Abstract

Standoff chemical detection with a distance of more than 41 feet using photoacoustic effect and quantum cascade laser (QCL) operated at relatively low power, less than 40 mW, is demonstrated for the first time. The option of using QCL provides the advantages of easy tuning and modulation besides the benefit of compact size, light weight and low power consumption. The standoff detection signal can be calibrated as a function of different parameters such as laser pulse energy, gas vapor concentration and detection distance. The results yield good agreements with theoretical model. Techniques to obtain even longer detection distance and achieve outdoor operations are in the process of implementation and their projection is discussed.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. G. Bell, “On the production and reproduction of sound by light,” Am. J. Sci. 20, 305–324 (1880).
  2. A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Wiley, New York 1980)
  3. Y. H. Pao, Optoacoustic Spectroscopy and Detection (Academic, New York, 1977)
  4. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
    [CrossRef] [PubMed]
  5. G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81(6), 769–777 (2005).
    [CrossRef]
  6. F. K. Tittel, Y. A. Bakhirkin, A. A. Kosterev, and G. Wysocki, “Recent advances in trace gas detection using quantum and interband cascade lasers,” Rev. Laser Eng. 34, 275–284 (2006).
  7. A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90(2), 165–176 (2008).
    [CrossRef]
  8. A. Elia, C. D. Franco, V. Spagnolo, P. M. Lugarà, and G. Scamarcio, “Quantum cascade laser-based photoacoustic sensor for trace detection of formaldehyde gas,” Sensors (Basel Switzerland) 9(4), 2697–2705 (2009).
    [CrossRef]
  9. E. Holthoff, J. Bender, P. Pellegrino, and A. Fisher, “Quantum cascade laser-based photoacoustic spectroscopy for trace vapor detection and molecular discrimination,” Sensors (Basel Switzerland) 10(3), 1986–2002 (2010).
    [CrossRef]
  10. D. J. Brassington, “Photo-acoustic detection and ranging - a new technique for the remote detection of gases,” J. Phys. D Appl. Phys. 15(2), 219–228 (1982).
    [CrossRef]
  11. S. H. Yönak and D. R. Dowling, “Photoacoustic detection and localization of small gas leaks,” J. Acoust. Soc. Am. 105(5), 2685–2694 (1999).
    [CrossRef] [PubMed]
  12. M. Harris, G. N. Pearson, D. V. Willetts, K. Ridley, P. R. Tapster, and B. Perrett, “Pulsed indirect photoacoustic spectroscopy: application to remote detection of condensed phases,” Appl. Opt. 39(6), 1032–1041 (2000).
    [CrossRef] [PubMed]
  13. B. Perrett, M. Harris, G. N. Pearson, D. V. Willetts, and M. C. Pitter, “Remote photoacoustic detection of liquid contamination of a surface,” Appl. Opt. 42(24), 4901–4908 (2003).
    [CrossRef] [PubMed]
  14. C. W. Van Neste, L. R. Senesac, and T. Thundat, “Standoff photoacoustic spectroscopy,” Appl. Phys. Lett. 92(23), 234102 (2008).
    [CrossRef]
  15. C.-C. Wang, S. Trivedi, F. Jin, V. Swaminathan, P. Rodriguez, and N. S. Prasad, “High sensitivity pulsed laser vibrometer and its application as a laser microphone,” Appl. Phys. Lett. 94(5), 051112 (2009).
    [CrossRef]
  16. A. Graninger, X. Chen, and F.-S. Choa, “Stand-off chemical detection using acoustic beam forming and photoacoustic sensing” presented at International Congress on Sound and Vibration 16, Kraków, Poland, July 2009.
  17. C. K. N. Patel and A. C. Tam, “Pulsed optoacoustic spectroscopy of condensed matter,” Rev. Mod. Phys. 53(3), 517–550 (1981).
    [CrossRef]
  18. A. C. Tam, “Applications of photoacoustic sensing technique,” Rev. Mod. Phys. 58(2), 381–431 (1986).
    [CrossRef]
  19. M. W. Sigrist, “Laser generation of acoustic waves in liquids and gases,” J. Appl. Phys. 60(7), R83–R122 (1986).
    [CrossRef]
  20. J. R. Cannon, “One-dimensional heat equation” in Encyclopedia of Mathematics and Its Applications (Addison-Wesley, Menlo Park, CA, 1984).
  21. A. Pierce, Acoustics (ASA, AIP, New York, 1989).
  22. N. A. Lange and J. A. Dean, Lange's Handbook of Chemistry, 10th ed. (McGraw-Hill, New York, 1967).

2010

E. Holthoff, J. Bender, P. Pellegrino, and A. Fisher, “Quantum cascade laser-based photoacoustic spectroscopy for trace vapor detection and molecular discrimination,” Sensors (Basel Switzerland) 10(3), 1986–2002 (2010).
[CrossRef]

2009

A. Elia, C. D. Franco, V. Spagnolo, P. M. Lugarà, and G. Scamarcio, “Quantum cascade laser-based photoacoustic sensor for trace detection of formaldehyde gas,” Sensors (Basel Switzerland) 9(4), 2697–2705 (2009).
[CrossRef]

C.-C. Wang, S. Trivedi, F. Jin, V. Swaminathan, P. Rodriguez, and N. S. Prasad, “High sensitivity pulsed laser vibrometer and its application as a laser microphone,” Appl. Phys. Lett. 94(5), 051112 (2009).
[CrossRef]

2008

C. W. Van Neste, L. R. Senesac, and T. Thundat, “Standoff photoacoustic spectroscopy,” Appl. Phys. Lett. 92(23), 234102 (2008).
[CrossRef]

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90(2), 165–176 (2008).
[CrossRef]

2006

F. K. Tittel, Y. A. Bakhirkin, A. A. Kosterev, and G. Wysocki, “Recent advances in trace gas detection using quantum and interband cascade lasers,” Rev. Laser Eng. 34, 275–284 (2006).

2005

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81(6), 769–777 (2005).
[CrossRef]

2003

2000

1999

S. H. Yönak and D. R. Dowling, “Photoacoustic detection and localization of small gas leaks,” J. Acoust. Soc. Am. 105(5), 2685–2694 (1999).
[CrossRef] [PubMed]

1994

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

1986

A. C. Tam, “Applications of photoacoustic sensing technique,” Rev. Mod. Phys. 58(2), 381–431 (1986).
[CrossRef]

M. W. Sigrist, “Laser generation of acoustic waves in liquids and gases,” J. Appl. Phys. 60(7), R83–R122 (1986).
[CrossRef]

1982

D. J. Brassington, “Photo-acoustic detection and ranging - a new technique for the remote detection of gases,” J. Phys. D Appl. Phys. 15(2), 219–228 (1982).
[CrossRef]

1981

C. K. N. Patel and A. C. Tam, “Pulsed optoacoustic spectroscopy of condensed matter,” Rev. Mod. Phys. 53(3), 517–550 (1981).
[CrossRef]

1880

A. G. Bell, “On the production and reproduction of sound by light,” Am. J. Sci. 20, 305–324 (1880).

Bakhirkin, Y.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90(2), 165–176 (2008).
[CrossRef]

Bakhirkin, Y. A.

F. K. Tittel, Y. A. Bakhirkin, A. A. Kosterev, and G. Wysocki, “Recent advances in trace gas detection using quantum and interband cascade lasers,” Rev. Laser Eng. 34, 275–284 (2006).

Bell, A. G.

A. G. Bell, “On the production and reproduction of sound by light,” Am. J. Sci. 20, 305–324 (1880).

Bender, J.

E. Holthoff, J. Bender, P. Pellegrino, and A. Fisher, “Quantum cascade laser-based photoacoustic spectroscopy for trace vapor detection and molecular discrimination,” Sensors (Basel Switzerland) 10(3), 1986–2002 (2010).
[CrossRef]

Brassington, D. J.

D. J. Brassington, “Photo-acoustic detection and ranging - a new technique for the remote detection of gases,” J. Phys. D Appl. Phys. 15(2), 219–228 (1982).
[CrossRef]

Bulliard, J. M.

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81(6), 769–777 (2005).
[CrossRef]

Capasso, F.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Cho, A. Y.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Curl, R. F.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90(2), 165–176 (2008).
[CrossRef]

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81(6), 769–777 (2005).
[CrossRef]

Dowling, D. R.

S. H. Yönak and D. R. Dowling, “Photoacoustic detection and localization of small gas leaks,” J. Acoust. Soc. Am. 105(5), 2685–2694 (1999).
[CrossRef] [PubMed]

Elia, A.

A. Elia, C. D. Franco, V. Spagnolo, P. M. Lugarà, and G. Scamarcio, “Quantum cascade laser-based photoacoustic sensor for trace detection of formaldehyde gas,” Sensors (Basel Switzerland) 9(4), 2697–2705 (2009).
[CrossRef]

Faist, J.

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81(6), 769–777 (2005).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Fisher, A.

E. Holthoff, J. Bender, P. Pellegrino, and A. Fisher, “Quantum cascade laser-based photoacoustic spectroscopy for trace vapor detection and molecular discrimination,” Sensors (Basel Switzerland) 10(3), 1986–2002 (2010).
[CrossRef]

Franco, C. D.

A. Elia, C. D. Franco, V. Spagnolo, P. M. Lugarà, and G. Scamarcio, “Quantum cascade laser-based photoacoustic sensor for trace detection of formaldehyde gas,” Sensors (Basel Switzerland) 9(4), 2697–2705 (2009).
[CrossRef]

Fraser, M.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90(2), 165–176 (2008).
[CrossRef]

Harris, M.

Holthoff, E.

E. Holthoff, J. Bender, P. Pellegrino, and A. Fisher, “Quantum cascade laser-based photoacoustic spectroscopy for trace vapor detection and molecular discrimination,” Sensors (Basel Switzerland) 10(3), 1986–2002 (2010).
[CrossRef]

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Jin, F.

C.-C. Wang, S. Trivedi, F. Jin, V. Swaminathan, P. Rodriguez, and N. S. Prasad, “High sensitivity pulsed laser vibrometer and its application as a laser microphone,” Appl. Phys. Lett. 94(5), 051112 (2009).
[CrossRef]

Kosterev, A.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90(2), 165–176 (2008).
[CrossRef]

Kosterev, A. A.

F. K. Tittel, Y. A. Bakhirkin, A. A. Kosterev, and G. Wysocki, “Recent advances in trace gas detection using quantum and interband cascade lasers,” Rev. Laser Eng. 34, 275–284 (2006).

Lewicki, R.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90(2), 165–176 (2008).
[CrossRef]

Lugarà, P. M.

A. Elia, C. D. Franco, V. Spagnolo, P. M. Lugarà, and G. Scamarcio, “Quantum cascade laser-based photoacoustic sensor for trace detection of formaldehyde gas,” Sensors (Basel Switzerland) 9(4), 2697–2705 (2009).
[CrossRef]

Maulini, R.

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81(6), 769–777 (2005).
[CrossRef]

Patel, C. K. N.

C. K. N. Patel and A. C. Tam, “Pulsed optoacoustic spectroscopy of condensed matter,” Rev. Mod. Phys. 53(3), 517–550 (1981).
[CrossRef]

Pearson, G. N.

Pellegrino, P.

E. Holthoff, J. Bender, P. Pellegrino, and A. Fisher, “Quantum cascade laser-based photoacoustic spectroscopy for trace vapor detection and molecular discrimination,” Sensors (Basel Switzerland) 10(3), 1986–2002 (2010).
[CrossRef]

Perrett, B.

Pitter, M. C.

Prasad, N. S.

C.-C. Wang, S. Trivedi, F. Jin, V. Swaminathan, P. Rodriguez, and N. S. Prasad, “High sensitivity pulsed laser vibrometer and its application as a laser microphone,” Appl. Phys. Lett. 94(5), 051112 (2009).
[CrossRef]

Ridley, K.

Rodriguez, P.

C.-C. Wang, S. Trivedi, F. Jin, V. Swaminathan, P. Rodriguez, and N. S. Prasad, “High sensitivity pulsed laser vibrometer and its application as a laser microphone,” Appl. Phys. Lett. 94(5), 051112 (2009).
[CrossRef]

Scamarcio, G.

A. Elia, C. D. Franco, V. Spagnolo, P. M. Lugarà, and G. Scamarcio, “Quantum cascade laser-based photoacoustic sensor for trace detection of formaldehyde gas,” Sensors (Basel Switzerland) 9(4), 2697–2705 (2009).
[CrossRef]

Senesac, L. R.

C. W. Van Neste, L. R. Senesac, and T. Thundat, “Standoff photoacoustic spectroscopy,” Appl. Phys. Lett. 92(23), 234102 (2008).
[CrossRef]

Sigrist, M. W.

M. W. Sigrist, “Laser generation of acoustic waves in liquids and gases,” J. Appl. Phys. 60(7), R83–R122 (1986).
[CrossRef]

Sirtori, C.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Sivco, D. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

So, S.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90(2), 165–176 (2008).
[CrossRef]

Spagnolo, V.

A. Elia, C. D. Franco, V. Spagnolo, P. M. Lugarà, and G. Scamarcio, “Quantum cascade laser-based photoacoustic sensor for trace detection of formaldehyde gas,” Sensors (Basel Switzerland) 9(4), 2697–2705 (2009).
[CrossRef]

Swaminathan, V.

C.-C. Wang, S. Trivedi, F. Jin, V. Swaminathan, P. Rodriguez, and N. S. Prasad, “High sensitivity pulsed laser vibrometer and its application as a laser microphone,” Appl. Phys. Lett. 94(5), 051112 (2009).
[CrossRef]

Tam, A. C.

A. C. Tam, “Applications of photoacoustic sensing technique,” Rev. Mod. Phys. 58(2), 381–431 (1986).
[CrossRef]

C. K. N. Patel and A. C. Tam, “Pulsed optoacoustic spectroscopy of condensed matter,” Rev. Mod. Phys. 53(3), 517–550 (1981).
[CrossRef]

Tapster, P. R.

Thundat, T.

C. W. Van Neste, L. R. Senesac, and T. Thundat, “Standoff photoacoustic spectroscopy,” Appl. Phys. Lett. 92(23), 234102 (2008).
[CrossRef]

Tittel, F.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90(2), 165–176 (2008).
[CrossRef]

Tittel, F. K.

F. K. Tittel, Y. A. Bakhirkin, A. A. Kosterev, and G. Wysocki, “Recent advances in trace gas detection using quantum and interband cascade lasers,” Rev. Laser Eng. 34, 275–284 (2006).

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81(6), 769–777 (2005).
[CrossRef]

Trivedi, S.

C.-C. Wang, S. Trivedi, F. Jin, V. Swaminathan, P. Rodriguez, and N. S. Prasad, “High sensitivity pulsed laser vibrometer and its application as a laser microphone,” Appl. Phys. Lett. 94(5), 051112 (2009).
[CrossRef]

Van Neste, C. W.

C. W. Van Neste, L. R. Senesac, and T. Thundat, “Standoff photoacoustic spectroscopy,” Appl. Phys. Lett. 92(23), 234102 (2008).
[CrossRef]

Wang, C.-C.

C.-C. Wang, S. Trivedi, F. Jin, V. Swaminathan, P. Rodriguez, and N. S. Prasad, “High sensitivity pulsed laser vibrometer and its application as a laser microphone,” Appl. Phys. Lett. 94(5), 051112 (2009).
[CrossRef]

Willetts, D. V.

Wysocki, G.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90(2), 165–176 (2008).
[CrossRef]

F. K. Tittel, Y. A. Bakhirkin, A. A. Kosterev, and G. Wysocki, “Recent advances in trace gas detection using quantum and interband cascade lasers,” Rev. Laser Eng. 34, 275–284 (2006).

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81(6), 769–777 (2005).
[CrossRef]

Yönak, S. H.

S. H. Yönak and D. R. Dowling, “Photoacoustic detection and localization of small gas leaks,” J. Acoust. Soc. Am. 105(5), 2685–2694 (1999).
[CrossRef] [PubMed]

Am. J. Sci.

A. G. Bell, “On the production and reproduction of sound by light,” Am. J. Sci. 20, 305–324 (1880).

Appl. Opt.

Appl. Phys. B

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81(6), 769–777 (2005).
[CrossRef]

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90(2), 165–176 (2008).
[CrossRef]

Appl. Phys. Lett.

C. W. Van Neste, L. R. Senesac, and T. Thundat, “Standoff photoacoustic spectroscopy,” Appl. Phys. Lett. 92(23), 234102 (2008).
[CrossRef]

C.-C. Wang, S. Trivedi, F. Jin, V. Swaminathan, P. Rodriguez, and N. S. Prasad, “High sensitivity pulsed laser vibrometer and its application as a laser microphone,” Appl. Phys. Lett. 94(5), 051112 (2009).
[CrossRef]

J. Acoust. Soc. Am.

S. H. Yönak and D. R. Dowling, “Photoacoustic detection and localization of small gas leaks,” J. Acoust. Soc. Am. 105(5), 2685–2694 (1999).
[CrossRef] [PubMed]

J. Appl. Phys.

M. W. Sigrist, “Laser generation of acoustic waves in liquids and gases,” J. Appl. Phys. 60(7), R83–R122 (1986).
[CrossRef]

J. Phys. D Appl. Phys.

D. J. Brassington, “Photo-acoustic detection and ranging - a new technique for the remote detection of gases,” J. Phys. D Appl. Phys. 15(2), 219–228 (1982).
[CrossRef]

Rev. Laser Eng.

F. K. Tittel, Y. A. Bakhirkin, A. A. Kosterev, and G. Wysocki, “Recent advances in trace gas detection using quantum and interband cascade lasers,” Rev. Laser Eng. 34, 275–284 (2006).

Rev. Mod. Phys.

C. K. N. Patel and A. C. Tam, “Pulsed optoacoustic spectroscopy of condensed matter,” Rev. Mod. Phys. 53(3), 517–550 (1981).
[CrossRef]

A. C. Tam, “Applications of photoacoustic sensing technique,” Rev. Mod. Phys. 58(2), 381–431 (1986).
[CrossRef]

Science

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Sensors (Basel Switzerland)

A. Elia, C. D. Franco, V. Spagnolo, P. M. Lugarà, and G. Scamarcio, “Quantum cascade laser-based photoacoustic sensor for trace detection of formaldehyde gas,” Sensors (Basel Switzerland) 9(4), 2697–2705 (2009).
[CrossRef]

E. Holthoff, J. Bender, P. Pellegrino, and A. Fisher, “Quantum cascade laser-based photoacoustic spectroscopy for trace vapor detection and molecular discrimination,” Sensors (Basel Switzerland) 10(3), 1986–2002 (2010).
[CrossRef]

Other

A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Wiley, New York 1980)

Y. H. Pao, Optoacoustic Spectroscopy and Detection (Academic, New York, 1977)

A. Graninger, X. Chen, and F.-S. Choa, “Stand-off chemical detection using acoustic beam forming and photoacoustic sensing” presented at International Congress on Sound and Vibration 16, Kraków, Poland, July 2009.

J. R. Cannon, “One-dimensional heat equation” in Encyclopedia of Mathematics and Its Applications (Addison-Wesley, Menlo Park, CA, 1984).

A. Pierce, Acoustics (ASA, AIP, New York, 1989).

N. A. Lange and J. A. Dean, Lange's Handbook of Chemistry, 10th ed. (McGraw-Hill, New York, 1967).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup diagram for standoff photoacoustic chemical detection using QCL.

Fig. 2
Fig. 2

Measured QCL lasing spectrum and IPA gas vapor transmission spectrum.

Fig. 3
Fig. 3

(a) Initial setup of standoff photoacoustic chemical detection with microphone placed at 1 inch from the gas sample; (b) measured PA signal by microphone; yellow trace: electrical driving signal; blue trace: photoacoustic signal (output of microphone).

Fig. 4
Fig. 4

Photograph of the actual experimental setup in the laboratory for standoff photoacoustic chemical detection.

Fig. 5
Fig. 5

Dependence of PA signal on laser power (laser pulse energy). Laser pulse width is kept at 300 µs and repetition rate is 1.5 kHz. Detection distance is 15 ft. Laser power is measured as average output power of the QCL. Square: measurements; solid line: linear fit.

Fig. 6
Fig. 6

Dependence of PA signal on detection distance. QCL is running at pulsed mode with repetition rate of 1.5 kHz and pulse duration of 300 µs. QCL average output power is kept at 40 mW. Maximum detection distance is 41 feet. Diamond: measurements; solid line: linear fit.

Fig. 7
Fig. 7

(a) Dependence of PA signal on temperature. (b) Dependence of PA signal on gas vapor concentration (calculated values). Diamond: measurements; solid line: linear fit.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ΔE= E 0 E 1 = E 0 (1exp(σNΔz))

Metrics