b) fabrication of a negative PDMS replica (negative mold) from the black silicon, (c) evaporation of 300 nm Au film on PDMS negative mold in vacuum, (d) dissolving PDMS in oil of vitriol (mass fraction 98.3%) followed by rinsing it in ethanol and careful up-down reversal. The down part of each schematic diagram shows corresponding image.

Fig. 2
Fig. 2

SEM images of (a) the surface of black silicon and (b) the surface of Au film with microstructures replicated from the counterpart. The inset of (a) and (b) show the side of the spike at a smaller scale.

Fig. 3
Fig. 3

(a) reflectance, (b) transmittance and (c) absorptance spectrum for sample 1, sample 2, sample 3 (denoted as S1, S2 and S3 corresponding to the spike height of ~32, 16 and 6 μm, respectively) and a flat Si substrate, a flat Au film (denoted as Si and Flat Au, respectively) in the wavelength range of 2~15.1 μm.

Fig. 4
Fig. 4

Four peaks of X-ray photoelectron spectroscopy (O 1s, Si 2p, C 1s and S 2p) for the surface of sample 3 (S3)

Metrics