Abstract

Nitric oxide (NO) and carbon monoxide (CO) in Shanghai urban atmosphere have been measured during the EXPO 2010 by an optical trace gas monitoring system based on room-temperature pulsed quantum cascade lasers (QCL). The results showed obvious diurnal variation in their concentrations. A great correlation was found by analyzing the diurnal variation, indicating common emission sources for both NO and CO. However analysis of the data from street canyon measurements showed that on a vehicle-by-vehicle basis NO emissions correlated only weakly with CO emissions. A possible explanation to this issue has been given.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Terje, “Impact of increased anthropogenic emission in Asia on troposphereic ozone and climate,” Tellus 3, 251–254 (1996).
  2. L. J. Clapp and M. E. Jenkin, “Analysis of the relationship between ambient levels of O3, NO2 and NO as a function of NO in UK,” Atmos. Environ. 29, 923–946 (1995).
  3. S. Zufeng, “Present status and developing countermeasure of tail exhaust gas measurement of China motor vehicle,” Auto Ind. Res. 4, 25–28 (2002).
  4. J. B. Heywood, Internal Combustion Engine Fundamentals (Graw-Hill, New York, 1988).
  5. D. D. Nelson, J. H. Shorter, J. B. Mcmanus, and M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75(2-3), 343–350 (2002).
    [CrossRef]
  6. F. D’Amato, P. Mazzinghi, and F. Castagnoli, “Methane analyzer based on TDL’s for measurements in the lower stratosphere: design and laboratory tests,” Appl. Phys. B 75(2-3), 195–202 (2002).
    [CrossRef]
  7. G. Hancock, V. L. Kasyutich, and G. A. D. Ritchie, “Wavelength-modulation spectroscopy using a frequency-doubled current-modulated diode laser,” Appl. Phys. B 74(6), 569–575 (2002).
    [CrossRef]
  8. P. W. Werle, P. Mazzinghi, F. D’Amato, M. De Rosa, K. Maurer, and F. Slemr, “Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(8-9), 1685–1705 (2004).
    [CrossRef] [PubMed]
  9. G. C. Sauer, T. J. Pisano, and R. D. Fitz, “Tunable diode laser absorption spectrometer measurements of ambient nitrogen dioxide, nitric acid, formaldehyde, and hydrogen peroxide in Parlier, California,” Atmos. Environ. 37(12), 1583–1591 (2003).
    [CrossRef]
  10. P. Vogel and V. Ebert, “Near shot noise detection of oxygen in the A-band with vertical-cavity surface-emitting lasers,” Appl. Phys. B 72, 127–135 (2001).
  11. T. Iseki, H. Tai, and K. Kimura, “A portable remote methane sensor using a tunable diode laser,” Meas. Sci. Technol. 11(6), 594–602 (2000).
    [CrossRef]
  12. J. L. Jiménez, M. D. Koplow, D. D. Nelson, M. S. Zahniser, and S. E. Schmidt, “Characterization of on-road vehicle NO emissions by a TILDAS remote sensor,” J. Air Waste Manage. Assoc. 49, 463–470 (1999).
  13. M. T. McCulloch, N. Langford, and G. Duxbury, “Real-time trace-level detection of carbon dioxide and ethylene in car exhaust gases,” Appl. Opt. 44(14), 2887–2894 (2005).
    [CrossRef] [PubMed]
  14. X. Zhou, “Diode-laser absorption sensors for combustion control,” Ph.D. Dissertation (Stanford University, 2005), page 5.
  15. K. G. Hay, “Gas sensing using quantum cascade lasers,” Ph.D. Dissertation (University of Strathclyde, 2010), page 97.
  16. Y. Yuan, Ya ping Xiao, Li xin Fu, Motor Vehicle Pollution Control (Chemical Industry Press, Beijing, 2000).

2005 (1)

2004 (1)

P. W. Werle, P. Mazzinghi, F. D’Amato, M. De Rosa, K. Maurer, and F. Slemr, “Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(8-9), 1685–1705 (2004).
[CrossRef] [PubMed]

2003 (1)

G. C. Sauer, T. J. Pisano, and R. D. Fitz, “Tunable diode laser absorption spectrometer measurements of ambient nitrogen dioxide, nitric acid, formaldehyde, and hydrogen peroxide in Parlier, California,” Atmos. Environ. 37(12), 1583–1591 (2003).
[CrossRef]

2002 (4)

S. Zufeng, “Present status and developing countermeasure of tail exhaust gas measurement of China motor vehicle,” Auto Ind. Res. 4, 25–28 (2002).

D. D. Nelson, J. H. Shorter, J. B. Mcmanus, and M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75(2-3), 343–350 (2002).
[CrossRef]

F. D’Amato, P. Mazzinghi, and F. Castagnoli, “Methane analyzer based on TDL’s for measurements in the lower stratosphere: design and laboratory tests,” Appl. Phys. B 75(2-3), 195–202 (2002).
[CrossRef]

G. Hancock, V. L. Kasyutich, and G. A. D. Ritchie, “Wavelength-modulation spectroscopy using a frequency-doubled current-modulated diode laser,” Appl. Phys. B 74(6), 569–575 (2002).
[CrossRef]

2001 (1)

P. Vogel and V. Ebert, “Near shot noise detection of oxygen in the A-band with vertical-cavity surface-emitting lasers,” Appl. Phys. B 72, 127–135 (2001).

2000 (1)

T. Iseki, H. Tai, and K. Kimura, “A portable remote methane sensor using a tunable diode laser,” Meas. Sci. Technol. 11(6), 594–602 (2000).
[CrossRef]

1999 (1)

J. L. Jiménez, M. D. Koplow, D. D. Nelson, M. S. Zahniser, and S. E. Schmidt, “Characterization of on-road vehicle NO emissions by a TILDAS remote sensor,” J. Air Waste Manage. Assoc. 49, 463–470 (1999).

1996 (1)

B. Terje, “Impact of increased anthropogenic emission in Asia on troposphereic ozone and climate,” Tellus 3, 251–254 (1996).

1995 (1)

L. J. Clapp and M. E. Jenkin, “Analysis of the relationship between ambient levels of O3, NO2 and NO as a function of NO in UK,” Atmos. Environ. 29, 923–946 (1995).

Castagnoli, F.

F. D’Amato, P. Mazzinghi, and F. Castagnoli, “Methane analyzer based on TDL’s for measurements in the lower stratosphere: design and laboratory tests,” Appl. Phys. B 75(2-3), 195–202 (2002).
[CrossRef]

Clapp, L. J.

L. J. Clapp and M. E. Jenkin, “Analysis of the relationship between ambient levels of O3, NO2 and NO as a function of NO in UK,” Atmos. Environ. 29, 923–946 (1995).

D’Amato, F.

P. W. Werle, P. Mazzinghi, F. D’Amato, M. De Rosa, K. Maurer, and F. Slemr, “Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(8-9), 1685–1705 (2004).
[CrossRef] [PubMed]

F. D’Amato, P. Mazzinghi, and F. Castagnoli, “Methane analyzer based on TDL’s for measurements in the lower stratosphere: design and laboratory tests,” Appl. Phys. B 75(2-3), 195–202 (2002).
[CrossRef]

De Rosa, M.

P. W. Werle, P. Mazzinghi, F. D’Amato, M. De Rosa, K. Maurer, and F. Slemr, “Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(8-9), 1685–1705 (2004).
[CrossRef] [PubMed]

Duxbury, G.

Ebert, V.

P. Vogel and V. Ebert, “Near shot noise detection of oxygen in the A-band with vertical-cavity surface-emitting lasers,” Appl. Phys. B 72, 127–135 (2001).

Fitz, R. D.

G. C. Sauer, T. J. Pisano, and R. D. Fitz, “Tunable diode laser absorption spectrometer measurements of ambient nitrogen dioxide, nitric acid, formaldehyde, and hydrogen peroxide in Parlier, California,” Atmos. Environ. 37(12), 1583–1591 (2003).
[CrossRef]

Hancock, G.

G. Hancock, V. L. Kasyutich, and G. A. D. Ritchie, “Wavelength-modulation spectroscopy using a frequency-doubled current-modulated diode laser,” Appl. Phys. B 74(6), 569–575 (2002).
[CrossRef]

Iseki, T.

T. Iseki, H. Tai, and K. Kimura, “A portable remote methane sensor using a tunable diode laser,” Meas. Sci. Technol. 11(6), 594–602 (2000).
[CrossRef]

Jenkin, M. E.

L. J. Clapp and M. E. Jenkin, “Analysis of the relationship between ambient levels of O3, NO2 and NO as a function of NO in UK,” Atmos. Environ. 29, 923–946 (1995).

Jiménez, J. L.

J. L. Jiménez, M. D. Koplow, D. D. Nelson, M. S. Zahniser, and S. E. Schmidt, “Characterization of on-road vehicle NO emissions by a TILDAS remote sensor,” J. Air Waste Manage. Assoc. 49, 463–470 (1999).

Kasyutich, V. L.

G. Hancock, V. L. Kasyutich, and G. A. D. Ritchie, “Wavelength-modulation spectroscopy using a frequency-doubled current-modulated diode laser,” Appl. Phys. B 74(6), 569–575 (2002).
[CrossRef]

Kimura, K.

T. Iseki, H. Tai, and K. Kimura, “A portable remote methane sensor using a tunable diode laser,” Meas. Sci. Technol. 11(6), 594–602 (2000).
[CrossRef]

Koplow, M. D.

J. L. Jiménez, M. D. Koplow, D. D. Nelson, M. S. Zahniser, and S. E. Schmidt, “Characterization of on-road vehicle NO emissions by a TILDAS remote sensor,” J. Air Waste Manage. Assoc. 49, 463–470 (1999).

Langford, N.

Maurer, K.

P. W. Werle, P. Mazzinghi, F. D’Amato, M. De Rosa, K. Maurer, and F. Slemr, “Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(8-9), 1685–1705 (2004).
[CrossRef] [PubMed]

Mazzinghi, P.

P. W. Werle, P. Mazzinghi, F. D’Amato, M. De Rosa, K. Maurer, and F. Slemr, “Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(8-9), 1685–1705 (2004).
[CrossRef] [PubMed]

F. D’Amato, P. Mazzinghi, and F. Castagnoli, “Methane analyzer based on TDL’s for measurements in the lower stratosphere: design and laboratory tests,” Appl. Phys. B 75(2-3), 195–202 (2002).
[CrossRef]

McCulloch, M. T.

Mcmanus, J. B.

D. D. Nelson, J. H. Shorter, J. B. Mcmanus, and M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75(2-3), 343–350 (2002).
[CrossRef]

Nelson, D. D.

D. D. Nelson, J. H. Shorter, J. B. Mcmanus, and M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75(2-3), 343–350 (2002).
[CrossRef]

J. L. Jiménez, M. D. Koplow, D. D. Nelson, M. S. Zahniser, and S. E. Schmidt, “Characterization of on-road vehicle NO emissions by a TILDAS remote sensor,” J. Air Waste Manage. Assoc. 49, 463–470 (1999).

Pisano, T. J.

G. C. Sauer, T. J. Pisano, and R. D. Fitz, “Tunable diode laser absorption spectrometer measurements of ambient nitrogen dioxide, nitric acid, formaldehyde, and hydrogen peroxide in Parlier, California,” Atmos. Environ. 37(12), 1583–1591 (2003).
[CrossRef]

Ritchie, G. A. D.

G. Hancock, V. L. Kasyutich, and G. A. D. Ritchie, “Wavelength-modulation spectroscopy using a frequency-doubled current-modulated diode laser,” Appl. Phys. B 74(6), 569–575 (2002).
[CrossRef]

Sauer, G. C.

G. C. Sauer, T. J. Pisano, and R. D. Fitz, “Tunable diode laser absorption spectrometer measurements of ambient nitrogen dioxide, nitric acid, formaldehyde, and hydrogen peroxide in Parlier, California,” Atmos. Environ. 37(12), 1583–1591 (2003).
[CrossRef]

Schmidt, S. E.

J. L. Jiménez, M. D. Koplow, D. D. Nelson, M. S. Zahniser, and S. E. Schmidt, “Characterization of on-road vehicle NO emissions by a TILDAS remote sensor,” J. Air Waste Manage. Assoc. 49, 463–470 (1999).

Shorter, J. H.

D. D. Nelson, J. H. Shorter, J. B. Mcmanus, and M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75(2-3), 343–350 (2002).
[CrossRef]

Slemr, F.

P. W. Werle, P. Mazzinghi, F. D’Amato, M. De Rosa, K. Maurer, and F. Slemr, “Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(8-9), 1685–1705 (2004).
[CrossRef] [PubMed]

Tai, H.

T. Iseki, H. Tai, and K. Kimura, “A portable remote methane sensor using a tunable diode laser,” Meas. Sci. Technol. 11(6), 594–602 (2000).
[CrossRef]

Terje, B.

B. Terje, “Impact of increased anthropogenic emission in Asia on troposphereic ozone and climate,” Tellus 3, 251–254 (1996).

Vogel, P.

P. Vogel and V. Ebert, “Near shot noise detection of oxygen in the A-band with vertical-cavity surface-emitting lasers,” Appl. Phys. B 72, 127–135 (2001).

Werle, P. W.

P. W. Werle, P. Mazzinghi, F. D’Amato, M. De Rosa, K. Maurer, and F. Slemr, “Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(8-9), 1685–1705 (2004).
[CrossRef] [PubMed]

Zahniser, M. S.

D. D. Nelson, J. H. Shorter, J. B. Mcmanus, and M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75(2-3), 343–350 (2002).
[CrossRef]

J. L. Jiménez, M. D. Koplow, D. D. Nelson, M. S. Zahniser, and S. E. Schmidt, “Characterization of on-road vehicle NO emissions by a TILDAS remote sensor,” J. Air Waste Manage. Assoc. 49, 463–470 (1999).

Zufeng, S.

S. Zufeng, “Present status and developing countermeasure of tail exhaust gas measurement of China motor vehicle,” Auto Ind. Res. 4, 25–28 (2002).

Appl. Opt. (1)

Appl. Phys. B (4)

P. Vogel and V. Ebert, “Near shot noise detection of oxygen in the A-band with vertical-cavity surface-emitting lasers,” Appl. Phys. B 72, 127–135 (2001).

D. D. Nelson, J. H. Shorter, J. B. Mcmanus, and M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75(2-3), 343–350 (2002).
[CrossRef]

F. D’Amato, P. Mazzinghi, and F. Castagnoli, “Methane analyzer based on TDL’s for measurements in the lower stratosphere: design and laboratory tests,” Appl. Phys. B 75(2-3), 195–202 (2002).
[CrossRef]

G. Hancock, V. L. Kasyutich, and G. A. D. Ritchie, “Wavelength-modulation spectroscopy using a frequency-doubled current-modulated diode laser,” Appl. Phys. B 74(6), 569–575 (2002).
[CrossRef]

Atmos. Environ. (2)

L. J. Clapp and M. E. Jenkin, “Analysis of the relationship between ambient levels of O3, NO2 and NO as a function of NO in UK,” Atmos. Environ. 29, 923–946 (1995).

G. C. Sauer, T. J. Pisano, and R. D. Fitz, “Tunable diode laser absorption spectrometer measurements of ambient nitrogen dioxide, nitric acid, formaldehyde, and hydrogen peroxide in Parlier, California,” Atmos. Environ. 37(12), 1583–1591 (2003).
[CrossRef]

Auto Ind. Res. (1)

S. Zufeng, “Present status and developing countermeasure of tail exhaust gas measurement of China motor vehicle,” Auto Ind. Res. 4, 25–28 (2002).

J. Air Waste Manage. Assoc. (1)

J. L. Jiménez, M. D. Koplow, D. D. Nelson, M. S. Zahniser, and S. E. Schmidt, “Characterization of on-road vehicle NO emissions by a TILDAS remote sensor,” J. Air Waste Manage. Assoc. 49, 463–470 (1999).

Meas. Sci. Technol. (1)

T. Iseki, H. Tai, and K. Kimura, “A portable remote methane sensor using a tunable diode laser,” Meas. Sci. Technol. 11(6), 594–602 (2000).
[CrossRef]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

P. W. Werle, P. Mazzinghi, F. D’Amato, M. De Rosa, K. Maurer, and F. Slemr, “Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(8-9), 1685–1705 (2004).
[CrossRef] [PubMed]

Tellus (1)

B. Terje, “Impact of increased anthropogenic emission in Asia on troposphereic ozone and climate,” Tellus 3, 251–254 (1996).

Other (4)

J. B. Heywood, Internal Combustion Engine Fundamentals (Graw-Hill, New York, 1988).

X. Zhou, “Diode-laser absorption sensors for combustion control,” Ph.D. Dissertation (Stanford University, 2005), page 5.

K. G. Hay, “Gas sensing using quantum cascade lasers,” Ph.D. Dissertation (University of Strathclyde, 2010), page 97.

Y. Yuan, Ya ping Xiao, Li xin Fu, Motor Vehicle Pollution Control (Chemical Industry Press, Beijing, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of a typical multi-pass absorption cell arrangement.

Fig. 2
Fig. 2

Schematic diagram of the experimental apparatus with multiple QCLs and a single detector.

Fig. 3
Fig. 3

Absorption spectra of NO and CO gases around 1900-cm−1 and 2190-cm−1, respectively. (a) a fit to 60 ppb NO spectrum. (b) a fit to 700 ppb CO spectrum. The measurement data are shown in red, and model fits to the data are shown in black.

Fig. 4
Fig. 4

Diurnal variation of NO and CO concentrations at the experimental site.

Fig. 5
Fig. 5

Correlation between NO and CO emissions. A regression analysis gives a great correlation coefficient of R = 0.85 for CO to NO.

Fig. 6
Fig. 6

Rapid variation of NO and CO concentrations during a roadside measurement.

Fig. 7
Fig. 7

Magnification of a selected time segment of measurement from Fig. 6.

Fig. 8
Fig. 8

Correlation between NO and CO emissions on a vehicle-by-vehicle basis, by analyzing the same data as plotted in Fig. 7.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I= I 0 R n exp(PX S 0 Φ(ν ν 0 )l)
α ν =PX S 0 Φ(ν ν 0 )l=ln( R n )+ln( I 0 /I)
[CO]=4.76*[NO]+360.42ppb

Metrics